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Today’s Topics 
•  Look at student images 
•  About the final project 
•  About the exam 
•  Poly Mesh 

  Hidden Surface Removal 
  Visible Surface Determination 

--------------------------- 
•  Noise and Turbulence 

  Clouds 
  Marble  
  Other Effects 
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Rendering a Polymesh 

•  Scene is composed of triangles or other 
polygons. 

•  We want to view the scene from different 
view-points. 
 Hidden Surface Removal 

•  Cull out surfaces or parts of surfaces that are not 
visible. 

  Visible Surface Determination 
•  Head right for the surfaces that are visible. 
•  Ray-Tracing is one way to do this. 
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Wireframe Rendering 

Copyright (C) 2000,2001,2002 Free Software 
Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, 
MA 02110-1301 USA Everyone is permitted to copy 
and distribute verbatim copies of this license 
document, but changing it is not allowed.  

Hidden-
Line 
Removal 

Hidden-
Face 
Removal 
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Convex Polyhedra 

We can see a face if and only if 
its normal has a component 
toward us. 

 N·V > 0 
V points from the face toward 
the viewer. 

N point toward the outside of the 
polyhedra. 
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Hidden Surface Removal 
•  Backface culling  

  Never show the back of a polygon. 
•  Viewing frustum culling   

  Discard objects outside the camera’s view. 
•  Occlusion culling  

  Determining when portions of objects are hidden. 
•  Painter’s Algorithm 
•  Z-Buffer 

•  Contribution culling  
  Discard objects that are too far away to be seen. 

   
http://en.wikipedia.org/wiki/Hidden_face_removal 
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Painter’s Algorithm 
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Painter’s Algorithm 

 Sort objects back to front relative to the 
 viewpoint. 

 for each object (in the above order) do 
  draw it on the screen 
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Painter’s Problem 
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Z-Buffer 

This image is licensed under the  
Creative Commons Attribution License v. 2.0. 

The Z-Buffer is usually part of 
graphics card hardware. It can 
also be implemented in software. 

The depth of each pixel is stored 
in the z-buffer. 

The Z-Buffer is a 2D array that 
holds one value for each pixel. 

An object is rendered at a pixel 
only if its z-value is higher(lower) 
than the buffer value.  The buffer 
is then updated. 
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Visible Surface Determination 

•  If surfaces are invisible, don’t render them. 
 Ray Tracing 

•  We only render the nearest object. 
  Binary Space Partitioning (BSP) 

•  Recursively cut up space into convex sets with 
hyperplanes. 

•  The scene is represented by a BSP-tree. 
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Sorting the Polygons 

The first step of the Painter’s algorithm is: 
Sort objects back to front relative to the 

 viewpoint. 
The relative order may not be well defined. 
We have to reorder the objects when we 

change the viewpoint. 
The BSP algorithm and BSP trees solve 

these problems. 
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Binary Space Partition 

•  Our scene is made of triangles. 
 Other polygons can work too. 

•  Assume no triangle crosses the plane of 
any other triangle. 
 We relax this condition later. 

    following Shirley et al. 
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BSP – Basics 
•  Let a plane in 3-space (or line in 2-space) be 

defined implicitly, i.e. 
  f(P) = f(x, y, z) = 0   in 3-space 
  f(P) = f(x, y) = 0   in 2-space 

•  All the points P such that f(P) > 0 lie on one side 
of the plane (line). 

•  All the points P such that f(P) < 0 lie on the other 
side of the plane (line). 

•  Since we have assumed that all vertices of a 
triangle lie on the same side of the plane (line), 
we can tell which side of a plane a triangle lies 
on. 
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BSP on a Simple Scene 

 Suppose scene has 2 triangles  
  T1 on the plane f(P) = 0 

    T2 on the f(P) < 0 side 
   e is the eye. 

   if f(e) < 0 then 
    draw T1; draw T2 
    else 
    draw T2; draw T1 
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The BSP Tree 
Suppose scene has many triangles, T1, T2, … . 
We still assume no triangle crosses the plane of any other 

triangle. 
Let fi(P) = 0 be the equation of the plane containing Ti. 
The BSPTREE has a node for each triangle with T1 at the 

root. 
At the node for Ti, 

 the minus  subtree contains all the triangles whose 
vertices have fi(P) < 0 
 the plus  subtree contains all the triangles whose vertices 
have fi(P) > 0. 
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BSP on a non-Simple Scene 

 function draw(bsptree tree, point e)   
 if (tree.empty) then 
  return 
 if (ftree.root(e) < 0) then 

  draw(tree.plus, e) 
  render tree.triangle 
  draw(tree.minus, e) 

 else 
  draw(tree.minus, e) 
  render tree.triangle 
  draw(tree.plus, e) 
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2D BSP Trees Demo 

http://www.symbolcraft.com/graphics/bsp/index.php 

This is a demo in 2 dimensions.   

The objects are line segments. 

The dividing hyperplanes are lines. 



Building the BSP Tree 
We still assume no triangle crosses the plane of another triangle. 

tree = node(T1) 
for  I in {2, …, N} do tree.add(Ti) 

function add (triangle T)   
if (f(a) < 0 and f(b) < 0 and f(c) < 0) then 
 if (tree.minus.empty) then   
  tree.minus = node(T) 
 else 
   tree.minus.add(T) 

else if (f(a) > 0 and f(b) > 0 and f(c) > 0) then 
  if (tree.plus.empty) then   
   tree.plus = node(T) 
 else 
  tree.plus.add(T) 
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Triangle Crossing a Plane 
a 

c 

b 

A

B 

Two vertices, a and b, will 
be on one side and one, 
c,  on the other side. 

Find intercepts , A and B, 
of the plane with the 2 
edges that cross it. 
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Cutting the Triangle 
a 

c 

b 

A

B 

Cut the triangle into three 
triangles, none of which 
cross the cutting plane. 

Be careful when one or 
more of a, b, and c is 
close to or on the cutting 
plane. 
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Binary Space Partition 
of Polygons 

by Fredrik (public domain) 
http://en.wikipedia.org/wiki/User:Fredrik 
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Scan-Line Algorithm  
•  Romney, G. W., G. S. Watkins, D. C. Evans, "Real-Time 

Display of Computer Generated Half-Tone Perspective 
Pictures", IFIP, 1968, 973-978.  

•  Scan Line Conversion of Polymesh - like Polyfill 

•  Edge Coherence / Scanline Coherence 
•  1)  Most edges don’t hit a given scanline- keep track of 

those that do. 
•  2)  Use the last point on an edge to compute the next 

one.  xi+1 = xi + 1/m 
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ET – the Edge Table 
The EdgeTable is for all nonhorizontal edges of all 

polygons. 

ET has buckets based on edges smaller y-coordinate. 
Edge Data: 

  x-coordinate of smaller y-coordinate 
  y-top 
  1/m = delta x 
  polygon identification #: which polygons the edge 

belongs to 
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Polygon Data Structure 

edges 
xmin ymax 1/m  

1 6 8/4  

(1, 2) 

(9, 6) 

xmin = x value at lowest y 

ymax = highest y 
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Preprocessing the edges 

count twice, 
once for each 
edge 

chop lowest pixel 
to only count 
once delete 

horizontal 
edges 

For a closed polygon, there should be an even number 
of crossings at each scan line.   

We fill between each successive pair. 
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13 

12 

11 

10   e6 

9 

8 

7   e4   e5 

6   e3   e7   e8 

5 

4 

3 

2 

1   e2   e1   e11 

0   e10    e9 
e11 

7    e3    e4   e5 

6    e7    e8 

11     e6 

10   

Polygon  
Data Structure 
after preprocessing 

Edge Table (ET) has a list of 
edges for each scan line. 

e1 

e2 

e3 
e4 

e5 

e6 

e7 
e8 

e9 

e10 
e11 

0 

5 

10 

13 
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The Algorithm 

1.  Start with smallest nonempty y value in ET. 
2.  Initialize SLB (Scan Line Bucket) to nil. 
3.  While current y ≤ top y value: 

a.  Merge y bucket from ET into SLB; sort on xmin. 
b.  Fill pixels between rounded pairs of x values in SLB. 
c.  Remove edges from SLB whose ytop = current y. 
d.  Increment xmin by 1/m for edges in SLB. 
e.  Increment y by 1. 
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Running the 
Algorithm 

e2 

e3 
e4 

e5 

e6 

e7 
e8 

e9 

e10 
e11 

0 

5 

10 

13 

ET 
13 
12 

11    e6 
10   
9 
8 

7   e3   e4    e5 
6   e7  ve8 
5 
4 
3 
2 

1   e2   e11 
0   e10  e9 

 xmin  ymax  1/m 
e2  2  6  -2/5 
e3  1/3  12  1/3 
e4  4  12  -2/5 
e5  4  13  0 
e6  6 2/3  13  -4/3   
e7  10  10  -1/2 
e8  10  8  2 
e9  11  8  3/8 
e10  11  4  -3/4 
e11  6  4  2/3 

5 0 10 15 
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Running the 
Algorithm 

e2 

e3 
e4 

e5 

e6 

e7 
e8 

e9 

e10 
e11 

0 

5 

10 

13 

5 0 10 15 

y=0  

SCB   11 4 -3/4  

11 8 3/8  
e9 

e10 
10 1/4 

11 3/8 
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Running the 
Algorithm 

e2 

e3 
e4 

e5 

e6 

e7 
e8 

e9 

e10 
e11 

0 

5 

10 

13 

5 0 10 15 

y=1  

SLB   2 6 -2/5  

6 4 2/3  
e11 

e2 
1 3/5 

10 1/4 4 -3/4  

11 3/8 8 3/8  
e9 

e10 

6 2/3 

9 1/2 

11 6/8 
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Running the 
Algorithm 

e2 

e3 
e4 

e5 

e6 

e7 
e8 

e9 

e10 
e11 

0 

5 

10 

13 

5 0 10 15 

y=2  

SLB   1 3/5 6 -2/5  

6 2/3 4 2/3  
e11 

e2 

9 1/2 4 -3/4  

11 6/8 8 3/8  
e9 

e10 

12 1/8 

8 3/4 

7 1/3 

1 1/5 
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Running the 
Algorithm 

e3 
e4 

e5 

e6 

e7 
e8 

e9 

e10 
0 

5 

10 

13 

5 0 10 15 

y=3  

SLB   1 1/5 6 -2/5  

7 1/3 4 2/3  
e11 

e2 

8 3/4 4 -3/4  

12 1/8 8 3/8  
e9 

e10 

12 4/8 

8 

8 

4/5 

e11 e2 
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Running the 
Algorithm 

e3 
e4 

e5 

e6 

e7 
e8 

e10 
0 

5 

10 

13 

5 0 10 15 

y=4  

SLB   4/5 6 -2/5  

8 4 2/3  
e11 

e2 

8 4 -3/4  

12 4/8 8 3/8  
e9 

e10 e11 e2 
e9 

Remove these edges. 
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Running the 
Algorithm 

e3 
e4 

e5 

e6 

e7 
e8 

0 

5 

10 

13 

5 0 10 15 

y=4  

SLB   4/5 6 -2/5  
e2 

12 4/8 8 3/8  
e9 

12 7/8 

2/5 

e2 e11 
e10 

e9 
e11 and e10 are removed. 
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Running the 
Algorithm 

e3 
e4 

e5 

e6 

e7 
e8 

0 

5 

10 

13 

5 0 10 15 

y=5  

SLB   2/5 6 -2/5  
e2 

12 7/8 8 3/8  
e9 

13 2/8 

0 

e2 e11 
e10 

e9 
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Running the 
Algorithm 

e3 
e4 

e5 

e6 

e7 
e8 

0 

5 

10 

13 

5 0 10 15 

y=6  

SLB   0 6 -2/5  
e2 

10 10 -1/2  
e7 

e2 e11 
e10 

e9 

Remove this edge. 

10 8 2  
e8 

13 2/8 8 3/8  
e9 

9 1/2 

12 

13 5/8 
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Running the 
Algorithm 

e3 
e4 

e5 

e6 

e7 
e8 

0 

5 

10 

13 

5 0 10 15 

y=7  

SLB   

4 13 0  
e5 

9 1/2 10 -1/2  
e7 

e2 e11 
e10 

e9 

12 8 2  
e8 

13 5/8 8 3/8  
e9 

Add these edges. 

4 12 -2/5  
e4 

1/3 12 1/3  
e3 
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Polygon Table 

Polygon Table 
 A, B, C, D of the plane equation 
 shading or color info (e.g. color and N) 
 in (out) boolean 
  initialized to false (= out) at start of scanline 
 z – at lowest y, x 
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Coherence 

•  Non-penetrating polygons maintain their 
relative z values. 
  If the polygons penetrate, add a false edge. 

•  If there is no change in edges from one 
scanline to the next, and no change in 
order wrt x, then no new computations of z 
are needed. 
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Active Edge Table  
Keep in order of increasing x.  

At (1)  AET  AB  AC  DF  EF 
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Running the Algorithm 1 
If more than one in is true, compute the z values at that 
point to see which polygon is furthest forward.!

If only one in is true, use that polygon’s color and shading.!
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Running the Algorithm 2 
On crossing an edge 

 set in of polygons with that edge to not in.  
At (2)  AET  AB  DF  AC  EF 

If there is a third polygon, 
GHIJ behind the other two, 
after edge AC is passed at 
level (2) there is no need to 
evaluate z again - if the 
polygons do not pierce each 
other.  
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Time for a Break 



Perlin Noise 
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Noise Reference Links 

•  Perlin Noise by Ken Perlin 
•  Perlin Noise by Hugo Elias 
•  Paul Bourke Texture and Colour ala Perlin 
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The Oscar™ 

 To Ken Perlin for the 
development of 
Perlin Noise, a 
technique used to 
produce natural 
appearing textures 
on computer 
generated surfaces 
for motion picture 
visual effects.  
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The Movies 
•  James Cameron Movies (Abyss,Titanic,...)  
•  Animated Movies (Lion King, Moses,...)  
•  Arnold Movies (T2, True Lies, ...)  
•  Star Wars Episode I  
•  Star Trek Movies  
•  Batman Movies  
•  and lots of others  

 In fact, after around 1990 or so, every Hollywood 
effects film has used it. 
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What is Noise? 

•  Noise is a mapping from Rn to R - you 
input an n-dimensional point with real 
coordinates, and it returns a real value. 

•  n=1  for animation 
•  n=2  cheap texture hacks 
•  n=3  less-cheap texture hacks 
•  n=4  time-varying solid textures 
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Noise is Smooth 
Randomness 
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Making Linear Noise 

1.  Generate random values at grid points. 
2.  Interpolate linearly between these values. 
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Making Splined Noise 

1.  Generate random values at grid points. 
2.  Interpolate smoothly between these values. 
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lerping 

lerp(v1, v2, t) = (1 – t)v1 + tv2 

P 

Q 

(1-t)P + tQ 

t of the distance from P to Q 



College of Computer and Information Science, Northeastern University March 13, 2011 54 

2D Linear Noise 

253  45  3 

145  68  37 

50  5  241 

228  154  219 

199  57  20 139  80  230 
154  74  178 

101  15  182 

207  133  174 
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3D Linear Noise 
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Noise is Smooth 
Randomness 
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Perlin Noise Sphere 
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Noise Code 

MATLAB Noise Code 

Don’t click this. 
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Turbulence or Sum 1/fn
(noise)  

Perlin Noise and Turbulence by Baul Bourke 

noise(p) + ½ noise(2p) + ¼ noise(4p) ...  
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Turbulence and Persistence 

See Perlin Noise by Hugo Elias for more about 
persistence. 
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Perlin Sum 1/f(noise) 
Sphere 
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Perlin Sum 1/f(|noise|) 
Sphere 
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2D Nornalized Turbulence 

Just Noise 
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2D Turbulence 
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Turbulence Code 



function turb = LinearTurbulence2(u, v, noise, divisor) 
% double t, scale; 
% LN(u, v) +LN(2u, 2v)/2 + LN(4u, 4v)/4 + ... 
% Value is between between 0 and 2. 

    t = 0; 
    scale = 1; 
    while (scale >= 1/divisor) 
        t = t + linearNoise2(u/scale, v/scale, noise) * scale; 
        scale = scale/2; 
    end 

    turb = t/2; % now value is between 0 and 1 
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Marble 

factorG  = sqrt(abs(sin(x + twist*turbulence(x, y, noise)  
color = (0, trunc(factorG*255), 255);  



Clouds 

r = sqrt((x-200/d)*(x-200/d) + (y-200/d)*(y-200/d));  
factorB = abs(cos(r + fluff*turbulence(x, y, noise));  
color=(127 + 128*(1 - factorB), 127 + 128*(1 - factorB), 255);  
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Fire 
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Plane Flame Code 
(MATLAB) 

w = 300;     h = w + w/2;     x=1:w;     y=1:h; 

flameColor = zeros(w,3); % Set a color for each x 
flameColor(x,:)=… 

 [1-2*abs(w/2-x)/w; max(0,1-4*abs(w/2-x)/w); zeros(1,w)]'; 

flame=zeros(h,w,3); % Set colors for whole flame 
% 1 <= x=j <= 300=h, 1 <= y=451-i <= 450=h+h/2 
for i = 1:h 
    for j = 1:w 
        flame(i,j,:)=(1-(h-i)/h)*flameColor(j,:); 
    end 
end 
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Turbulent Flame Code 
(MATLAB) 

for u = 1:450 
    for v = 1:300 
        x = round(u+80*Tarray(u,v,1)); x = max(x,2); x = min(x,449); 
        y = round(v+80*Tarray(u,v,2)); y = max(y,2); y = min(y,299); 
        flame2(u,v,:) = flame(x,y,:); 
    end 
end 



function Tarray = turbulenceArray(m,n) 
noise1 = rand(39,39); 
noise2 = rand(39,39); 
noise3 = rand(39,39); 
divisor = 64; 
Tarray = zeros(m,n); 

for i = 1:m 
    for j = 1:n 
       Tarray(i,j,1) = LinearTurbulence2(i/divisor, j/divisor, noise1, divisor); 
        Tarray(i,j,2) = LinearTurbulence2(i/divisor, j/divisor, noise2, divisor); 
        Tarray(i,j,3) = LinearTurbulence2(i/divisor, j/divisor, noise3, divisor); 
    end 
end 
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Student Images 
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Student Images 
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Student Images 
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Perlin’s Clouds and Corona 


