
©College of Computer and Information Science, Northeastern University

CS 4300
Computer Graphics

Prof. Harriet Fell
Fall 2011

Lecture 8 – September 22, 2011

©College of Computer and Information Science, Northeastern University

GUIs

•  GUIs in modern operating systems
•  cross-platform GUI frameworks
•  common GUI widgets
•  event-driven programming
•  Model-View-Controller (MVC) architecture
•  common user interaction techniques

©College of Computer and Information Science, Northeastern University

GUIs in Modern
Operating Systems

•  all modern desktop operating systems support a
graphical user interface (GUI)

•  these are also called windowing environments
because the most common paradigm, initiated in
the early 80’s at Xerox’ Palo Alto Research
Center (PARC), is to have a desktop where one
or more overlapping windows may exist, each
containing the GUI for a currently running
application

©College of Computer and Information Science, Northeastern University

X Window
•  the standard windowing environment for most modern

variants of Unix (except OS X)
•  has been around a long time but is continually updated
•  variant used in most modern GNU/Linux distributions is

currently managed by the x.org foundation
•  X is a client-server architecture
•  typically, a single instance of an X server runs on the

machine, and has the responsibility for all direct
interaction with output and input devices

•  individual applications, such as Firefox, are X clients

©College of Computer and Information Science, Northeastern University

X Clients

•  X clients can communicate with the X server
over several different types of connections
–  standard TCP/IP sockets

•  this enables the X client and server to actually run on different
machines on the network

•  note that the roles of “client” and “server” can be non-intuitive here

–  several other Inter-Process Communication (IPC)
mechanisms

•  including “Unix domain sockets” and shared memory
•  these generally focus on improving performance in the case where

both client and server are running on the same machine

©College of Computer and Information Science, Northeastern University

X Protocol

•  the most important part of the X system is
the protocol that defines the
communication between client and server

•  the X protocol is an open standard
•  different organizations can implement both

clients and servers, and if they all stick to
the defined protocol, the programs will
inter-operate

©College of Computer and Information Science, Northeastern University

X Servers

•  there exist X servers that run on both Macintosh
OS X and on Microsoft Windows
–  this means that you can, in theory, run an X client on a

remote machine (e.g. a GNU/Linux machine to which
you have established an SSH connection), and have
that program display its interactive GUI on your local
machine, which may be running Windows or OS X

–  also, this can ease porting of applications, since most
of the GUI code can remain the same, assuming that
an X server is available on the target platform

©College of Computer and Information Science, Northeastern University

Macintosh OS X
•  the original Macintosh OS was one of the first

commercially successful GUI systems
–  copied many aspects of earlier prototypes from PARC

(overlapping windows, mouse, etc)

•  the modern version, OS X, is actually a Unix variant, with
a GUI adapted from an earlier system called NextStep
–  the main GUI framework is called Cocoa, and is natively

programmed in Objective-C
–  also comes with an X server, mainly used to ease porting of Unix

applications

©College of Computer and Information Science, Northeastern University

Microsoft Windows

•  currently holds the largest market share
•  several X servers are available as 3rd

party software

©College of Computer and Information Science, Northeastern University

Cross-Platform GUI
Frameworks

•  because X Window, OS X, and MS Windows all
require different application code, there now
exist a number of libraries which ease the work
of porting applications among the three major
desktop OS

•  these all provide a set of standard widgets—
including windows, buttons, toolbars, etc. (more
details later today)—which “look and feel” similar
on different OS

©College of Computer and Information Science, Northeastern University

GTK+

•  is the “Gimp ToolKit”, which evolved out of
initial work on the GNU Image
Manipulation Program (GIMP)

•  written in C, but has bindings for many
other languages

•  main toolkit used in the GNOME desktop
environment in GNU/Linux

•  LGPL

©College of Computer and Information Science, Northeastern University

Qt

•  was originally developed by the Norwegian
company Trolltech, which was recently
bought by Nokia

•  written in C++, but has bindings for many
other languages

•  main toolkit used in the KDE desktop
environment in GNU/Linux

•  LGPL

©College of Computer and Information Science, Northeastern University

JFC or the Java
Foundation Classes

•  Abstract Window Toolkit (AWT)—the original Java GUI
framework
–  largely supplanted by Swing, but still comes into play in many

cases
–  Java is intended to be a cross-platform applications development

environment
–  AWT attempts to map different platform-specific GUI frameworks

into one least-common-denominator API
–  when you create widgets in AWT, you are directly creating

widgets in the underlying OS-specific GUI framework

©College of Computer and Information Science, Northeastern University

JFC - continued
•  Swing—introduced to supersede AWT in Java 1.2

–  unlike AWT, the architecture of swing is to implement most
widgets directly in Java

–  only the most basic windowing functions are used from the
underlying OS-specific GUI framework (via AWT)

–  most widgets inside the window are entirely rendered in Java
–  this allows a consistent “Java look-and-feel” across all platforms
–  also allows support for more advanced features, such as high

quality antialiased rendering, that are not in the least-common-
denominator of the OS specific frameworks

–  can be slower than AWT, but modern implementations of Swing
are highly optimized

•  Java2D—the actual drawing APIs in JFC

©College of Computer and Information Science, Northeastern University

Common GUI Widgets

•  most of these can be demonstrated with the
SwingSet demo included with most Sun Java
Development Kit downloads (search for a file
named “SwingSet2.jar”)

©College of Computer and Information Science, Northeastern University

Windows

•  some frameworks, in particular MS Windows,
use the term “window” to apply to nearly any
rectangular widget on screen

•  the actual outer container of an application is
specifically called a “top-level” window or “frame”

©College of Computer and Information Science, Northeastern University

Windows
•  window (frame) decorations

–  title bar
–  border and resize handles
–  window buttons

•  menu bar
•  Toolbar

–  often just provides a convenient replication of the same actions available from
the menu bar

–  this is a good thing: the menu bar is complete, but can be complex and
inconvenient; the toolbar may not be complete, but it’s simpler and more
convenient

•  status bar
•  child windows

–  also called “internal frames” (Java) or “MDI” (Multiple Document Interface)
(Windows)

©College of Computer and Information Science, Northeastern University

Buttons

•  “regular” buttons

•  Radio buttons
– RadioButtonDemo.jnlp

•  toggle buttons, aka checkboxes
– CheckBoxDemo.jnlp

©College of Computer and Information Science, Northeastern University

Sliders
esc, Select image, View, Formatting Pallet

©College of Computer and Information Science, Northeastern University

Widgets in Java

•  http://download.oracle.com/javase/tutorial/
uiswing/components/componentlist.html

•  combo boxes
•  dialog boxes
•  file choosers
•  standard “option panes” and message dialogs

©College of Computer and Information Science, Northeastern University

text layout
•  may provide a variety of features including

–  font rendering
–  text justification
–  HTML or other “rich content” layout
–  text selection and editing
–  lists, tables, and trees
–  progress bars
–  scroll bars
–  split panes and tabs
–  tooltips

©College of Computer and Information Science, Northeastern University

Event-Driven Programming

•  the computation requirements of GUI programs
differ from more “traditional” programs

•  the program may have nothing to do for long
periods as it “waits” for the user to do something

•  multiple things can be going on at once in
different parts of the GUI

•  the actual tasks the program needs to perform
may evolve at runtime as the user e.g. opens
and closes documents

©College of Computer and Information Science, Northeastern University

event-driven style

•  main idea: a variety of events may occur
asynchronously
–  triggered either by the user (e.g. hitting a key or

moving the mouse)
–  or by the system (e.g. a window from another

application is moved on top of our window; an object
is dragged from one application to another; the
system is shutting down)

•  application code specifies which events it is
interested in handling
–  e.g. by registering event listener or callback function

©College of Computer and Information Science, Northeastern University

overall structure of an
event-driven system

•  loop forever
–  wait for an event (without burning CPU)
–  dispatch: see if any handlers have been registered for

the event, and if so, invoke them

•  event handler code gets invoked as necessary
•  unhandled events may be handled in a default

way by the GUI framework or by the OS, or may
simply be dropped

©College of Computer and Information Science, Northeastern University

Event Handler Code

•  typically all runs from within a single
thread
–  events may come in various orders, but are typically

at least processed one at a time
–  reasons for this are essentially about managing

complexity and ensuring thread safety of all the data
structures that implement the GUI

•  a good reference on concurrency as it relates to
GUI programming is chapter 9 of
Java Concurrency in Practice

©College of Computer and Information Science, Northeastern University

Implications of single-threaded
design

•  Keep your event handling code short and fast. If you
spend a lot of time handling one event, you may be
blocking the processing of later events (they will typically
be queued).

•  If you need to make modifications to any GUI data
structures (e.g. opening a new window, or adding a
widget to an existing window, or even changing the label
of a button) outside of an event handler, you must take
special care to ensure thread safety. In Java, one way to
do this is to use SwingUtilities.invokeLater()
or invokeAndWait().

©College of Computer and Information Science, Northeastern University

Model-View-Controller (MVC)
Architecture

•  the model is the set of core data structures defining the
state of your application
–  e.g. in a drawing application, this could be a list of all objects

(line segments, circles, curves, etc) currently in the drawing,
along with all the current settings of their parameters

•  one or more views of the model may be open; each
shows a depiction of the model; each view may have a
particular viewpoint, e.g.
–  a multiplayer game could have different views showing the game

world from the perspective of each player
–  a drawing program could have one view that actually shows the

drawing, and another view that shows a textual list of all the
objects in the drawing.

©College of Computer and Information Science, Northeastern University

Model-View-Controller (MVC)
Architecture

•  the controller is all the event handling
code processing events that may
– alter the model itself, e.g. adding a circle in

the drawing program
– modify the state of views, e.g. the view from

the perspective of a specific character must
change viewpoint when the character moves

– add or remove views
– change the state of the program, such as

minimizing or quitting

©College of Computer and Information Science, Northeastern University

Common User Techniques

•  picking and selecting
–  the user clicked the mouse. How does your

application know what was clicked?
– what if multiple graphical objects are on top of

each other?
–  the user may want to pick more than one thing

at a time

©College of Computer and Information Science, Northeastern University

cut and paste
•  basic idea is well known
•  possible complexity: cut and paste is sometimes meant

to work even between applications
•  the OS (or at least the desktop environment or

windowing system) must manage a shared resource
called the clipboard

•  what is the format of data in the clipboard?
•  how does your application know that it is ok to change

the contents of the clipboard?
•  how does your application know what to do with any kind

of data that the user may try to paste from the clipboard?

©College of Computer and Information Science, Northeastern University

dragging
•  user presses mouse button down over an object
•  while continuing to hold the button, user moves mouse;

object “follows along”
•  user releases button; object “stays put”
•  “object” can be either

–  a distinct graphical entity, e.g. an image in an image
manipulation program, or

–  the viewpoint of the user itself: this is navigation, which we will
cover in more detail later in the course

•  one complexity of implementing dragging is that separate events are
typically delivered for the mouse press, each incremental motion of
the mouse, and the mouse release
–  no guarantees that you will get these in any particular sequence!

©College of Computer and Information Science, Northeastern University

Drag and Drop

•  a special case of dragging which is essentially a
shortcut way to cut and paste

•  sounds simple, but actual implementation can
involve a lot of engineering and debugging

•  again, the OS may become involved to support
Drag and Drop across applications

©College of Computer and Information Science, Northeastern University

Modes and dialog boxes

•  a graphical application is “modal” if it can
be put into a state where only some of its
functionality is available, or if some special
functionality is only available in that state

•  common cases: modal dialog boxes,
“wizards”

•  can be a good thing, but also an argument
for avoiding modality

