

CS 4300 Computer Graphics

Prof. Harriet Fell CS4300 Lectures 13,14 – October 5, 6, 2011

Today's Topics

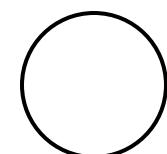
- Curves
- Fitting Curves to Data Points
- Splines
- Hermite Cubics
- Bezier Cubics

Curves

A *curve* is the continuous image of an interval in *n*-space.

Implicit

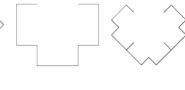
$$f(x, y) = 0$$

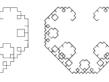


$$x^2 + y^2 - R^2 = 0$$

Parametric
$$(x(t), y(t)) = P(t)$$

Generative proc
$$\rightarrow$$
 (x, y)





Curve Fitting

We want a curve that passes through control points.

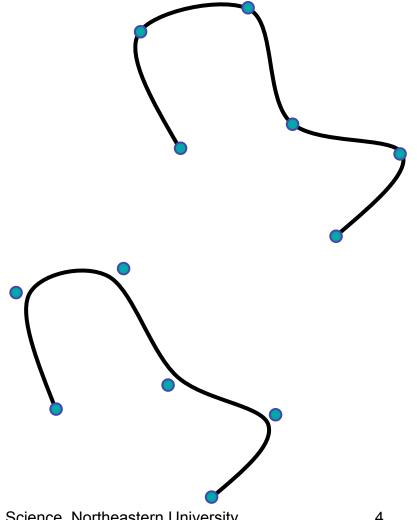
interpolating curve

Or a curve that passes near control points.

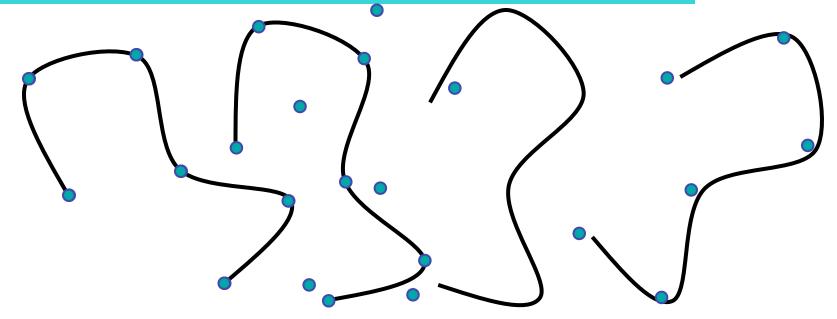
approximating curve

How do we create a good curve?

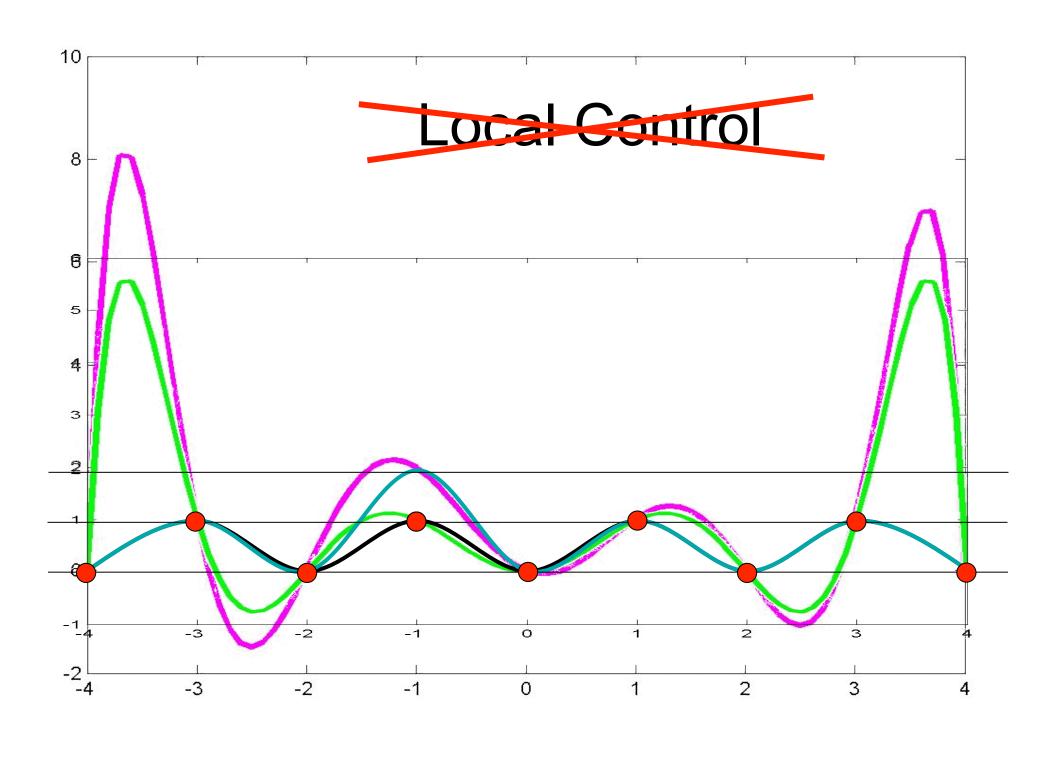
What makes a good curve?



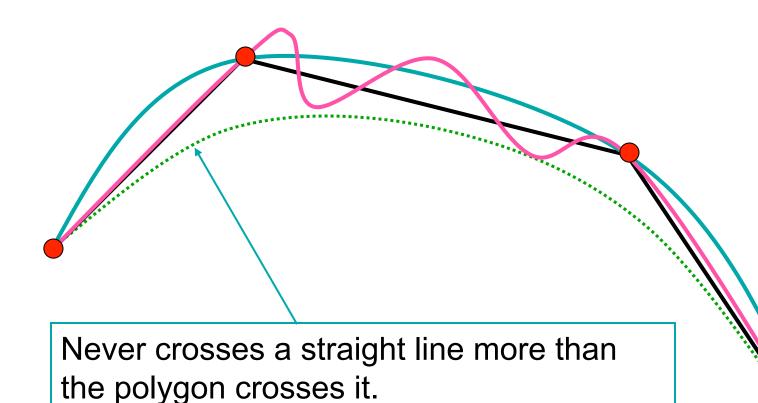
Axis Independence



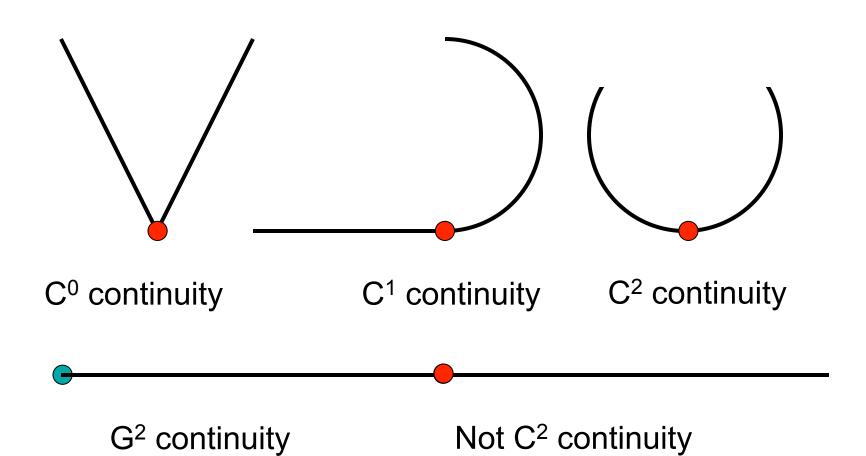
If we rotate the set of control points, we should get the rotated curve.



Variation Diminishing



Continuity



How do we Fit Curves?

The Lagrange interpolating polynomial is the polynomial of degree n-1 that passes through the n points,

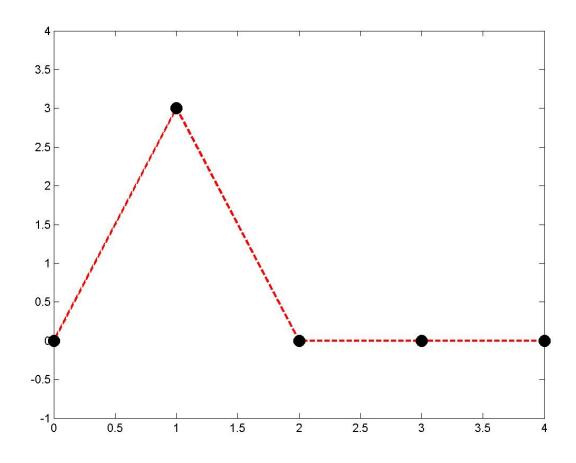
$$(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n),$$
 and is given by

$$P(x) = y_1 \frac{(x - x_2) \cdots (x - x_n)}{(x_1 - x_2) \cdots (x_1 - x_n)} + y_2 \frac{(x - x_1)(x - x_3) \cdots (x - x_n)}{(x_2 - x_1)(x_2 - x_3) \cdots (x_2 - x_n)} + \cdots + y_n \frac{(x - x_1) \cdots (x - x_{n-1})}{(x_n - x_1) \cdots (x_n - x_{n-1})}$$

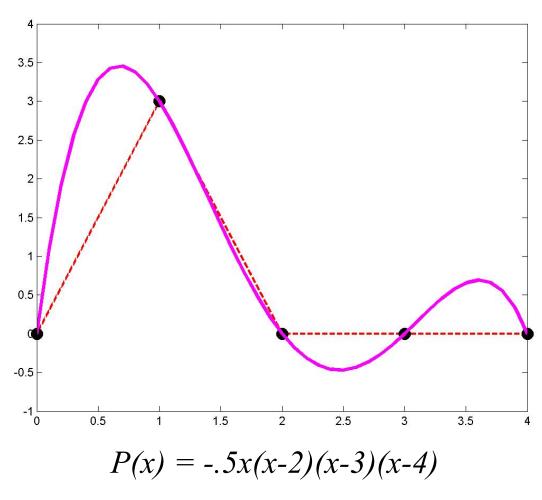
$$= \sum_{i=1}^n y_i \prod_{j \neq i} \frac{(x - x_j)}{(x_i - x_j)}$$

Lagrange Interpolating Polynomial from mathworld

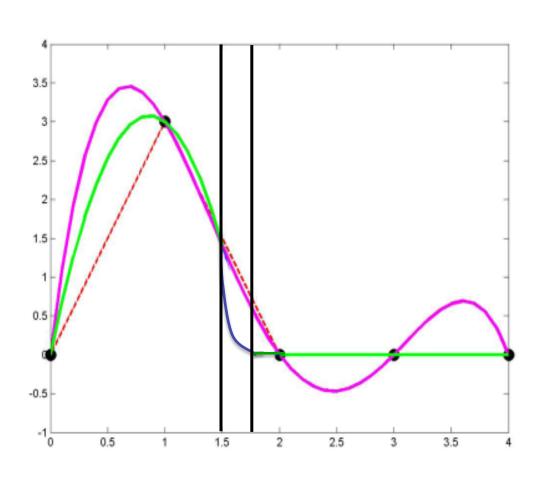
Example 1



Polynomial Fit



Piecewise Fit



$$P_{a}(x) = 4.1249 \ x \ (x - 1.7273)$$

$$0 \le x \le 1.5$$

$$P_{b}(x) = 5.4 \ x \ (x - 1.7273)$$

$$1.5 \le x \le 1.7273$$

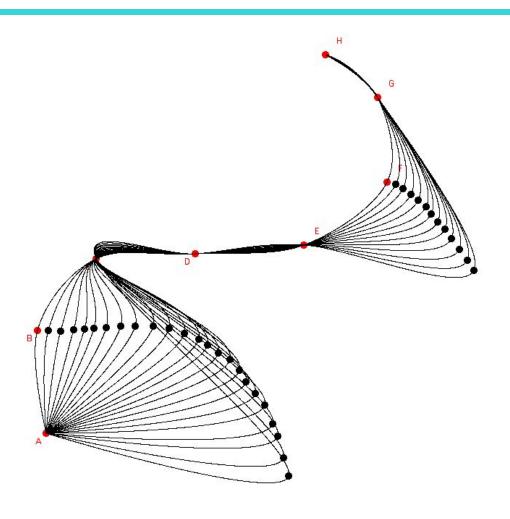
$$P_{c}(x) = 0$$

$$1.7273 \le x \le 4$$

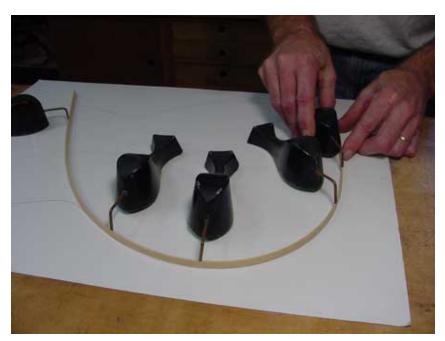
October 6, 2011

College of Computer and Information Science, Northeastern University

Spline Curves



Splines and Spline Ducks

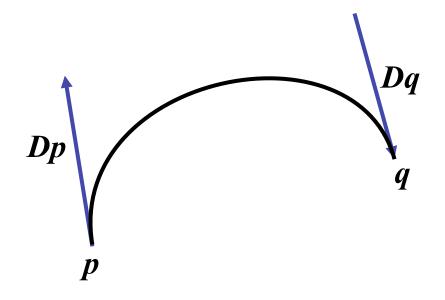


Marine Drafting Weights
http://www.frets.com/FRETSPages/Luthier/TipsTricks/DraftingWeights/draftweights.html

Drawing Spline Today (esc)

- 1. Draw some curves in PowerPoint.
- 2. Look at Perlin's B-Spline Applet.

Hermite Cubics



$$\mathbf{P}(t) = at^3 + bt^2 + ct + d$$

$$P(0) = p$$

$$P(1) = q$$

$$P'(0) = Dp$$

$$P'(1) = Dq$$

Hermite Coefficients

$$\mathbf{P}(t) = at^3 + bt^2 + ct + d$$

$$P(0) = p$$

$$P(1) = q$$

$$P'(0) = Dp$$

$$P'(1) = Dq$$

$$\boldsymbol{P}(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$

$$\mathbf{P'}(t) = \begin{bmatrix} 3t^2 & 2t & 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$

For each coordinate, we have 4 linear equations in 4 unknowns

Boundary Constraint Matrix

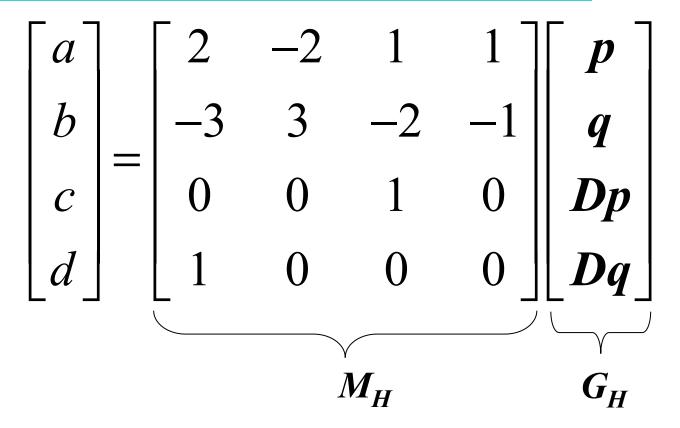
$$P(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \qquad \begin{bmatrix} p \\ q \\ Dp \\ Dq \end{bmatrix} = \begin{bmatrix} P'(t) = \begin{bmatrix} 3t^2 & 2t & 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$

$$\mathbf{P'}(t) = \begin{bmatrix} 3t^2 & 2t & 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$

$$\begin{bmatrix} p \\ q \\ Dp \\ Dq \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 &$$

$$\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$

Hermite Matrix



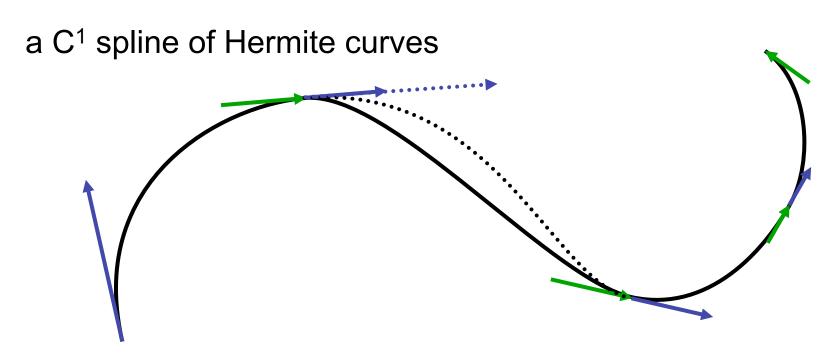
Hermite Blending Functions

$$P(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} M_H \begin{bmatrix} p \\ q \\ Dp \\ Dq \end{bmatrix} = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} p \\ q \\ Dp \\ Dq \end{bmatrix}$$

$$P(t) = p + q + Dp$$

$$+Dq$$

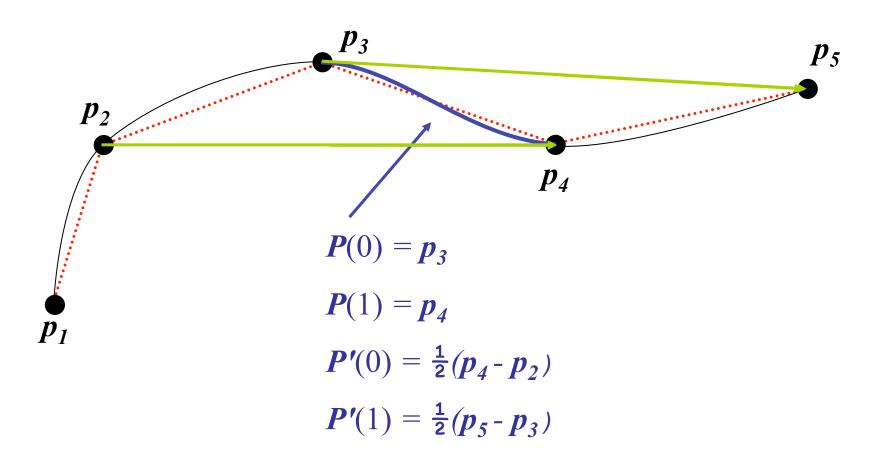
Splines of Hermite Cubics



a G¹ but not C¹ spline of Hermite curves

The vectors shown are 1/3 the length of the tangent vectors.

Computing the Tangent Vectors Catmull-Rom Spline



Cardinal Spline

The Catmull-Rom spline

$$P(0) = p_3$$

$$\boldsymbol{P}(1) = \boldsymbol{p_4}$$

$$P'(0) = \frac{1}{2}(p_4 - p_2)$$

$$P'(1) = \frac{1}{2}(p_5 - p_3)$$

is a special case of the Cardinal spline

$$\boldsymbol{P}(0) = \boldsymbol{p_3}$$

$$\boldsymbol{P}(1) = \boldsymbol{p_4}$$

$$P'(0) = (1 - t)(p_4 - p_2)$$

$$P'(1) = (1 - t)(p_5 - p_3)$$

 $0 \le t \le 1$ is the *tension*.

Drawing Hermite Cubics

$$P(t) = p(2t^3 - 3t^2 + 1) + q(-2t^3 + 3t^2) + Dp(t^3 - 2t^2 + t) + Dq(t^3 - t^2)$$

- How many points should we draw?
- Will the points be evenly distributed if we use a constant increment on t?
- We actually draw Bezier cubics.

General Bezier Curves

Given n+1 control points p_i

$$\boldsymbol{B}(t) = \sum_{k=0}^{n} {n \choose k} \boldsymbol{p}_{k} (1-t)^{n-k} t^{k} \qquad 0 \le t \le 1$$

where

$$b_{k,n}(t) = \binom{n}{k} t^k (1-t)^{n-k} \qquad k = 0, \dots n$$

$$b_{k,n}(t) = (1-t)b_{k,n-1}(t) + tb_{k-1,n-1}(t) \quad 0 \le k < n$$

We will only use cubic Bezier curves, n = 3.

Low Order Bezier Curves

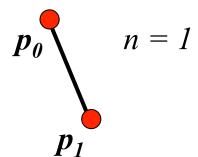
$$p_{\theta}$$

$$n = 0$$

$$b_{0,0}(t) = 1$$

$$B(t) = p_{\theta} b_{0.0}(t) = p_{\theta}$$

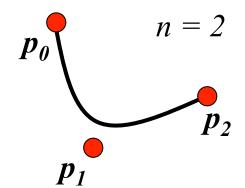
$$0 \le t \le 1$$



$$b_{0,1}(t) = 1 - t$$
 $b_{1,1}(t) = t$

$$\boldsymbol{B}(t) = (1 - t) \boldsymbol{p_0} + t \boldsymbol{p_1}$$

$$0 \le t \le 1$$



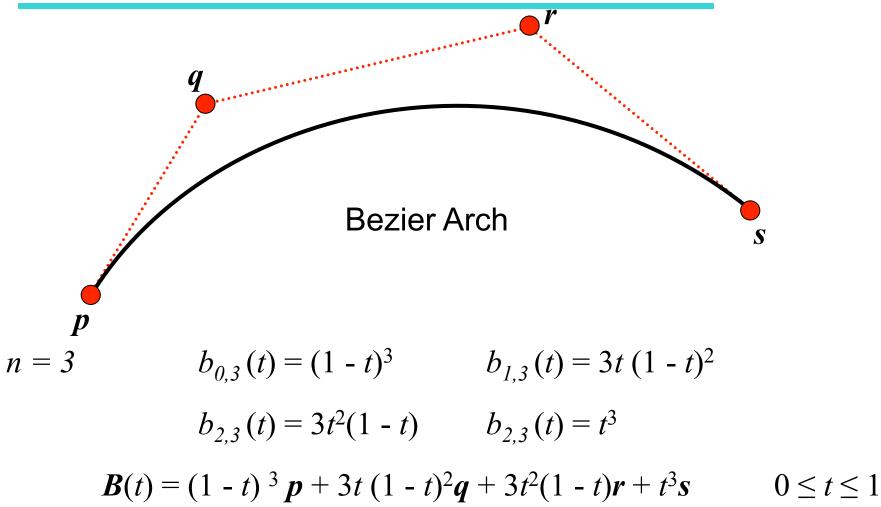
$$n = 2 \quad b_{0,2}(t) = (1 - t)^2 \quad b_{1,2}(t) = 2t (1 - t) \quad b_{2,2}(t) = t^2$$

$$\mathbf{B}(t) = (1 - t)^2 \mathbf{p_0} + 2t (1 - t) \mathbf{p_1} + t^2 \mathbf{p_2} \qquad 0 \le t \le 1$$

$$\mathbf{B}(t) = (1 - t)^{2} \mathbf{p_0} + 2t (1 - t)\mathbf{p_1} + t^{2} \mathbf{p_2}$$

$$0 \le t \le 1$$

Bezier Curves



Bezier Matrix

$$B(t) = (1 - t)^{3} p + 3t (1 - t)^{2} q + 3t^{2} (1 - t) r + t^{3} s \qquad 0 \le t \le 1$$

$$B(t) = a t^{3} + b t^{2} + c t + d \qquad 0 \le t \le 1$$

$$\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} p \\ q \\ r \\ s \end{bmatrix}$$

$$M_{R} \qquad G_{R}$$

Geometry Vector

The Hermite Geometry Vector
$$G_H = \begin{bmatrix} \boldsymbol{p} \\ \boldsymbol{q} \\ \boldsymbol{D}\boldsymbol{p} \end{bmatrix}$$
 $H(t) = TM_H G_H$

The Bezier Geometry Vector
$$G_B = \begin{bmatrix} \mathbf{r} \\ \mathbf{q} \\ \mathbf{r} \end{bmatrix}$$
 $B(t) = TM_B G_B$

$$T = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix}$$

Properties of Bezier Curves

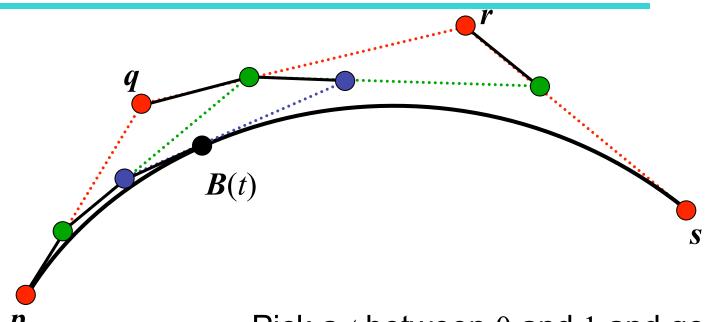
$$P(0) = p$$
 $P(1) = s$
 $P'(0) = 3(q-p)$ $P'(1) = 3(s-r)$

The curve is tangent to the segments *pq* and *rs*.

The curve lies in the convex hull of the control points since

$$\sum_{k=1}^{3} b_{k,3}(t) = \sum_{k=1}^{3} {3 \choose k} (1-t)^{k} t^{3-k} = ((1-t)+t)^{3} = 1$$

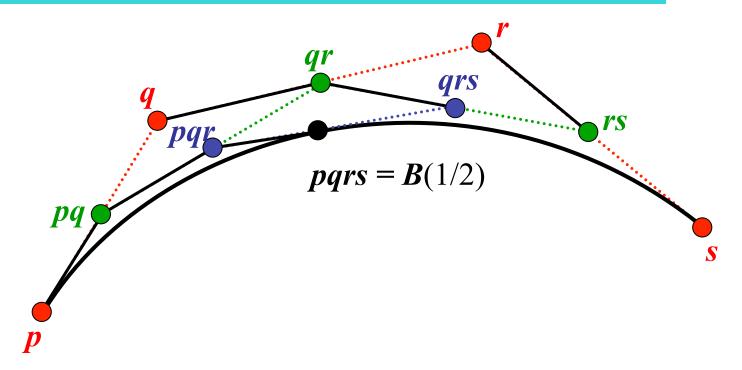
Geometry of Bezier Arches



Pick a *t* between 0 and 1 and go *t* of the way along each edge.

Join the endpoints and do it again.

Geometry of Bezier Arches



We only use t = 1/2.

```
drawArch(P, Q, R, S) {
 if (ArchSize(P, Q, R, S) \le .5) Dot(P);
 else{
  PQ = (P + Q)/2;
  QR = (Q + R)/2;
  RS = (R + S)/2;
  PQR = (PQ + QR)/2;
  QRS = (QR + RS)/2;
  PQRS = (PQR + QRS)/2
  drawArch(P, PQ, PQR, PQRS);
  drawArch(PQRS, QRS, RS, S);
```


Putting it All Together

Bezier Arches and Catmull-Rom Splines