CS U540
Computer Graphics
Prof. Harriet Fell
Fall 2011
Lecture 24 – November 2, 2011
Today’s Topics

• Ray Casting
Ray Tracing
a World of Spheres
What is a Sphere

Vector3D center; // 3 doubles
double radius;
double R, G, B; // for RGB colors between 0 and 1
double kd; // diffuse coefficient
double ks; // specular coefficient
(double ka; // ambient light coefficient)
.01 .01 500 800 // transform theta phi mu distance
1 // antialias
1 // numlights
100 500 800 // Lx, Ly, Lz
9 // numspheres
// cx cy cz radius R G B ka kd ks specExp kgr kt pic
-100 -100 0 40 .9 0 0 .2 .9 .0 4 0 0 0
-100 0 0 40 .9 0 0 .2 .8 .1 8 .1 0 0
-100 100 0 40 .9 0 0 .2 .7 .2 12 .2 0 0
 0 -100 0 40 .9 0 0 .2 .6 .3 16 .3 0 0
 0 0 0 40 .9 0 0 .2 .5 .4 20 .4 0 0
 0 100 0 40 .9 0 0 .2 .4 .5 24 .5 0 0
100 -100 0 40 .9 0 0 .2 .3 .6 28 .6 0 0
100 0 0 40 .9 0 0 .2 .2 .7 32 .7 0 0
100 100 0 40 .9 0 0 .2 .1 .8 36 .8 0 0

November 7, 2011 College of Computer and Information Science, Northeastern University
World of Spheres

Vector3D VP;
int numLights;
Vector3D theLights[5];
double ka;
int numSpheres;
Sphere theSpheres[20];
int ppmT[3];
View sceneView;
double distance;
bool antialias;
// the viewpoint
// up to 5 white lights
// ambient light coefficient
// 20 sphere max
// ppm texture files
// transform data
// view plane to VP
// if true antialias
Simple Ray Tracing for Detecting Visible Surfaces

select window on viewplane and center of projection
for (each scanline in image) {
 for (each pixel in the scanline) {
 determine ray from center of projection
 through pixel;
 for (each object in scene) {
 if (object is intersected and
 is closest considered thus far)
 record intersection and object name;
 }
 set pixel’s color to that of closest object intersected;
 }
}

November 7, 2011
College of Computer and Information Science, Northeastern University
Ray Trace 1
Finding Visible Surfaces
Ray-Sphere Intersection

- Given
 - Sphere
 - Center \((c_x, c_y, c_z)\)
 - Radius, \(R\)
 - Ray from \(P_0\) to \(P_1\)
 - \(P_0 = (x_0, y_0, z_0)\) and \(P_1 = (x_1, y_1, z_1)\)
 - View Point
 - \((V_x, V_y, V_z)\)
 - Project to window from \((0,0,0)\) to \((w,h,0)\)
Sphere Equation

Center C = \((c_x, c_y, c_z)\)

Radius R

\[
(x - c_x)^2 + (y - c_y)^2 + (z - c_z)^2 = R^2
\]
The ray from P_0 to P_1 is given by:

$$P(t) = (1 - t)P_0 + tP_1$$

where $0 \leq t \leq 1$.

$$= P_0 + t(P_1 - P_0)$$
Intersection Equation

\[P(t) = P_0 + t(P_1 - P_0) \quad 0 \leq t \leq 1 \]

is really three equations

\[x(t) = x_0 + t(x_1 - x_0) \]
\[y(t) = y_0 + t(y_1 - y_0) \]
\[z(t) = z_0 + t(z_1 - z_0) \quad 0 \leq t \leq 1 \]

Substitute \(x(t), y(t), \) and \(z(t) \) for \(x, y, z, \) respectively in

\[(x - c_x)^2 + (y - c_y)^2 + (z - c_z)^2 = R^2 \]

\[\left((x_0 + t(x_1 - x_0)) - c_x \right)^2 + \left((y_0 + t(y_1 - y_0)) - c_y \right)^2 + \left((z_0 + t(z_1 - z_0)) - c_z \right)^2 = R^2 \]
Solving the Intersection Equation

\[
((x_0 + t(x_1 - x_0)) - c_x)^2 + ((y_0 + t(y_1 - y_0)) - c_y)^2 + ((z_0 + t(z_1 - z_0)) - c_z)^2 = R^2
\]

is a quadratic equation in variable \(t \).

For a fixed pixel, VP, and sphere,

\[x_0, y_0, z_0, x_1, y_1, z_1, c_x, c_y, c_z, \text{ and } R \]

are all constants.

We solve for \(t \) using the quadratic formula.
The Quadratic Coefficients

\[
((x_0 + t(x_1 - x_0)) - c_x)^2 + ((y_0 + t(y_1 - y_0)) - c_y)^2 + ((z_0 + t(z_1 - z_0)) - c_z)^2 = R^2
\]

Set
\[
\begin{align*}
 d_x &= x_1 - x_0 \\
 d_y &= y_1 - y_0 \\
 d_z &= z_1 - z_0
\end{align*}
\]

Now find the coefficients:

\[
A t^2 + B t + C = 0
\]
Computing Coefficients

\[
\left((x_0 + t(x_1 - x_0)) - c_x \right)^2 + \left((y_0 + t(y_1 - y_0)) - c_y \right)^2 + \left((z_0 + t(z_1 - z_0)) - c_z \right)^2 = R^2
\]

\[
\left((x_0 + td_x) - c_x \right)^2 + \left((y_0 + td_y) - c_y \right)^2 + \left((z_0 + td_z) - c_z \right)^2 = R^2
\]

\[
\begin{align*}
(x_0 + td_x)^2 - 2c_x(x_0 + td_x) + c_x^2 + \\
y_0^2 + 2y_0td_y + t^2d_y^2 - 2c_yy_0 - 2c_ytd_y + c_y^2 + \\
z_0^2 + 2z_0td_z + t^2d_z^2 - 2c_zz_0 - 2c_ztd_z + c_z^2 - R^2 = 0
\end{align*}
\]
The Coefficients

\[\begin{align*}
x_0^2 + 2x_0 t d_x + t^2 d_x^2 + 2c_x x_0 - 2c_x t d_x + c_x^2 + \\
y_0^2 + 2y_0 t d_y + t^2 d_y^2 - 2c_y y_0 - 2c_y t d_y + c_y^2 + \\
z_0^2 + 2z_0 t d_z + t^2 d_z^2 - 2c_z z_0 - 2c_z t d_z + c_z^2 - R^2 = 0
\end{align*} \]

A = \(d_x^2 + d_y^2 + d_z^2 \)

B = \(2d_x(x_0 - c_x) + 2d_y(y_0 - c_y) + 2d_z(z_0 - c_z) \)

C = \(c_x^2 + c_y^2 + c_z^2 + x_0^2 + y_0^2 + z_0^2 + \\
-2(c_x x_0 + c_y y_0 + c_z z_0) - R^2 \)
Solving the Equation

\[At^2 + Bt + C = 0 \]

\[\text{discriminant} = D(A,B,C) = B^2 - 4AC \]

\[
\begin{align*}
D(A,B,C) &< 0 \quad \text{no intersection} \\
D(A,B,C) &= 0 \quad \text{ray is tangent to the sphere} \\
D(A,B,C) &> 0 \quad \text{ray intersects sphere in two points}
\end{align*}
\]
The intersection nearest \(P_0 \) is given by:

\[
t = \frac{-b - \sqrt{b^2 - 4ac}}{2a}
\]

To find the coordinates of the intersection point:

\[
\begin{align*}
x &= x_0 + td_x \\
y &= y_0 + td_y \\
z &= z_0 + td_z
\end{align*}
\]
First Lighting Model

• Ambient light is a global constant.
 Ambient Light = $k_a (A_R, A_G, A_B)$
 k_a is in the “World of Spheres”
 $0 \leq k_a \leq 1$
 $(A_R, A_G, A_B) =$ average of the light sources
 $(A_R, A_G, A_B) = (1, 1, 1)$ for white light

• Color of object S = (S_R, S_G, S_B)

• Visible Color of an object S with only ambient light
 $C_S = k_a (A_R S_R, A_G S_G, A_B S_B)$

• For white light
 $C_S = k_a (S_R, S_G, S_B)$
Visible Surfaces
Ambient Light
Second Lighting Model

- Point source light $L = (L_R, L_G, L_B)$ at (L_x, L_y, L_z)
- Ambient light is also present.
- Color at **point** p on an object S with ambient & diffuse reflection
 $$C_p = k_a (A_R S_R, A_G S_G, A_B S_B) + k_d k_p (L_R S_R, L_G S_G, L_B S_B)$$
- For white light, $L = (1, 1, 1)$
 $$C_p = k_a (S_R, S_G, S_B) + k_d k_p (S_R, S_G, S_B)$$
- k_p depends on the **point** p on the object and (L_x, L_y, L_z)
- k_d depends on the object (sphere)
- k_a is global
- $k_a + k_d \leq 1$
Diffuse Light
Lambertian Reflection Model
Diffuse Shading

• For matte (non-shiny) objects
• Examples
 ▪ Matte paper, newsprint
 ▪ Unpolished wood
 ▪ Unpolished stones
• Color at a point on a matte object does not change with viewpoint.
Physics of Lambertian Reflection

• Incoming light is partially absorbed and partially transmitted equally in all directions
Geometry of Lambert’s Law

\[\text{Geometry of Lambert’s Law} \]

\[\text{Surface 1} \]

\[\text{Surface 2} \]

\[L \]

\[N \]

\[dA \]

\[\theta \]

\[90 - \theta \]

\[\theta \]

\[dA \cos(\theta) \]
\[
\cos(\theta) = N \cdot L
\]

\[
\text{Surface 2}
\]

\[
C_p = k_a (\text{SR, SG, SB}) + k_d N \cdot L \ (\text{SR, SG, SB})
\]
Finding N

$$N = \frac{(x-cx, y-cy, z-cz)}{|(x-cx, y-cy, z-cz)|}$$
Diffuse Light 2
Shadows on Spheres
More Shadows
Finding Shadows

Pixel gets shadow color
Shadow Color

• Given

Ray from P (point on sphere S) to L (light)

\[P = P_0 = (x_0, y_0, z_0) \text{ and } L = P_1 = (x_1, y_1, z_1) \]

• Find out whether the ray intersects any other object (sphere).
 ▪ If it does, P is in shadow.
 ▪ Use only ambient light for pixel.
Shape of Shadows
Different Views
Starry Skies

View Point: (225, 225, 4000)
Light: (2500, 2500, 8000)

SPHERES
Center: (100, 100, 50)
Radius: 50
RED: 0.50
GREEN: 0.00
BLUE: 0.50
Center: (150, 200, 250)
Radius: 50
RED: 0.50
GREEN: 0.50
BLUE: 0.00
Center: (350, 220, 300)
Radius: 50
RED: 0.00
GREEN: 0.50
BLUE: 0.50
Center: (250, 300, 750)
Radius: 50
RED: 0.25
GREEN: 0.25
BLUE: 0.50
Center: (310, 20, -20)
Radius: 50
RED: 0.50
GREEN: 0.50
BLUE: 0.50

Diffuse Lighting
one point source
shadows on spheres
Shadows on the Plane
Finding Shadows on the Back Plane

Pixel in Shadow

Shadow Ray
Close up
Phong Highlight
Phong Lighting Model

Light

Normal

Reflected

View

Surface

The viewer only sees the light when α is 0.

We make the highlight maximal when α is 0, but have it fade off gradually.
Phong Lighting Model

\[\cos(\theta) = \mathbf{R} \cdot \mathbf{V} \]

We use \(\cos^n(\theta) \).

The higher \(n \) is, the faster the drop off.

\[\mathbf{C_p} = k_a (\mathbf{SR}, \mathbf{SG}, \mathbf{SB}) + k_d \mathbf{N} \cdot \mathbf{L} (\mathbf{SR}, \mathbf{SG}, \mathbf{SB}) + k_s (\mathbf{R} \cdot \mathbf{V})^n (1, 1, 1) \]
Powers of $\cos(\theta)$
Computing \mathbf{R}

$L + R = (2 \mathbf{L} \cdot \mathbf{N}) \mathbf{N}$

$\mathbf{R} = (2 \mathbf{L} \cdot \mathbf{N}) \mathbf{N} - \mathbf{L}$
The Halfway Vector

$H = \frac{L + V}{|L + V|}$

Use $H \cdot N$ instead of $R \cdot V$.

H is less expensive to compute than R.

From the picture

$\theta + \phi = \theta - \phi + \alpha$

So $\phi = \alpha/2$.

This is not generally true. Why?

Surface

$C_p = ka (SR, SG, SB) + kd N \cdot L (SR, SG, SB) + ks (H \cdot N)^n (1, 1, 1)$
Varied Phong Highlights
Varying Reflectivity