
©College of Computer and Information Science, Northeastern University

CS 4300
Computer Graphics

Prof. Harriet Fell
Fall 2011

Lecture 7 – September 21, 2011

©College of Computer and Information Science, Northeastern University

Alpha Blending
•  how to rasterize transparent objects?
•  if object is totally transparent, then just do nothing

–  i.e. let the “background” show through unmodified

•  for a partially transparent, or translucent object, one
common approach is alpha blending

•  idea: for each pixel, combine the underlying background
color cb with the foreground color cf, i.e. the color of the
object itself at that pixel, to produce the overall pixel
color c according to the formula c = αcf +(1 – α)cb

©College of Computer and Information Science, Northeastern University

α composting

•  the parameter 0 <= α <= 1 sets the amount of
transparency

•  α = 1 shows only the object
•  α = 0 shows only the background
•  α = .5 shows half object and half background
•  this is an example of linear interpolation (lerping)
•  the process of combining a background image

with a foreground image is called compositing
•  can chain the process to composite many

images on top of each other

this image
shows a
terminal
window
composited
with
α = .5 onto
a desktop
background

this image
shows a
terminal
window
composited
with
α = .75 onto
a desktop
background

this image
shows a
terminal
window
composited
with
α = 1 onto a
desktop
background

©College of Computer and Information Science, Northeastern University

RGBA
•  sometimes a single α is specified for an entire object
•  for a raster, α is commonly treated as a separate color

channel, along with (typically) R, G, and B
•  thus, an RGB image with an added alpha channel is

sometimes referred to as an RGBA image
•  this allows setting a different value for each pixel in the

raster
•  often, a similar number of bits is allocated for the alpha

channel as for the other color components
•  conveniently, adding an 8 bit alpha channel to a 24 bit

RGB image results in an image with 32 bits per pixel

©College of Computer and Information Science, Northeastern University

α
•  8 bits is not enough to store an IEEE floating point single

or double precision number, so instead alpha is
represented as an integer 0 <= α <= 255 where the
actual fractional alpha value is computed as α/255

•  most modern microprocessors are especially fast at
moving around 32 bit “words”
–  even if 8 bits are available, sometimes the alpha channel is used

only as a binary image
–  i.e. the (floating point) alpha value for any given pixel is either

0.0 (show background only) or 1.0 (show foreground only)

•  this produces a binary image mask
•  one use is to allow non-rectangular windows

Non-Rectangular Window

©College of Computer and Information Science, Northeastern University

Image Compression

•  rasters take up a lot of memory!
•  example: 640x480x3 BPP (Bytes Per Pixel):

921,600 bytes, or nearly 1MB
•  example: 1600x1200x4 BPP: 7,680,000 bytes,

or a bit over 7MB
•  usually, when a raster has to actually be

displayed on the screen, we do need to keep the
whole thing in memory

•  but for storing and transferring images, we can
usually do better by compressing the data

©College of Computer and Information Science, Northeastern University

PNG and JPG
•  an image compression algorithm starts with the original

raster, and produces a stream of bytes which describes
the image, ideally so that the length of that stream of
bytes is significantly smaller than the original raster

•  an image decompression algorithm does the opposite
•  today, two compression algorithms are very common in

practice:
–  Portable Network Graphics (PNG) and the
–  Joint Photographic Experts Group method (JPEG)actually,

•  these are not only compression and decompression
algorithms, but also standards for the specific layout of
the associated byte streams

©College of Computer and Information Science, Northeastern University

which is better, PNG or JPEG?

•  PNG supports both color, greyscale, and
indexed images, and allows inclusion of an
alpha channel

•  JPEG supports color and greyscale
images, but not indexed, and does not
allow inclusion of an alpha channel

•  but most importantly, PNG is lossless,
while JPEG is lossy:

©College of Computer and Information Science, Northeastern University

JPG vs. PNG

©College of Computer and Information Science, Northeastern University

PNG
http://en.wikipedia.org/wiki/Portable_Network_Graphics

•  PNG is a lossless compression technique: the raster that
results from decompression is guaranteed to be exactly
the same as the original
–  often a compression ratio of 5:1 to 10:1 is still

achieved, because image data is typically redundant
–  e.g. there are often areas filled with a single color
–  this is particularly true for computer generated

images, like line drawings, cartoon graphics, and
user-interface graphics that do not depict real-world
scenes

–  these are also the kinds of scenes for which JPEG
compression is poorly suited, as we will see later

©College of Computer and Information Science, Northeastern University

PNG compression

•  the basic process of PNG compression
takes two stages
1.  first, a pre-compression prediction filter is

applied to the image
2.  then, a standard general purpose lossless

compression algorithm called DEFLATE is
applied to the raster, treated as a linear
array of bytes

©College of Computer and Information Science, Northeastern University

DEFLATE

•  DEFLATE is the same algorithm used in the
common zlib compression library, which is what
implements gzip, a variant of ZIP

•  we will not cover DEFLATE, but we will look at
the first step, the prediction filter

•  one problem with DEFLATE is that by treating a
raster as a linear sequence of bytes, correlations
from one row to the next may be lost

The PNG prediction filter essentially replaces the
value of each color component of a pixel at with
a difference between the actual value in the
original image and a value that would be
predicted for that pixel based on the three pixels
at A, B, and C.

©College of Computer and Information Science, Northeastern University

Filters
Type byte Filter name Predicted value !!

0 None Zero (so that the raw byte value passes through
unaltered)

1 Sub Byte A (to the left)

2 Up Byte B (above)

3 Average Mean of bytes A and B, rounded down

4 Paeth A, B, or C, whichever is closest to p = A + B − C

©College of Computer and Information Science, Northeastern University

Which Method?

•  the compressor selects one of these to
use for each line of the raster

•  the whole line then uses the same
method, but different lines may use
different methods

•  a notation is put in the compressed
bytestream so that the decompressor can
“undo” the filter

©College of Computer and Information Science, Northeastern University

JPEG
•  JPEG is a lossy compression algorithm:
•  the raster that results from decompression is not

guaranteed to be exactly the same as the original
•  this often allows significantly more compression than

PNG
•  some of the data is actually discarded
•  the idea is to try to prioritize so that the least perceptually

significant data is discarded first
•  JPEG can achieve a compression ratio ranging from

typically around 10:1 for high quality to 100:1 for low
quality

©College of Computer and Information Science, Northeastern University

Image constructed with increasing
JPEG compression from left to right

©College of Computer and Information Science, Northeastern University

When is JPEG good?

•  JPEG compression is well-suited for
scenes where colors change continuously,
without sharp edges

•  in particular, real-world scenes captured
with cameras often compress well with
JPEG

•  computer-generated line drawings and
other art will become blurred at sharp
edges

©College of Computer and Information Science, Northeastern University

JPEG compression
1  original RGB data is converted to a color space called YCbCr. We did

not study this; but it is another space where the brightness or
luminance (Y) is separated from the color information, in this case Cb
and Cr.

2  because the eye is less sensitive to color details than it is to intensity,
Cb and Cr are typically thrown out for half of the pixels

3  for each block of 8x8 pixels, a discrete cosine transform is applied
4  the DCT is lossless, but puts the data into a frequency domain form

where we can more easily discard perceptually less significant
information. In particular, rapid high frequency variations are less
noticeable than slower changes. So some of the bits are discarded for
the high frequency components. This is an instance of quantization.

5  the resulting bitstream is losslessly compressed, in this case with the
version of Huffman encoding

©College of Computer and Information Science, Northeastern University

Discrete Cosine Transform

•  so what is DCT? we will not cover the
math

•  the DCT algorithm decomposes a block of
8x8 pixel color component values
(separate DCT are done for Y, Cb, and Cr)
into a weighted sum of the following basis
functions

©College of Computer and Information Science, Northeastern University

•  observe that the original 8x8 block of pixel color
components was stored in e.g. 8x8x8 = 512 Bits

•  if 8 bits are used to represent the relative weight of each
of the 64 basis functions, then the DCT result will again
be 512 bits

•  this gives an intuition, the actual proof (and the way to
compute the DCT) depends on math involving the
Fourier Transform

•  so DCT conversion is itself lossless, but it is the
quantization step where some of the bits for the weights
for higher-frequency basis functions are discarded

