CS 4300
Computer Graphics

Prof.

larriet Fell

Fall 2011
Lecture 8 — September 22, 2011

©College of Computer and Information Science, Northeastern University



GUIs

GUIs in modern operating systems
cross-platform GUI frameworks

common GUI widgets

event-driven programming
Model-View-Controller (MVC) architecture
common user interaction techniques

©College of Computer and Information Science, Northeastern University



GUIls in Modern
Operating Systems

 all modern desktop operating systems support a
graphical user interface (GUI)

* these are also called windowing environments
because the most common paradigm, initiated in
the early 80’s at Xerox’ Palo Alto Research
Center (PARC), is to have a desktop where one
or more overlapping windows may exist, each
containing the GUI for a currently running
application

©College of Computer and Information Science, Northeastern University



X Window

the standard windowing environment for most modern
variants of Unix (except OS X)

has been around a long time but is continually updated

variant used in most modern GNU/Linux distributions is
currently managed by the x.org foundation

X is a client-server architecture

typically, a single instance of an X server runs on the
machine, and has the responsibility for all direct
Interaction with output and input devices

individual applications, such as Firefox, are X clients

©College of Computer and Information Science, Northeastern University



X Clients

X clients can communicate with the X server
over several different types of connections
— standard TCP/IP sockets

« this enables the X client and server to actually run on different
machines on the network

* note that the roles of “client” and “server” can be non-intuitive here
— several other Inter-Process Communication (IPC)

mechanisms

* including “Unix domain sockets” and shared memory

 these generally focus on improving performance in the case where
both client and server are running on the same machine

©College of Computer and Information Science, Northeastern University



X Protocol

* the most important part of the X system is
the protocol that defines the

communication between client and server
» the X protocol is an open standard

* different organizations can implement both
clients and servers, and if they all stick to

the defined protocol, the programs will
Inter-operate

©College of Computer and Information Science, Northeastern University



X Servers

* there exist X servers that run on both Macintosh
OS X and on Microsoft Windows

— this means that you can, in theory, run an X client on a
remote machine (e.g. a GNU/Linux machine to which
you have established an SSH connection), and have
that program display its interactive GUI on your local
machine, which may be running Windows or OS X

— also, this can ease porting of applications, since most
of the GUI code can remain the same, assuming that
an X server is available on the target platform

©College of Computer and Information Science, Northeastern University



Macintosh OS X

 the original Macintosh OS was one of the first
commercially successful GUI systems

— copied many aspects of earlier prototypes from PARC
(overlapping windows, mouse, etc)

* the modern version, OS X, is actually a Unix variant, with
a GUI adapted from an earlier system called NextStep

— the main GUI framework is called Cocoa, and is natively
programmed in Objective-C

— also comes with an X server, mainly used to ease porting of Unix
applications

©College of Computer and Information Science, Northeastern University



Microsoft Windows

 currently holds the largest market share

 several X servers are available as 3rd
party software

©College of Computer and Information Science, Northeastern University



Cross-Platform GUI

Frameworks

 because X Window, OS X, and MS Windows all
require different application code, there now
exist a number of libraries which ease the work

of porting applications among the three major
desktop OS

» these all provide a set of standard widgets—
including windows, buttons, toolbars, etc. (more
details later today)—which “look and feel” similar
on different OS

©College of Computer and Information Science, Northeastern University



GTK+

is the “Gimp ToolKit”, which evolved out of
initial work on the GNU Image
Manipulation Program (GIMP)

written in C, but has bindings for many
other languages

main toolkit used in the GNOME desktop
environment in GNU/Linux

LGPL

©College of Computer and Information Science, Northeastern University



Qt

was originally developed by the Norwegian
company Trolltech, which was recently
bought by Nokia

written in C++, but has bindings for many
other languages

main toolkit used in the KDE desktop
environment in GNU/Linux

LGPL

©College of Computer and Information Science, Northeastern University



JFC or the Java

Foundation Classes

« Abstract Window Toolkit (AWT)—the original Java GUI

framework
— largely supplanted by Swing, but still comes into play in many
cases
— Java is intended to be a cross-platform applications development
environment
— AWT attempts to map different platform-specific GUI frameworks
into one least-common-denominator API

— when you create widgets in AWT, you are directly creating
widgets in the underlying OS-specific GUI framework

©College of Computer and Information Science, Northeastern University



JFC - continued

« Swing—introduced to supersede AWT in Java 1.2

unlike AWT, the architecture of swing is to implement most
widgets directly in Java

only the most basic windowing functions are used from the
underlying OS-specific GUI framework (via AWT)

most widgets inside the window are entirely rendered in Java
this allows a consistent “Java look-and-feel” across all platforms

also allows support for more advanced features, such as high
quality antialiased rendering, that are not in the least-common-
denominator of the OS specific frameworks

can be slower than AWT, but modern implementations of Swing
are highly optimized

« Java2D—the actual drawing APIs in JFC

©College of Computer and Information Science, Northeastern University



Common GUI Widgets

* most of these can be demonstrated with the
SwingSet demo included with most Sun Java
Development Kit downloads (search for a file
named “SwingSet2.jar”)

©College of Computer and Information Science, Northeastern University



Windows

« some frameworks, in particular MS Windows,
use the term "window” to apply to nearly any
rectangular widget on screen

 the actual outer container of an application is
specifically called a “top-level” window or “frame”

©College of Computer and Information Science, Northeastern University



Windows

window (frame) decorations
— title bar
— border and resize handles
— window buttons

menu bar

Toolbar

— often just provides a convenient replication of the same actions available from
the menu bar

— this is a good thing: the menu bar is complete, but can be complex and
inconvenient; the toolbar may not be complete, but it’s simpler and more
convenient

status bar

child windows

— also called ‘internal frames” (Java) or “MDI” (Multiple Document Interface)
(Windows)

©College of Computer and Information Science, Northeastern University



Buttons

* “regular” buttons Q

« Radio buttons
— RadioButtonDemo.jnlp

» tfoggle buttons, aka checkboxes
— CheckBoxDemo.jnlp

©College of Computer and Information Science, Northeastern University



Sliders

esc, Select image, View, Formatting Pallet

©College of Computer and Information Science, Northeastern University



Widgets in Java

http://download.oracle.com/javase/tutorial/
uiswing/components/componentlist.html
combo boxes

dialog boxes

file choosers
standard “option panes” and message dialogs

©College of Computer and Information Science, Northeastern University



text layout

* may provide a variety of features including
— font rendering
— text justification
— HTML or other “rich content” layout
— text selection and editing
— lists, tables, and trees
— progress bars
— scroll bars
— split panes and tabs
— tooltips

©College of Computer and Information Science, Northeastern University



Event-Driven Programming

the computation requirements of GUI programs
differ from more “traditional” programs

the program may have nothing to do for long
periods as it “waits” for the user to do something

multiple things can be going on at once In
different parts of the GUI

the actual tasks the program needs to perform
may evolve at runtime as the user e.g. opens
and closes documents

©College of Computer and Information Science, Northeastern University



event-driven style

* main idea: a variety of events may occur
asynchronously

— triggered either by the user (e.qg. hitting a key or
moving the mouse)

— or by the system (e.g. a window from another
application is moved on top of our window; an object
is dragged from one application to another; the
system is shutting down)

« application code specifies which events it is
interested in handling

— e.q. by registering event listener or callback function

©College of Computer and Information Science, Northeastern University



overall structure of an
event-driven system

loop forever

— wait for an event (without burning CPU)

— dispatch: see if any handlers have been registered for
the event, and if so, invoke them

event handler code gets invoked as necessary

unhandled events may be handled in a default
way by the GUI framework or by the OS, or may
simply be dropped

©College of Computer and Information Science, Northeastern University



Event Handler Code

 typically all runs from within a single
thread

— events may come in various orders, but are typically
at least processed one at a time

— reasons for this are essentially about managing
complexity and ensuring thread safety of all the data
structures that implement the GUI

* a good reference on concurrency as it relates to
GUI programming is chapter 9 of
Java Concurrency in Practice

©College of Computer and Information Science, Northeastern University



Implications of single-threaded
design

« Keep your event handling code short and fast. If you
spend a lot of time handling one event, you may be
blocking the processing of later events (they will typically
be queued).

 If you need to make modifications to any GUI data
structures (e.g. opening a new window, or adding a
widget to an existing window, or even changing the label
of a button) outside of an event handler, you must take
special care to ensure thread safety. In Java, one way to
do thisisto use SwingUtilities.invokeLater ()
or invokeAndWait ().

©College of Computer and Information Science, Northeastern University



Model-View-Controller (MVC)
Architecture

« the model is the set of core data structures defining the
state of your application

— e.g. in a drawing application, this could be a list of all objects
(line segments, circles, curves, etc) currently in the drawing,
along with all the current settings of their parameters

« one or more views of the model may be open; each
shows a depiction of the model; each view may have a
particular viewpoint, e.q.

— a multiplayer game could have different views showing the game
world from the perspective of each player

— a drawing program could have one view that actually shows the
drawing, and another view that shows a textual list of all the
objects in the drawing.

©College of Computer and Information Science, Northeastern University



Model-View-Controller (MVC)
Architecture

* the controller is all the event handling
code processing events that may

— alter the model itself, e.g. adding a circle in
the drawing program

— modify the state of views, e.g. the view from
the perspective of a specific character must
change viewpoint when the character moves

— add or remove views

— change the state of the program, such as
minimizing or quitting

©College of Computer and Information Science, Northeastern University



Common User Techniques

 picking and selecting

— the user clicked the mouse. How does your
application know what was clicked?

— what if multiple graphical objects are on top of
each other?

— the user may want to pick more than one thing
at a time

©College of Computer and Information Science, Northeastern University



cut and paste

basic idea is well known

possible complexity: cut and paste is sometimes meant
to work even between applications

the OS (or at least the desktop environment or
windowing system) must manage a shared resource
called the clipboard

what is the format of data in the clipboard?

how does your application know that it is ok to change
the contents of the clipboard?

how does your application know what to do with any kind
of data that the user may try to paste from the clipboard?

©College of Computer and Information Science, Northeastern University



dragging

user presses mouse button down over an object

while continuing to hold the button, user moves mouse;
object “follows along”

user releases button; object “stays put”

“object” can be either
— a distinct graphical entity, e.g. an image in an image
manipulation program, or

— the viewpoint of the user itself: this is navigation, which we will
cover in more detail later in the course

one complexity of implementing dragging is that separate events are
typically delivered for the mouse press, each incremental motion of
the mouse, and the mouse release

— no guarantees that you will get these in any particular sequence!

©College of Computer and Information Science, Northeastern University



Drag and Drop

 a special case of dragging which is essentially a
shortcut way to cut and paste

» sounds simple, but actual implementation can
iInvolve a lot of engineering and debugging

* again, the OS may become involved to support
Drag and Drop across applications

©College of Computer and Information Science, Northeastern University



Modes and dialog boxes

 a graphical application is “modal” if it can
be put into a state where only some of its
functionality is available, or if some special
functionality is only available in that state

« common cases:. modal dialog boxes,
“wizards”

* can be a good thing, but also an argument
for avoiding modality

©College of Computer and Information Science, Northeastern University



