
College of Computer and Information Science, Northeastern University March 13, 2011 1

CS5310
Graduate Computer Graphics

Prof. Harriet Fell
Spring 2011

Lecture 7 – March 9, 2011

College of Computer and Information Science, Northeastern University March 13, 2011 2

Today’s Topics
•  Look at student images
•  About the final project
•  About the exam
•  Poly Mesh

  Hidden Surface Removal
  Visible Surface Determination

•  Noise and Turbulence

  Clouds
  Marble
  Other Effects

College of Computer and Information Science, Northeastern University March 13, 2011 3

Rendering a Polymesh

•  Scene is composed of triangles or other
polygons.

•  We want to view the scene from different
view-points.
 Hidden Surface Removal

•  Cull out surfaces or parts of surfaces that are not
visible.

  Visible Surface Determination
•  Head right for the surfaces that are visible.
•  Ray-Tracing is one way to do this.

College of Computer and Information Science, Northeastern University March 13, 2011 4

Wireframe Rendering

Copyright (C) 2000,2001,2002 Free Software
Foundation, Inc. 51 Franklin St, Fifth Floor, Boston,
MA 02110-1301 USA Everyone is permitted to copy
and distribute verbatim copies of this license
document, but changing it is not allowed.

Hidden-
Line
Removal

Hidden-
Face
Removal

College of Computer and Information Science, Northeastern University March 13, 2011 5

Convex Polyhedra

We can see a face if and only if
its normal has a component
toward us.

 N·V > 0
V points from the face toward
the viewer.

N point toward the outside of the
polyhedra.

College of Computer and Information Science, Northeastern University March 13, 2011 6

Hidden Surface Removal
•  Backface culling

  Never show the back of a polygon.
•  Viewing frustum culling

  Discard objects outside the camera’s view.
•  Occlusion culling

  Determining when portions of objects are hidden.
•  Painter’s Algorithm
•  Z-Buffer

•  Contribution culling
  Discard objects that are too far away to be seen.

http://en.wikipedia.org/wiki/Hidden_face_removal

College of Computer and Information Science, Northeastern University March 13, 2011 7

Painter’s Algorithm

College of Computer and Information Science, Northeastern University March 13, 2011 8

Painter’s Algorithm

 Sort objects back to front relative to the
 viewpoint.

 for each object (in the above order) do
 draw it on the screen

College of Computer and Information Science, Northeastern University March 13, 2011 9

Painter’s Problem

College of Computer and Information Science, Northeastern University March 13, 2011 10

Z-Buffer

This image is licensed under the
Creative Commons Attribution License v. 2.0.

The Z-Buffer is usually part of
graphics card hardware. It can
also be implemented in software.

The depth of each pixel is stored
in the z-buffer.

The Z-Buffer is a 2D array that
holds one value for each pixel.

An object is rendered at a pixel
only if its z-value is higher(lower)
than the buffer value. The buffer
is then updated.

College of Computer and Information Science, Northeastern University March 13, 2011 11

Visible Surface Determination

•  If surfaces are invisible, don’t render them.
 Ray Tracing

•  We only render the nearest object.
  Binary Space Partitioning (BSP)

•  Recursively cut up space into convex sets with
hyperplanes.

•  The scene is represented by a BSP-tree.

College of Computer and Information Science, Northeastern University March 13, 2011 12

Sorting the Polygons

The first step of the Painter’s algorithm is:
Sort objects back to front relative to the

 viewpoint.
The relative order may not be well defined.
We have to reorder the objects when we

change the viewpoint.
The BSP algorithm and BSP trees solve

these problems.

College of Computer and Information Science, Northeastern University March 13, 2011 13

Binary Space Partition

•  Our scene is made of triangles.
 Other polygons can work too.

•  Assume no triangle crosses the plane of
any other triangle.
 We relax this condition later.

 following Shirley et al.

College of Computer and Information Science, Northeastern University March 13, 2011 14

BSP – Basics
•  Let a plane in 3-space (or line in 2-space) be

defined implicitly, i.e.
  f(P) = f(x, y, z) = 0 in 3-space
  f(P) = f(x, y) = 0 in 2-space

•  All the points P such that f(P) > 0 lie on one side
of the plane (line).

•  All the points P such that f(P) < 0 lie on the other
side of the plane (line).

•  Since we have assumed that all vertices of a
triangle lie on the same side of the plane (line),
we can tell which side of a plane a triangle lies
on.

College of Computer and Information Science, Northeastern University March 13, 2011 15

BSP on a Simple Scene

 Suppose scene has 2 triangles
 T1 on the plane f(P) = 0

 T2 on the f(P) < 0 side
 e is the eye.

 if f(e) < 0 then
 draw T1; draw T2
 else
 draw T2; draw T1

College of Computer and Information Science, Northeastern University March 13, 2011 16

The BSP Tree
Suppose scene has many triangles, T1, T2, … .
We still assume no triangle crosses the plane of any other

triangle.
Let fi(P) = 0 be the equation of the plane containing Ti.
The BSPTREE has a node for each triangle with T1 at the

root.
At the node for Ti,

 the minus subtree contains all the triangles whose
vertices have fi(P) < 0
 the plus subtree contains all the triangles whose vertices
have fi(P) > 0.

College of Computer and Information Science, Northeastern University March 13, 2011 17

BSP on a non-Simple Scene

 function draw(bsptree tree, point e)
 if (tree.empty) then
 return
 if (ftree.root(e) < 0) then

 draw(tree.plus, e)
 render tree.triangle
 draw(tree.minus, e)

 else
 draw(tree.minus, e)
 render tree.triangle
 draw(tree.plus, e)

College of Computer and Information Science, Northeastern University March 13, 2011 18

2D BSP Trees Demo

http://www.symbolcraft.com/graphics/bsp/index.php

This is a demo in 2 dimensions.

The objects are line segments.

The dividing hyperplanes are lines.

Building the BSP Tree
We still assume no triangle crosses the plane of another triangle.

tree = node(T1)
for I in {2, …, N} do tree.add(Ti)

function add (triangle T)
if (f(a) < 0 and f(b) < 0 and f(c) < 0) then
 if (tree.minus.empty) then
 tree.minus = node(T)
 else
 tree.minus.add(T)

else if (f(a) > 0 and f(b) > 0 and f(c) > 0) then
 if (tree.plus.empty) then
 tree.plus = node(T)
 else
 tree.plus.add(T)

College of Computer and Information Science, Northeastern University March 13, 2011 20

Triangle Crossing a Plane
a

c

b

A

B

Two vertices, a and b, will
be on one side and one,
c, on the other side.

Find intercepts , A and B,
of the plane with the 2
edges that cross it.

College of Computer and Information Science, Northeastern University March 13, 2011 21

Cutting the Triangle
a

c

b

A

B

Cut the triangle into three
triangles, none of which
cross the cutting plane.

Be careful when one or
more of a, b, and c is
close to or on the cutting
plane.

College of Computer and Information Science, Northeastern University March 13, 2011 22

Binary Space Partition
of Polygons

by Fredrik (public domain)
http://en.wikipedia.org/wiki/User:Fredrik

College of Computer and Information Science, Northeastern University March 13, 2011 23

Scan-Line Algorithm
•  Romney, G. W., G. S. Watkins, D. C. Evans, "Real-Time

Display of Computer Generated Half-Tone Perspective
Pictures", IFIP, 1968, 973-978.

•  Scan Line Conversion of Polymesh - like Polyfill

•  Edge Coherence / Scanline Coherence
•  1) Most edges don’t hit a given scanline- keep track of

those that do.
•  2) Use the last point on an edge to compute the next

one. xi+1 = xi + 1/m

College of Computer and Information Science, Northeastern University March 13, 2011 24

ET – the Edge Table
The EdgeTable is for all nonhorizontal edges of all

polygons.

ET has buckets based on edges smaller y-coordinate.
Edge Data:

  x-coordinate of smaller y-coordinate
  y-top
  1/m = delta x
  polygon identification #: which polygons the edge

belongs to

College of Computer and Information Science, Northeastern University March 13, 2011 25

Polygon Data Structure

edges
xmin ymax 1/m 

1 6 8/4 

(1, 2)

(9, 6)

xmin = x value at lowest y

ymax = highest y

College of Computer and Information Science, Northeastern University March 13, 2011 26

Preprocessing the edges

count twice,
once for each
edge

chop lowest pixel
to only count
once delete

horizontal
edges

For a closed polygon, there should be an even number
of crossings at each scan line.

We fill between each successive pair.

College of Computer and Information Science, Northeastern University

13

12

11

10  e6

9

8

7  e4  e5

6  e3  e7  e8

5

4

3

2

1  e2  e1  e11

0  e10  e9
e11

7  e3  e4  e5

6  e7  e8

11  e6

10

Polygon
Data Structure
after preprocessing

Edge Table (ET) has a list of
edges for each scan line.

e1

e2

e3
e4

e5

e6

e7
e8

e9

e10
e11

0

5

10

13

College of Computer and Information Science, Northeastern University March 13, 2011 28

The Algorithm

1.  Start with smallest nonempty y value in ET.
2.  Initialize SLB (Scan Line Bucket) to nil.
3.  While current y ≤ top y value:

a.  Merge y bucket from ET into SLB; sort on xmin.
b.  Fill pixels between rounded pairs of x values in SLB.
c.  Remove edges from SLB whose ytop = current y.
d.  Increment xmin by 1/m for edges in SLB.
e.  Increment y by 1.

College of Computer and Information Science, Northeastern University

Running the
Algorithm

e2

e3
e4

e5

e6

e7
e8

e9

e10
e11

0

5

10

13

ET
13
12

11  e6
10
9
8

7  e3  e4  e5
6  e7 ve8
5
4
3
2

1  e2  e11
0  e10  e9

 xmin ymax 1/m
e2 2 6 -2/5
e3 1/3 12 1/3
e4 4 12 -2/5
e5 4 13 0
e6 6 2/3 13 -4/3
e7 10 10 -1/2
e8 10 8 2
e9 11 8 3/8
e10 11 4 -3/4
e11 6 4 2/3

5 0 10 15

College of Computer and Information Science, Northeastern University March 13, 2011 30

Running the
Algorithm

e2

e3
e4

e5

e6

e7
e8

e9

e10
e11

0

5

10

13

5 0 10 15

y=0

SCB 11 4 -3/4 

11 8 3/8 
e9

e10
10 1/4

11 3/8

College of Computer and Information Science, Northeastern University March 13, 2011 31

Running the
Algorithm

e2

e3
e4

e5

e6

e7
e8

e9

e10
e11

0

5

10

13

5 0 10 15

y=1

SLB 2 6 -2/5 

6 4 2/3 
e11

e2
1 3/5

10 1/4 4 -3/4 

11 3/8 8 3/8 
e9

e10

6 2/3

9 1/2

11 6/8

College of Computer and Information Science, Northeastern University March 13, 2011 32

Running the
Algorithm

e2

e3
e4

e5

e6

e7
e8

e9

e10
e11

0

5

10

13

5 0 10 15

y=2

SLB 1 3/5 6 -2/5 

6 2/3 4 2/3 
e11

e2

9 1/2 4 -3/4 

11 6/8 8 3/8 
e9

e10

12 1/8

8 3/4

7 1/3

1 1/5

College of Computer and Information Science, Northeastern University March 13, 2011 33

Running the
Algorithm

e3
e4

e5

e6

e7
e8

e9

e10
0

5

10

13

5 0 10 15

y=3

SLB 1 1/5 6 -2/5 

7 1/3 4 2/3 
e11

e2

8 3/4 4 -3/4 

12 1/8 8 3/8 
e9

e10

12 4/8

8

8

4/5

e11 e2

College of Computer and Information Science, Northeastern University March 13, 2011 34

Running the
Algorithm

e3
e4

e5

e6

e7
e8

e10
0

5

10

13

5 0 10 15

y=4

SLB 4/5 6 -2/5 

8 4 2/3 
e11

e2

8 4 -3/4 

12 4/8 8 3/8 
e9

e10 e11 e2
e9

Remove these edges.

College of Computer and Information Science, Northeastern University March 13, 2011 35

Running the
Algorithm

e3
e4

e5

e6

e7
e8

0

5

10

13

5 0 10 15

y=4

SLB 4/5 6 -2/5 
e2

12 4/8 8 3/8 
e9

12 7/8

2/5

e2 e11
e10

e9
e11 and e10 are removed.

College of Computer and Information Science, Northeastern University March 13, 2011 36

Running the
Algorithm

e3
e4

e5

e6

e7
e8

0

5

10

13

5 0 10 15

y=5

SLB 2/5 6 -2/5 
e2

12 7/8 8 3/8 
e9

13 2/8

0

e2 e11
e10

e9

College of Computer and Information Science, Northeastern University March 13, 2011 37

Running the
Algorithm

e3
e4

e5

e6

e7
e8

0

5

10

13

5 0 10 15

y=6

SLB 0 6 -2/5 
e2

10 10 -1/2 
e7

e2 e11
e10

e9

Remove this edge.

10 8 2 
e8

13 2/8 8 3/8 
e9

9 1/2

12

13 5/8

College of Computer and Information Science, Northeastern University

Running the
Algorithm

e3
e4

e5

e6

e7
e8

0

5

10

13

5 0 10 15

y=7

SLB

4 13 0 
e5

9 1/2 10 -1/2 
e7

e2 e11
e10

e9

12 8 2 
e8

13 5/8 8 3/8 
e9

Add these edges.

4 12 -2/5 
e4

1/3 12 1/3 
e3

College of Computer and Information Science, Northeastern University March 13, 2011 39

Polygon Table

Polygon Table
 A, B, C, D of the plane equation
 shading or color info (e.g. color and N)
 in (out) boolean
 initialized to false (= out) at start of scanline
 z – at lowest y, x

College of Computer and Information Science, Northeastern University March 13, 2011 40

Coherence

•  Non-penetrating polygons maintain their
relative z values.
  If the polygons penetrate, add a false edge.

•  If there is no change in edges from one
scanline to the next, and no change in
order wrt x, then no new computations of z
are needed.

College of Computer and Information Science, Northeastern University March 13, 2011 41

Active Edge Table
Keep in order of increasing x.

At (1) AET  AB  AC  DF  EF

College of Computer and Information Science, Northeastern University March 13, 2011 42

Running the Algorithm 1
If more than one in is true, compute the z values at that
point to see which polygon is furthest forward.!

If only one in is true, use that polygon’s color and shading.!

College of Computer and Information Science, Northeastern University March 13, 2011 43

Running the Algorithm 2
On crossing an edge

 set in of polygons with that edge to not in.
At (2) AET  AB  DF  AC EF

If there is a third polygon,
GHIJ behind the other two,
after edge AC is passed at
level (2) there is no need to
evaluate z again - if the
polygons do not pierce each
other.

College of Computer and Information Science, Northeastern University March 13, 2011 44

Time for a Break

Perlin Noise

College of Computer and Information Science, Northeastern University March 13, 2011 46

Noise Reference Links

•  Perlin Noise by Ken Perlin
•  Perlin Noise by Hugo Elias
•  Paul Bourke Texture and Colour ala Perlin

College of Computer and Information Science, Northeastern University March 13, 2011 47

The Oscar™

 To Ken Perlin for the
development of
Perlin Noise, a
technique used to
produce natural
appearing textures
on computer
generated surfaces
for motion picture
visual effects.

College of Computer and Information Science, Northeastern University March 13, 2011 48

The Movies
•  James Cameron Movies (Abyss,Titanic,...)
•  Animated Movies (Lion King, Moses,...)
•  Arnold Movies (T2, True Lies, ...)
•  Star Wars Episode I
•  Star Trek Movies
•  Batman Movies
•  and lots of others

 In fact, after around 1990 or so, every Hollywood
effects film has used it.

College of Computer and Information Science, Northeastern University March 13, 2011 49

What is Noise?

•  Noise is a mapping from Rn to R - you
input an n-dimensional point with real
coordinates, and it returns a real value.

•  n=1 for animation
•  n=2 cheap texture hacks
•  n=3 less-cheap texture hacks
•  n=4 time-varying solid textures

College of Computer and Information Science, Northeastern University March 13, 2011 50

Noise is Smooth
Randomness

College of Computer and Information Science, Northeastern University March 13, 2011 51

Making Linear Noise

1.  Generate random values at grid points.
2.  Interpolate linearly between these values.

College of Computer and Information Science, Northeastern University March 13, 2011 52

Making Splined Noise

1.  Generate random values at grid points.
2.  Interpolate smoothly between these values.

College of Computer and Information Science, Northeastern University March 13, 2011 53

lerping

lerp(v1, v2, t) = (1 – t)v1 + tv2

P

Q

(1-t)P + tQ

t of the distance from P to Q

College of Computer and Information Science, Northeastern University March 13, 2011 54

2D Linear Noise

253 45 3

145 68 37

50 5 241

228 154 219

199 57 20 139 80 230
154 74 178

101 15 182

207 133 174

College of Computer and Information Science, Northeastern University March 13, 2011 55

3D Linear Noise

College of Computer and Information Science, Northeastern University March 13, 2011 56

Noise is Smooth
Randomness

College of Computer and Information Science, Northeastern University March 13, 2011 57

Perlin Noise Sphere

College of Computer and Information Science, Northeastern University March 13, 2011 58

Noise Code

MATLAB Noise Code

Don’t click this.

College of Computer and Information Science, Northeastern University March 13, 2011 59

Turbulence or Sum 1/fn
(noise)

Perlin Noise and Turbulence by Baul Bourke

noise(p) + ½ noise(2p) + ¼ noise(4p) ...

College of Computer and Information Science, Northeastern University March 13, 2011 60

Turbulence and Persistence

See Perlin Noise by Hugo Elias for more about
persistence.

College of Computer and Information Science, Northeastern University March 13, 2011 61

Perlin Sum 1/f(noise)
Sphere

College of Computer and Information Science, Northeastern University March 13, 2011 62

Perlin Sum 1/f(|noise|)
Sphere

College of Computer and Information Science, Northeastern University March 13, 2011 63

2D Nornalized Turbulence

Just Noise

College of Computer and Information Science, Northeastern University March 13, 2011 64

2D Turbulence

College of Computer and Information Science, Northeastern University March 13, 2011 65

Turbulence Code

function turb = LinearTurbulence2(u, v, noise, divisor)
% double t, scale;
% LN(u, v) +LN(2u, 2v)/2 + LN(4u, 4v)/4 + ...
% Value is between between 0 and 2.

 t = 0;
 scale = 1;
 while (scale >= 1/divisor)
 t = t + linearNoise2(u/scale, v/scale, noise) * scale;
 scale = scale/2;
 end

 turb = t/2; % now value is between 0 and 1

College of Computer and Information Science, Northeastern University March 13, 2011 67

Marble

factorG = sqrt(abs(sin(x + twist*turbulence(x, y, noise)
color = (0, trunc(factorG*255), 255);

Clouds

r = sqrt((x-200/d)*(x-200/d) + (y-200/d)*(y-200/d));
factorB = abs(cos(r + fluff*turbulence(x, y, noise));
color=(127 + 128*(1 - factorB), 127 + 128*(1 - factorB), 255);

College of Computer and Information Science, Northeastern University March 13, 2011 69

Fire

College of Computer and Information Science, Northeastern University March 13, 2011 70

Plane Flame Code
(MATLAB)

w = 300; h = w + w/2; x=1:w; y=1:h;

flameColor = zeros(w,3); % Set a color for each x
flameColor(x,:)=…

 [1-2*abs(w/2-x)/w; max(0,1-4*abs(w/2-x)/w); zeros(1,w)]';

flame=zeros(h,w,3); % Set colors for whole flame
% 1 <= x=j <= 300=h, 1 <= y=451-i <= 450=h+h/2
for i = 1:h
 for j = 1:w
 flame(i,j,:)=(1-(h-i)/h)*flameColor(j,:);
 end
end

College of Computer and Information Science, Northeastern University March 13, 2011 71

Turbulent Flame Code
(MATLAB)

for u = 1:450
 for v = 1:300
 x = round(u+80*Tarray(u,v,1)); x = max(x,2); x = min(x,449);
 y = round(v+80*Tarray(u,v,2)); y = max(y,2); y = min(y,299);
 flame2(u,v,:) = flame(x,y,:);
 end
end

function Tarray = turbulenceArray(m,n)
noise1 = rand(39,39);
noise2 = rand(39,39);
noise3 = rand(39,39);
divisor = 64;
Tarray = zeros(m,n);

for i = 1:m
 for j = 1:n
 Tarray(i,j,1) = LinearTurbulence2(i/divisor, j/divisor, noise1, divisor);
 Tarray(i,j,2) = LinearTurbulence2(i/divisor, j/divisor, noise2, divisor);
 Tarray(i,j,3) = LinearTurbulence2(i/divisor, j/divisor, noise3, divisor);
 end
end

College of Computer and Information Science, Northeastern University March 13, 2011 73

Student Images

College of Computer and Information Science, Northeastern University March 13, 2011 74

Student Images

College of Computer and Information Science, Northeastern University March 13, 2011 75

Student Images

College of Computer and Information Science, Northeastern University March 13, 2011 76

Perlin’s Clouds and Corona

