
College of Computer and Information Science, Northeastern University November 7, 2011 1

CS4300
Computer Graphics

Prof. Harriet Fell
Fall 2011

Lecture 22 – October 27 ,2011

College of Computer and Information Science, Northeastern University November 7, 2011 2

Today’s Topics
•  Poly Mesh
•  Hidden Surface Removal
•  Visible Surface Determination
•  More about the First 3D Project
•  First Lighting model

College of Computer and Information Science, Northeastern University November 7, 2011 3

Rendering a Polymesh

•  Scene is composed of triangles or other
polygons.

•  We want to view the scene from different view-
points.
•  Hidden Surface Removal

•  Cull out surfaces or parts of surfaces that are not visible.
•  Visible Surface Determination

•  Head right for the surfaces that are visible.
•  Ray-Tracing is one way to do this.

College of Computer and Information Science, Northeastern University November 7, 2011 4

Wireframe Rendering

Copyright (C) 2000,2001,2002 Free Software
Foundation, Inc. 51 Franklin St, Fifth Floor, Boston,
MA 02110-1301 USA Everyone is permitted to copy
and distribute verbatim copies of this license
document, but changing it is not allowed.

Hidden-
Line
Removal

Hidden-
Face
Removal

College of Computer and Information Science, Northeastern University November 7, 2011 5

Convex Polyhedra

We can see a face if and only if
its normal has a component
toward us.

 N·V > 0
V points from the face toward
the viewer.

N point toward the outside of the
polyhedra.

College of Computer and Information Science, Northeastern University November 7, 2011 6

Finding N

A B

C

B - A

N = (B - A) x (C - A)

is a normal to the
triangle that points
toward you.

�

N
N

is a unit normal
that points toward
you.

College of Computer and Information Science, Northeastern University November 7, 2011 7

Code for N

private Vector3d findNormal(){
 Vector3d u = new Vector3d();
 u.scaleAdd(-1, verts[0], verts[1]);
 Vector3d v = new Vector3d();
 v.scaleAdd(-1, verts[0], verts[2]);
 Vector3d uxv = new Vector3d();
 uxv.cross(u, v);
 return uxv;

}

College of Computer and Information Science, Northeastern University November 7, 2011 8

Finding V

•  Since we are just doing a simple
orthographic projection, we can use

 V = k = (0, 0, 1).
•  Then

 N  V = the z component of N

public boolean faceForward() {
 return (normal.z > 0);
}

College of Computer and Information Science, Northeastern University November 7, 2011 9

Find L

•  L is a unit vector from the point you are
about to render toward the light.

•  For the faceted icosahedron use the
center point of each face.
•  cpt = (A + B + C)/3

College of Computer and Information Science, Northeastern University November 7, 2011 10

First Lighting Model
•  Ambient light is a global constant ka.

•  Try ka = .2.
•  If a visible object S has color (SR, SG, SB) then

the ambient light contributes
(.2* SR, .2* SG, .2* SB).

•  Diffuse light depends of the angle at which the
light hits the surface. We add this to the ambient
light.

•  We will also add a spectral highlight.

College of Computer and Information Science, Northeastern University November 7, 2011 11

Visible Surfaces
Ambient Light

College of Computer and Information Science, Northeastern University November 7, 2011 12

Diffuse Light

College of Computer and Information Science, Northeastern University November 7, 2011 13

Lambertian Reflection Model
Diffuse Shading

•  For matte (non-shiny) objects
•  Examples
•  Matte paper, newsprint
•  Unpolished wood
•  Unpolished stones

•  Color at a point on a matte object does not
change with viewpoint.

College of Computer and Information Science, Northeastern University November 7, 2011 14

Physics of
Lambertian Reflection

•  Incoming light is partially absorbed and partially
transmitted equally in all directions

College of Computer and Information Science, Northeastern University November 7, 2011 15

Geometry of Lambert’s Law

N

L dA

90 - θ

θ

90 - θ

dAcos(θ)

θ L

Surface 1 Surface 2

College of Computer and Information Science, Northeastern University November 7, 2011 16

cos(θ)=NL

Surface 2

90 - θ

θ

90 - θ

dAcos(θ)

θ L

Cp= ka (SR, SG, SB) + kd NL (SR, SG, SB)

College of Computer and Information Science, Northeastern University November 7, 2011 17

Hidden Surface Removal
•  Backface culling

•  Never show the back of a polygon.
•  Viewing frustum culling

•  Discard objects outside the camera’s view.
•  Occlusion culling

•  Determining when portions of objects are hidden.
•  Painter’s Algorithm
•  Z-Buffer

•  Contribution culling
•  Discard objects that are too far away to be seen.

http://en.wikipedia.org/wiki/Hidden_face_removal

College of Computer and Information Science, Northeastern University November 7, 2011 18

Visible Surface Determination

•  If most surfaces are invisible, don’t render
them.
•  Ray Tracing

•  We only render the nearest object.

•  Binary Space Partitioning (BSP)
•  Recursively cut up space into convex sets with

hyperplanes.
•  The scene is represented by a BSP-tree.

College of Computer and Information Science, Northeastern University November 7, 2011 19

Sorting the Polygons

The first step of the Painter’s algorithm is:
Sort objects back to front relative to the

 viewpoint.
The relative order may not be well defined.
We have to reorder the objects when we

change the viewpoint.
The BSP algorithm and BSP trees solve

these problems.

College of Computer and Information Science, Northeastern University November 7, 2011 20

Binary Space Partition

•  Our scene is made of triangles.
•  Other polygons can work too.

•  Assume no triangle crosses the plane of
any other triangle.
•  We relax this condition later.

 following Shirley et al.

College of Computer and Information Science, Northeastern University November 7, 2011 21

BSP – Basics
•  Let a plane in 3-space (or line in 2-space) be

defined implicitly, i.e.
•  f(P) = f(x, y, z) = 0 in 3-space
•  f(P) = f(x, y) = 0 in 2-space

•  All the points P such that f(P) > 0 lie on one side
of the plane (line).

•  All the points P such that f(P) < 0 lie on the other
side of the plane (line).

•  Since we have assumed that all vertices of a
triangle lie on the same side of the plane (line),
we can tell which side of a plane a triangle lies
on.

College of Computer and Information Science, Northeastern University November 7, 2011 22

BSP on a Simple Scene

 Suppose scene has 2 triangles
 T1 on the plane f(P) = 0

 T2 on the f(P) < 0 side
 e is the eye.

 if f(e) < 0 then
 draw T1; draw T2
 else
 draw T2; draw T1

f(P)>0

f(P)<0

College of Computer and Information Science, Northeastern University November 7, 2011 23

The BSP Tree
Suppose scene has many triangles, T1, T2, … .
We still assume no triangle crosses the plane of any other

triangle.
Let fi(P) = 0 be the equation of the plane containing Ti.
The BSPTREE has a node for each triangle with T1 at the

root.
At the node for Ti,

 the minus subtree contains all the triangles whose
vertices have fi(P) < 0
 the plus subtree contains all the triangles whose vertices
have fi(P) > 0.

College of Computer and Information Science, Northeastern University November 7, 2011 24

BSP on a non-Simple Scene

 function draw(bsptree tree, point e)
 if (tree.empty) then
 return
 if (ftree.root(e) < 0) then

 draw(tree.plus, e)
 render tree.triangle
 draw(tree.minus, e)

 else
 draw(tree.minus, e)
 render tree.triangle
 draw(tree.plus, e)

College of Computer and Information Science, Northeastern University November 7, 2011 25

2D BSP Trees Demo

http://www.symbolcraft.com/graphics/bsp/index.php

This is a demo in 2 dimensions.

The objects are line segments.

The dividing hyperplanes are lines.

Building the BSP Tree
We still assume no triangle crosses the plane of another triangle.

tree = node(T1)
for i in {2, …, N} do tree.add(Ti)

function add (triangle T)
if (f(a) < 0 and f(b) < 0 and f(c) < 0) then
 if (tree.minus.empty) then
 tree.minus = node(T)
 else
 tree.minus.add(T)

else if (f(a) > 0 and f(b) > 0 and f(c) > 0) then
 if (tree.plus.empty) then
 tree.plus = node(T)
 else
 tree.plus.add(T)

College of Computer and Information Science, Northeastern University November 7, 2011 27

Triangle Crossing a Plane
a

c

b

A

B

Two vertices, a and b, will
be on one side and one,
c, on the other side.

Find intercepts , A and B,
of the plane with the 2
edges that cross it.

College of Computer and Information Science, Northeastern University November 7, 2011 28

Cutting the Triangle
a

c

b

A

B

Cut the triangle into three
triangles, none of which
cross the cutting plane.

Be careful when one or
more of a, b, and c is
close to or on the cutting
plane.

College of Computer and Information Science, Northeastern University November 7, 2011

Flat Shading

•  A single normal
vector is used for
each polygon.

•  The object appears to
have facets.

http://en.wikipedia.org/wiki/Phong_shading

College of Computer and Information Science, Northeastern University November 7, 2011

Gouraud Shading
•  Average the normals for all the

polygons that meet a vertex to
calculate its surface normal.

•  Compute the color intensities
at vertices base on the
Lambertian diffuse lighting
model.

•  Average the color intensities
across the faces.

This image is licensed under
the
Creative Commons
Attribution License v. 2.5.

College of Computer and Information Science, Northeastern University November 7, 2011

Phong Shading
•  Gouraud shading lacks

specular highlights except
near the vertices.

•  Phong shading eliminates
these problems.

•  Compute vertex normals as in
Gouraud shading.

•  Interpolate vertex normals to
compute normals at each
point to be rendered.

•  Use these normals to
compute the Lambertian
diffuse lighting.

http://en.wikipedia.org/wiki/Phong_shading

