CS 4300 Computer Graphics

Prof. Harriet Fell
Fall 2011
Lecture 31 - November 16, 2011

Today's Topics

- Bump Maps
- Texture Maps

Bump Maps - Blinn 1978

One dimensional Example

The New Surface

The New Surface Normals

Bump Maps - Formulas

A parametric Surface $\quad(x(u, v), y(u, v), z(u, v))=\boldsymbol{P}(u, v)$

$$
\boldsymbol{N}=\frac{\partial \boldsymbol{P}}{\partial u} \times \frac{\partial \boldsymbol{P}}{\partial v}
$$

The new surface

$$
\boldsymbol{P}^{\prime}(u, v)=\boldsymbol{P}(u, v)+B(u, v) \boldsymbol{N}
$$

$$
\begin{aligned}
& \boldsymbol{N}^{\prime}=\boldsymbol{P}_{u}^{\prime} \times \boldsymbol{P}_{v}^{\prime} \\
& \boldsymbol{P}_{{ }_{u}}^{\prime}=\boldsymbol{P}_{u}+B_{u} \boldsymbol{N}+B(u, v) \boldsymbol{N}_{u} \\
& \boldsymbol{P}_{v}^{\prime}=\boldsymbol{P}_{v}+B_{v} \boldsymbol{N}+B(u, v) \boldsymbol{N}_{v}
\end{aligned}
$$

The New Normal

$$
\begin{aligned}
& \boldsymbol{N}^{\prime}=\left(\boldsymbol{P}_{u}+B_{u} \boldsymbol{N}+B(u, v) \boldsymbol{N}_{u}\right) \times\left(\boldsymbol{P}_{v}+B_{v} \boldsymbol{N}+B(u, v) \boldsymbol{N}_{v}\right) \\
& =\boldsymbol{P}_{u} \times \boldsymbol{P}_{v}+B_{v} \boldsymbol{P}_{u} \times \boldsymbol{N}+B(u, v) \boldsymbol{O} \times \boldsymbol{N}_{v} \\
& +B_{u} \boldsymbol{N} \times \boldsymbol{P}_{v}+B_{u} B \boldsymbol{N} \times \boldsymbol{N}+B_{u} B(u, v) \boldsymbol{N} \times \boldsymbol{N}_{v} \\
& +\widetilde{B(u, v} \times \boldsymbol{N}_{u} \times \boldsymbol{P}_{v}+B(u, v) B_{v}, \boldsymbol{N}_{u} \times \boldsymbol{N}+B(u, v)^{2} \boldsymbol{N}_{v} \times \boldsymbol{N}_{v}
\end{aligned}
$$

This term is 0 .

These terms are small if $B(u, v)$ is small.
We use $\quad \boldsymbol{N}^{\prime}=\boldsymbol{P}_{u} \times \boldsymbol{P}_{v}+B_{v} \boldsymbol{P}_{u} \times \boldsymbol{N}+B_{u} \boldsymbol{N} \times \boldsymbol{P}_{v}$

Tweaking the Normal Vector

$$
\begin{array}{ll}
\boldsymbol{N}^{\prime}=\boldsymbol{P}_{u} \times \boldsymbol{P}_{v}+B_{v} \boldsymbol{P}_{u} \times \boldsymbol{N}+B_{u} \boldsymbol{N} \times \boldsymbol{P}_{v} \\
=\boldsymbol{N}+B_{v} \boldsymbol{P}_{u} \times \boldsymbol{N}+B_{u} \boldsymbol{N} \times \boldsymbol{P}_{v} \\
\boldsymbol{A}=\boldsymbol{N} \times \boldsymbol{P}_{v} & \boldsymbol{B}=\boldsymbol{N} \times \boldsymbol{P}_{u} \\
\boldsymbol{D}=B_{u} \boldsymbol{A}-B_{v} \boldsymbol{B} & \text { is the difference vector. }
\end{array}
$$

$$
N^{\prime}=N+D
$$

D lies in the tangent plane to the surface.

Plane with Spheres

Plane with Vertical Wave

Plane with Mesh

Plane with Dimples
Plane with Squares

Dots and Dimples

Plane with Ripples

Sphere on Plane with Spheres

Sphere on Plane with Horizontal Wave

Sphere on Plane with Vertical Wave
 Ripple

Sphere on Plane with Mesh

Sphere on Plane with Waffle

Sphere on Plane with Dimples

Sphere on Plane with Squares

Sphere on Plane with

 Ripples

Wave with Spheres

Parabola with Spheres

Parabola with Dimples

$$
\begin{aligned}
& 100900000000 \\
& \theta \theta \theta) \quad(\mathbb{O}) \\
& 0000000000 \\
& 000000000000 \\
& 000000000000 \\
& \text { (l) } \\
& 100000000000 \\
& 10000000000
\end{aligned}
$$

Parabola with Squares

Big Sphere with Squares

Big Sphere with Vertical Wave

Big Sphere with Mesh

Cone Vertical with Wave
Cone with Dimples

Cone with Ripple

Cone with Ripples

Student Images

Bump Map

Bump Map - Plane

$$
\begin{aligned}
& x=h-200 ; \\
& y=v-200 ; \\
& z=0 ;
\end{aligned}
$$

$$
\begin{aligned}
& \text { N.Set(0, 0, 1); } \\
& \text { Du.Set(-1, 0, 0); } \\
& \text { Dv.Set(0, 1, 0); } \\
& \text { uu = h; } \\
& \text { vv = v; } \\
& \text { zz = z; }
\end{aligned}
$$

Bump Map Code - Big Sphere

radius = 280.0;
z = sqrt(radius*radius - $\left.\mathrm{y}^{*} \mathrm{y}-\mathrm{x}^{*} \mathrm{x}\right)$;
N.Set(x, y, z);
$\mathrm{N}=\operatorname{Norm}(\mathrm{N})$;
Du.Set(z, 0, -x);
Du = -1*Norm(Du);
Dv.Set(-x*y, $\left.x^{*} x+z^{*} z,-y^{*} z\right)$;

Dv = -1*Norm(Dv);
vv $=\operatorname{acos}(\mathrm{y} /$ radius)*360/pi;
uu $=(\mathrm{pi} / 2 \operatorname{tatan}(\mathrm{x} / \mathrm{z}))^{*} 360 / \mathrm{pi} ;$
zz = z;

Bump Map Code - Dimples

```
Bu = 0; Bv = 0;
iu = (int)uu % 30-15;
iv = (int)vv % 30-15;
r2 = 225.0 - (double)iu*iu - (double)iv*iv;
if (r2 > 100) {
    if (iu == 0) Bu = 0;
    else Bu = (iu)/sqrt(r2);
    if (iv == 0) Bv = 0;
    else Bv = (iv)/sqrt(r2);
}
```


Image as a Bump Map

A bump map is a gray scale image; any image will do. The lighter areas are rendered as raised portions of the surface and darker areas are rendered as depressions. The bumping is sensitive to the direction of light sources.
http://www.cadcourse.com/winston/BumpMaps.html

Bump Map from an Image Victor Ortenberg

Simple Textures on Planes Parallel to Coordinate Planes

Stripes

Checks

Stripes and Checks

Red and Blue Stripes

$$
\text { if }((x \% 50)<25) \text { color }=\text { red }
$$

else color = blue

Cyan and Magenta Checks
if $(((x$ \% 50) < $25 \& \&(y \% 50)<25)) \|$ $(((x \% 50)>=25 \& \&(y \% 50)>=25)))$ color = cyan
else color = magenta
What happens when you cross $x=0$ or $y=0$?

Stripes, Checks, Image

Mona Scroll

Textures on 2 Planes

Mapping a Picture to a Plane

- Use an image in a ppm file.
- Read the image into an array of RGB values.

Color mylmage[width][height]

- For a point on the plane (x, y, d)
theColor($\mathrm{x}, \mathrm{y}, \mathrm{d}$) $=$ mylmage($\mathrm{x} \%$ width, $\mathrm{y} \%$ height)
- How do you stretch a small image onto a large planar area?

Other planes and Triangles

Given a normal and 2 points on the plane:

Make u from the two points.
$\mathbf{v}=\mathbf{N} \mathbf{x}$
Express \mathbf{P} on the plane as
$P=P_{0}+a u+b v$.

Image to Triangle - 1

Image to Triangle - 3

Mandrill Sphere

Mona Spheres

Tova Sphere

More Textured Spheres

Spherical Geometry

// for texture map - in lieu of using sphere color double phi, theta; // for spherical coordinates double $\mathrm{x}, \mathrm{y}, \mathrm{z}$; // sphere vector coordinates int h, v; // ppm buffer coordinates Vector3D V;

```
V = SP - theSpheres[hitObject].center;
V.Get(x, y, z);
phi = acos(y/theSpheres[hitObject].radius);
if (z!= 0) theta = atan(x/z); else phi = 0; // ???
v = (phi)* ppmH/pi;
h = (theta + pi/2)*ppmW/pi;
if (v<0)v = 0; else if (v>= ppmH) v=ppmH - 1;
v = ppmH -v -1;//v = (v + 85*ppmH/100)%ppmH;//9
if (h<0) h = 0; else if (h>= ppmW) h=ppmW - 1;
h = ppmW -h-1; //h = (h + 1*ppmW/10)%ppmW;
rd = fullFactor*((double)(byte)mylmage[h][v][0]/255); clip(rd);
gd = fullFactor*((double)(byte)mylmage[h][v][1]/255); clip(gd);
bd = fullFactor*((double)(byte) mylmage[h][v][2]/255); clip(bd);
```

