

CS U540 Computer Graphics

Prof. Harriet Fell Fall 2011 Lecture 24 – November 2, 2011

November 7, 2011

College of Computer and Information Science, Northeastern University

Today's Topics

Ray Casting

Ray Tracing a World of Spheres

What is a Sphere

Vector3D	center;	// 3 doubles
double	radius;	
double	R, G, B;	// for RGB colors between 0 and 1
double	kd;	// diffuse coeficient
double	ks;	// specular coeficient
(double	ka;	<pre>// ambient light coefficient)</pre>

.01 500 800 // transform theta phi mu distance -.01 1 // antialias 1 // numlights 100 500 800 // Lx, Ly, Lz 9 // numspheres //cxcy cz radius R G B ka kd ks specExp kgr kt pic . 9 -100 - 100 0 400 0.2.9.0 0 0 4 0 -100 0 0 40 . 9 0 0.2.8.1 8 .1 0 0 . 9 100 0 40 .2 -1000 0 .2 .7 .2 12 0 0 0 -100 0 40 . 9 .3 0 0 0.2.6.3 16 0 . 9 0 40 0 0.2.5.4 20 .4 0 0 0 0 100 0 40 . 9 0.2.4.5 24 0 0 .5 0 0 . 9 0 0 .2 .3 .6 28 100 -1000 40 .6 0 0 .9 32 100 0 40 0.2.2.7 0 0 .7 0 0 .2 .1 .8 100 100 0 40 .9 0 36 . 8 0 0 0

World of Spheres

Vector3D VP; int numLights; Vector3D theLights[5]; double ka; int numSpheres; Sphere theSpheres[20];

int ppmT[3]; View sceneView; double distance; bool antialias; // the viewpoint

// up to 5 white lights
// ambient light coefficient

// 20 sphere max

// ppm texture files// transform data// view plane to VP// if true antialias

Simple Ray Tracing for Detecting Visible Surfaces

select window on viewplane and center of projection for (each scanline in image) { for (each pixel in the scanline) { determine ray from center of projection through pixel; for (each object in scene) { if (object is intersected and is closest considered thus far) record intersection and object name; set pixel's color to that of closest object intersected;

Ray-Sphere Intersection

- Given
 - Sphere
 - Center (c_x, c_y, c_z)
 - Radius, *R*
 - Ray from P_0 to P_1
 - $P_0 = (x_0, y_0, z_0)$ and $P_1 = (x_1, y_1, z_1)$
 - View Point
 - (V_{x}, V_{y}, V_{z})
- Project to window from (0,0,0) to (w,h,0)

Sphere Equation

Ray Equation

 $P_0 = (x_0, y_0, z_0) \text{ and } P_1 = (x_1, y_1, z_1)$

Intersection Equation

 $\begin{array}{ll} \mathsf{P}(t) = \mathsf{P}_{0} + t(\mathsf{P}_{1} - \mathsf{P}_{0}) & 0 <= t <= 1 \\ \text{ is really three equations } \\ x(t) = x_{0} + t(x_{1} - x_{0}) \\ y(t) = y_{0} + t(y_{1} - y_{0}) \\ z(t) = z_{0} + t(z_{1} - z_{0}) & 0 <= t <= 1 \\ \text{Substitute } x(t), \ y(t), \ \text{and } z(t) \ \text{for } x, \ y, \ z, \ \text{respectively in} \end{array}$

$$((x - c_x)^2 + (y - c_y)^2 + (z - c_z)^2 = R^2)$$

$$((x_0 + t(x_1 - x_0)) - c_x)^2 + ((y_0 + t(y_1 - y_0)_1) - c_y)^2 + ((z_0 + t(z_1 - z_0)) - c_z)^2 = R^2$$

Solving the Intersection Equation

$$\left(\left(x_{0} + t(x_{1} - x_{0})\right) - c_{x}^{2}\right)^{2} + \left(\left(y_{0} + t(y_{1} - y_{0})_{1}\right) - c_{y}^{2}\right)^{2} + \left(\left(z_{0} + t(z_{1} - z_{0})\right) - c_{z}^{2}\right)^{2} = R^{2}$$

is a quadratic equation in variable t.

For a fixed pixel, VP, and sphere,

$$x_0, y_0, z_0, x_1, y_1, z_1, c_x, c_y, c_z, and R$$

are all constants.

We solve for t using the quadratic formula.

The Quadratic Coefficients

$$((x_0 + t(x_1 - x_0)) - c_x)^2 + ((y_0 + t(y_1 - y_0)_1) - c_y)^2 + ((z_0 + t(z_1 - z_0)) - c_z)^2 = R^2$$

Set $d_x = x_1 - x_0$ $d_y = y_1 - y_0$ $d_z = z_1 - z_0$

Now find the the coefficients:

$At^2 + Bt + C = 0$

Computing Coefficients

$$\begin{array}{l} \left(\left(x_{0} \ + \ t(x_{1} - x_{0}) \right) - c_{x} \right)^{2} + \left(\left(y_{0} \ + \ t(y_{1} - y_{0}) \right) - c_{y} \right)^{2} + \left(\left(z_{0} \ + \ t(z_{1} - z_{0}) \right) - c_{z} \right)^{2} = R^{2} \\ \left(\left(x_{0} \ + \ td_{x} \right) - c_{x} \right)^{2} + \left(\left(y_{0} \ + \ td_{y} \right) - c_{y} \right)^{2} + \left(\left((z_{0} \ + \ td_{z}) - c_{z} \right)^{2} = R^{2} \\ \left(x_{0} \ + \ td_{x} \right)^{2} - 2c_{x} \left(x_{0} \ + \ td_{x} \right) + c_{x}^{2} + \\ \left(y_{0} \ + \ td_{y} \right)^{2} - 2c_{y} \left(y_{0} \ + \ td_{y} \right) + c_{y}^{2} + \\ \left(z_{0} \ + \ td_{z} \right)^{2} - 2c_{z} \left(z_{0} \ + \ td_{z} \right) + c_{z}^{2} - R^{2} = 0 \\ \hline x_{0}^{2} + 2x_{0}td_{x} + t^{2}d_{x}^{2} - 2c_{x}x_{0} - 2c_{x}td_{x} + c_{x}^{2} + \\ y_{0}^{2} + 2y_{0}td_{y} + t^{2}d_{y}^{2} - 2c_{y}y_{0} - 2c_{y}td_{y} + c_{y}^{2} + \\ z_{0}^{2} + 2z_{0}td_{z} + t^{2}d_{z}^{2} - 2c_{z}z_{0} - 2c_{z}td_{z} + c_{z}^{2} - R^{2} = 0 \end{array}$$

The Coefficients

November 7, 2011 College of Computer and Information Science, Northeastern University

Solving the Equation

 $At^2 + Bt + C = 0$

discriminant =
$$D(A,B,C) = B^2 - 4AC$$

 $D(A,B,C) \begin{cases} < 0 & \text{no intersection} \\ = 0 & \text{ray is tangent to the sphere} \\ > 0 & \text{ray intersects sphere in two points} \end{cases}$

The intersection nearest P_0 is given by:

$$t = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

To find the coordinates of the intersection point: $x = x_0 + td_x$ $y = y_0 + td_y$ $z = z_0 + td_z$

First Lighting Model

- Ambient light is a global constant. Ambient Light = k_a (A_R, A_G, A_B) k_a is in the "World of Spheres" 0 ≤ k_a ≤ 1 (A_R, A_G, A_B) = average of the light sources
 - $(A_R, A_G, A_B) = (1, 1, 1)$ for white light
- Color of object $S = (S_R, S_G, S_B)$
- Visible Color of an object S with only ambient light C_S= k_a (A_R S_R, A_G S_G, A_B S_B)
- For white light

 $C_{S} = k_{a} (S_{R}, S_{G}, S_{B})$

Visible Surfaces Ambient Light

Text 📃	J
View Point: (200, 200,1000) Light : (750, 0,2000)	Û
SPHERES	
Center : (100, 100,100) Radius : 50 RED: 0.50 GREEN: 0.00 BLUE: 0.50	
Center : (150, 200,300) Radius : 50 RED: 0.50 GREEN: 0.50 BLUE: 0.00	
Center : (350, 220,150) Radius : 50 RED: 0.00 GREEN: 0.50 BLUE: 0.50	
Center : (250, 300,400) Radius : 50 RED: 0.25 GREEN: 0.25 BLUE: 0.50	
Only ambient light	
	0
	Ľ

Second Lighting Model

- Point source light L = (L_R , L_G , L_B) at (L_x , L_y , L_z)
- Ambient light is also present.
- Color at point p on an object S with ambient & diffuse reflection

 $C_p = k_a (A_R S_R, A_G S_G, A_B S_B) + k_d k_p (L_R S_R, L_G S_G, L_B S_B)$

• For white light, L = (1, 1, 1)

 $C_p = k_a (S_R, S_G, S_B) + k_d k_p (S_R, S_G, S_B)$

- k_p depends on the **point p** on the object and (L_x, L_y, L_z)
- k_d depends on the object (sphere)
- k_a is global
- $k_a + k_d \le 1$

Diffuse Light

Lambertian Reflection Model Diffuse Shading

- For matte (non-shiny) objects
- Examples
 - Matte paper, newsprint
 - Unpolished wood
 - Unpolished stones
- Color at a point on a matte object does not change with viewpoint.

Physics of Lambertian Reflection

Incoming light is partially absorbed and partially transmitted equally in all directions

Geometry of Lambert's Law

College of Computer and Information Science, Northeastern University

 $cos(\theta)=N\bullet L$

Cp= ka (SR, SG, SB) + kd N•L (SR, SG, SB)

Diffuse Light 2

Shadows on Spheres

	Text 📃	
View Point Light	: (240, 248,5000) : (700, 400,2000)	Û
SPHERES		
Center : Radius : RED: GREEN: BLUE:	(100, 100, 50) 50 0.50 0.00 0.50	
Center : Radius : RED: GREEN: BLUE:	<pre><(150, 200,250) 50 0.50 0.50 0.50 0.00</pre>	
Center : Radius : RED: GREEN: BLUE:	<pre>(350, 220,500) 50 0.00 0.50 0.50 0.50</pre>	
Center : Radius : RED: GREEN: BLUE:	(250, 300,750) 50 0.25 0.25 0.50	
Diffuse Lio one point : shadows on and sp	ghting source view plane pheres	
		₹ -

November 7, 2011 College of Computer and Information Science, Northeastern University

More Shadows

Finding Shadows

Shadow Color

Given

Ray from P (point on sphere S) to L (light)

 $P = P_0 = (x_0, y_0, z_0) \text{ and } L = P_1 = (x_1, y_1, z_1)$

- Find out whether the ray intersects any other object (sphere).
 - If it does, P is in shadow.
 - Use only ambient light for pixel.

Shape of Shadows

Different Views

College of Computer and Information Science, Northeastern University

Planets

r	T	ì
	Text	
	View Point: (250, 252,2000) Light : (700, 700,2000) SPHERES	Û
	Center : (100, 100, 50) Radius : 50 RED: 0.50 GREEN: 0.00 BLUE: 0.50	
	Center : (150, 200,250) Radius : 50 RED: 0.50 GREEN: 0.50 BLUE: 0.00	
	Center : (350, 220,500) Radius : 50 RED: 0.00 GREEN: 0.50 BLUE: 0.50	
	Center : (250, 300,750) Radius : 50 RED: 0.25 GREEN: 0.25 BLUE: 0.50	
	Center : (310, 80,-20) Radius : 50 RED: 0.50 GREEN: 0.50 BLUE: 0.50	
	Diffuse Lighting one point source shadows on spheres	
		₽ •

Starry Skies

College of Computer and Information Science, Northeastern University

Shadows on the Plane

Finding Shadows on the Back Plane

Close up

	Text	
View Point Light	: (200, 200,500) : (500, 250,1000)	4
SPHERES		
Center : Radius : RED: GREEN: BLUE:	<pre>(100, 100, 100) 50 0.50 0.00 0.50</pre>	
Center : Radius : RED: GREEN: BLUE:	(150, 200,300) 50 0.50 0.50 0.00	
Center : Radius : RED: GREEN: BLUE:	(350, 220,150) 50 0.00 0.50 0.50	
Center : Radius : RED: GREEN: BLUE:	(250, 300,400) 50 0.25 0.25 0.50	
Diffuse Lig one point s shadows on 	ghting source view plane	
		₽ •

November 7, 2011 College of Computer and Information Science, Northeastern University

On the Table

	Text	_
View Point Light	: (200, 200 : (500, 250	(,2000)
SPHERES		
Center : Radius : RED: GREEN: BLUE:	(100, 100, 50 0.50 0.00 0.50	50>
Center : Radius : RED: GREEN: BLUE:	<150, 200, 50 0.50 0.50 0.00	50>
Center : Radius : RED: GREEN: BLUE:	(350, 220, 50 0.00 0.50 0.50	50>
Center : Radius : RED: GREEN: BLUE:	(250, 300, 50 0.25 0.25 0.50	50>
Diffuse Li one point shadows on 	ghting source view plane	1
		2 2

Phong Highlight

Phong Lighting Model

Phong Lighting Model

 $\cos(\theta) = \mathbf{R} \cdot \mathbf{V}$

We use $\cos^{n}(\theta)$.

Powers of $cos(\theta)$

November 7, 2011 College of Computer and Information Science, Northeastern University

Computing **R**

 $L + R = (2 L \cdot N) N$ R = (2 L \cdot N) N - L

College of Computer and Information Science, Northeastern University

The Halfway Vector

Varied Phong Highlights

College of Computer and Information Science, Northeastern University

Varying Reflectivity

College of Computer and Information Science, Northeastern University