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CS 4300 
Computer Graphics 

Prof. Harriet Fell 
Fall 2012 

Lecture 11 – September 27, 2012 
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Today’s Topics 

•  Linear Algebra Review 
 Matrices 
  Transformations 

•  New Linear Algebra 
 Homogeneous Coordinates 
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Matrices 
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•  We use 2x2, 3x3, and 4x4 matrices in computer 
graphics. 

•  We’ll start with a review of 2D matrices and 
transformations. 
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Basic 2D Linear Transforms 
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Scale by .5 

( )scale .5,.5
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Scaling by .5 
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General Scaling 
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General Scaling 
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Rotation 
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Rotation 
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Reflection in y-axis 

reflect-y
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Reflection in y-axis 
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Reflection in x-axis 
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Reflection in x-axis 
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Shear-x 

( )shear-x
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Shear x 
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Shear-y 
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Shear y 
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Linear Transformations 

•  Scale, Reflection, Rotation, and Shear are 
all linear transformations 

•  They satisfy: T(au + bv) = aT(u) + bT(v)  
  u and  v are vectors 
  a and b are scalars 

•  If T is a linear transformation 
  T((0, 0)) = (0, 0) 
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Composing Linear 
Transformations 

•  If T1 and T2 are transformations 
  T2 T1(v) =def T2( T1(v))  

•  If T1 and T2 are linear and are represented 
by matrices M1 and M2 
  T2 T1 is represented by M2 M1  
  T2 T1(v) = T2( T1(v)) = (M2 M1)(v)  
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Reflection About an  
Arbitrary Line (through the origin) 
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Reflection as a Composition 
y 

x 



©College of Computer and Information Science, Northeastern University September 27, 2012 23 

Decomposing  
Linear Transformations 

•  Any 2D Linear Transformation can be 
decomposed into the product of a rotation, 
a scale, and a rotation if the scale can 
have negative numbers. 

•  M = R1SR2 
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Rotation about  
an Arbitrary Point 
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This is not a linear transformation.  The origin moves. 
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Translation 
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(a, b) 

This is not a linear transformation.  The origin moves. 

(x, y)(x+a,y+b) 
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Homogeneous Coordinates 
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y Embed the xy-plane in R3 at z = 1. 

(x, y)  (x, y, 1) 
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2D Linear Transformations  
as 3D Matrices 
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a a a x a yx
a a a x a yy

+⎡ ⎤ ⎡ ⎤⎡ ⎤ =⎢ ⎥ ⎢ ⎥⎢ ⎥ +⎣ ⎦⎣ ⎦ ⎣ ⎦

 Any 2D linear transformation can be 
represented by a 2x2 matrix 
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 or a 3x3 matrix 
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2D Linear Translations  
as 3D Matrices 

 Any 2D translation can be represented by 
a 3x3 matrix. 

1 0
0 1
0 0 1 1 1

a x x a
b y y b
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This is a 3D shear that acts as a 
translation on the plane z = 1. 
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Translation as a Shear 
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2D Affine Transformations 
•  An affine transformation is any transformation 

that preserves co-linearity (i.e., all points lying on 
a line initially still lie on a line after 
transformation) and ratios of distances (e.g., the 
midpoint of a line segment remains the midpoint 
after transformation).  

•  With homogeneous coordinates, we can 
represent all 2D affine transformations as 3D 
linear transformations. 

•  We can then use matrix multiplication to 
transform objects. 
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Rotation about  
an Arbitrary Point 
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Rotation about  
an Arbitrary Point 
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Windowing Transforms 
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3D Transformations 
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Remember: 

A 3D linear transformation can be represented by a 
3x3 matrix. 
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3D Affine Transformations 
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3D Rotations 
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