
©College of Computer and Information Science, Northeastern University

CS 4300
Computer Graphics

Prof. Harriet Fell
Fall 2011

Lecture 10 – September 28, 2011

©College of Computer and Information Science, Northeastern University October 8, 2011 2

3D Vectors

What we said about 2D vectors holds for 3D
vectors too.

a =(xa, ya, za) b =(xb, yb, zb)
() () 2 2 2Length Norm= = = + +a a ax y za a a

 ab = xa xb + ya yb + za zb

 ab = ||a||||b||cos(φ)

()cos ϕ→ = = ia ba b a
b

©College of Computer and Information Science, Northeastern University October 8, 2011 3

Vector Cross Product

sinϕ× =a b a baxb

a

b
φ

axb is perpendicular to a and b.

Use the right hand rule to
determine the direction of axb.

Image from www.physics.udel.edu

©College of Computer and Information Science, Northeastern University October 8, 2011 4

Cross Product and Area

sinϕ× =a b a baxb

a

b
φ

a

b

φ

sinϕb

||a||

||a x b|| = area of the parallelogram.

©College of Computer and Information Science, Northeastern University October 8, 2011 5

Computing the Cross Product

() () ()

x y z

x y z

y z z y z x x z x y y x

i j k

i j k

× =

= − + − + −

a a a
b b b

a b a b a b a b a b a b

a b

©College of Computer and Information Science, Northeastern University October 8, 2011 6

Linear Interpolation

•  LERP: /lerp/, vi.,n.
– Quasi-acronym for Linear Interpolation, used

as a verb or noun for the operation.
“Bresenham's algorithm lerps incrementally
between the two endpoints of the line.”

 p = (1 – t) a + t b = a + t(b – a)

a

b

L

(1-t)L

©College of Computer and Information Science, Northeastern University October 8, 2011 7

Lerping

b

a
L

p = (1 – t) a + t b = a + t(b – a)

t = .5

t = 1

t = .25

t = .75

t = 0

©College of Computer and Information Science, Northeastern University

Triangles

October 8, 2011 8

If (x, y) is on the edge ab,
(x, y) = (1 – t) a + t b = a + t(b – a).

Similar formulas hold for points on
the other edges.

If (x, y) is in the triangle:

 (x, y) = α a + β b + γ c

 α + β + γ = 1

(α , β , γ) are the

Barycentric coordinates of (x, y).

a

b

c

(x,y)

©College of Computer and Information Science, Northeastern University

Triangles

October 8, 2011 9

a b

c

b-a

p = a + β(b-a) + γ(c-a)

γ = 0

γ = 1

γ = 2

γ = -1 Barycentric
coordinates

α = 1- β - γ
p = p(α, β, γ) =
 αa + βb + γc

p = (1- β - γ)a + βb + γc

©College of Computer and Information Science, Northeastern University

 Computing
Barycentric Coordinates

()() ()() 0a b a b a ay y x x y y x x− − − − − =

a b a

a b a

y y y y
x x x x
− −=
− −

() ()() ()(),ab a b a b a af x y y y x x y y x x= − − − − −

()
()
,
,

ab

ab c c

f x y
f x y

γ =

October 8, 2011 10

a

b
c

(x,y)
(x,y)

©College of Computer and Information Science, Northeastern University

Barycentric Coordinates
as Areas

/
/
/

A A
A A
A A

α
β
γ

=
=
=

a

b

cAb

Aa

Ac

October 8, 2011 11

a

b

c

(x,y)

where A is the area of the
triangle.
 α + β + γ = 1

©College of Computer and Information Science, Northeastern University

3D Triangles

October 8, 2011 12

/
/
/

A A
A A
A A

α
β
γ

=
=
=

a

b

c
Ab

Aa

b

c

(x,y,z)
Ac

where A is the area of the
triangle.
 α + β + γ = 1

This all still
works in 3D.

a

©College of Computer and Information Science, Northeastern University October 8, 2011 13

Wireframe Rendering

Copyright (C) 2000,2001,2002 Free Software
Foundation, Inc. 51 Franklin St, Fifth Floor, Boston,
MA 02110-1301 USA Everyone is permitted to copy
and distribute verbatim copies of this license
document, but changing it is not allowed.

Hidden-
Line
Removal

Hidden-
Face
Removal

©College of Computer and Information Science, Northeastern University October 8, 2011 14

Convex Polyhedra

We can see a face if and only if
its normal has a component
toward us.

 N·V > 0
V points from the face toward
the viewer.

N point toward the outside of the
polyhedra.

©College of Computer and Information Science, Northeastern University October 8, 2011 15

Hidden Surface Removal
•  Backface culling

–  Never show the back of a polygon.
•  Viewing frustum culling

–  Discard objects outside the camera’s view.
•  Occlusion culling

–  Determining when portions of objects are hidden.
•  Painter’s Algorithm
•  Z-Buffer

•  Contribution culling
–  Discard objects that are too far away to be seen.

http://en.wikipedia.org/wiki/Hidden_face_removal

©College of Computer and Information Science, Northeastern University October 8, 2011 16

Painter’s Algorithm

©College of Computer and Information Science, Northeastern University October 8, 2011 17

Painter’s Algorithm

 Sort objects back to front relative to the
 viewpoint.

 for each object (in the above order) do
 draw it on the screen

-- more on this later

©College of Computer and Information Science, Northeastern University October 8, 2011 18

Visible Surface Determination

•  If surfaces are invisible, don’t render them.
– Ray Tracing

•  We only render the nearest object.
– Binary Space Partitioning (BSP)

•  Recursively cut up space into convex sets with
hyperplanes.

•  The scene is represented by a BSP-tree.

©College of Computer and Information Science, Northeastern University October 8, 2011 19

Rendering a Polymesh

•  Scene is composed of triangles or other
polygons.

•  We want to view the scene from different
view-points.
– Hidden Surface Removal

•  Cull out surfaces or parts of surfaces that are not
visible.

– Visible Surface Determination
•  Head right for the surfaces that are visible.
•  Ray-Tracing is one way to do this.

©College of Computer and Information Science, Northeastern University October 8, 2011 20

Polygon Table

Polygon Table
 A, B, C, D of the plane equation
 shading or color info (e.g. color and N)
 in (out) boolean
 initialized to false (= out) at start of scanline
 z – at lowest y, x

©College of Computer and Information Science, Northeastern University October 8, 2011 21

Coherence

•  Non-penetrating polygons maintain their
relative z values.
–  If the polygons penetrate, add a false edge.

•  If there is no change in edges from one
scanline to the next, and no change in
order wrt x, then no new computations of z
are needed.

©College of Computer and Information Science, Northeastern University October 8, 2011 22

Active Edge Table
Keep in order of increasing x.

At (1) AET AB AC DF EF

©College of Computer and Information Science, Northeastern University October 8, 2011 23

Running the Algorithm 1
If more than one in is true, compute the z values at that
point to see which polygon is furthest forward.!

If only one in is true, use that polygon’s color and shading.!

©College of Computer and Information Science, Northeastern University October 8, 2011 24

Running the Algorithm 2
On crossing an edge

 set in of polygons with that edge to not in.
At (2) AET AB DF AC EF

If there is a third polygon,
GHIJ behind the other two,
after edge AC is passed at
level (2) there is no need to
evaluate z again - if the
polygons do not pierce
each other.

©College of Computer and Information Science, Northeastern University October 8, 2011 25

Painter’s Algorithm

 Sort objects back to front relative to the
 viewpoint.

 for each object (in the above order) do
 draw it on the screen

©College of Computer and Information Science, Northeastern University October 8, 2011 26

Painter’s Problem

©College of Computer and Information Science, Northeastern University October 8, 2011 27

Z-Buffer

This image is licensed under the
Creative Commons Attribution License v. 2.0.

The Z-Buffer is usually part of
graphics card hardware. It can
also be implemented in software.

The depth of each pixel is stored
in the z-buffer.

The Z-Buffer is a 2D array that
holds one value for each pixel.

An object is rendered at a pixel
only if its z-value is higher(lower)
than the buffer value. The buffer
is then updated.

©College of Computer and Information Science, Northeastern University October 8, 2011 28

Visible Surface Determination

•  If surfaces are invisible, don’t render them.
– Ray Tracing

•  We only render the nearest object.
– Binary Space Partitioning (BSP)

•  Recursively cut up space into convex sets with
hyperplanes.

•  The scene is represented by a BSP-tree.

©College of Computer and Information Science, Northeastern University October 8, 2011 29

Sorting the Polygons

The first step of the Painter’s algorithm is:
Sort objects back to front relative to the

 viewpoint.
The relative order may not be well defined.
We have to reorder the objects when we

change the viewpoint.
The BSP algorithm and BSP trees solve

these problems.

©College of Computer and Information Science, Northeastern University October 8, 2011 30

Binary Space Partition

•  Our scene is made of triangles.
– Other polygons can work too.

•  Assume no triangle crosses the plane of
any other triangle.
– We relax this condition later.

 following Shirley et al.

©College of Computer and Information Science, Northeastern University October 8, 2011 31

BSP – Basics
•  Let a plane in 3-space (or line in 2-space) be

defined implicitly, i.e.
–  f(P) = f(x, y, z) = 0 in 3-space
–  f(P) = f(x, y) = 0 in 2-space

•  All the points P such that f(P) > 0 lie on one side
of the plane (line).

•  All the points P such that f(P) < 0 lie on the other
side of the plane (line).

•  Since we have assumed that all vertices of a
triangle lie on the same side of the plane (line),
we can tell which side of a plane a triangle lies
on.

©College of Computer and Information Science, Northeastern University October 8, 2011 32

BSP on a Simple Scene

 Suppose scene has 2 triangles
 T1 on the plane f(P) = 0

 T2 on the f(P) < 0 side
 e is the eye.

 if f(e) < 0 then
 draw T1; draw T2
 else
 draw T2; draw T1

©College of Computer and Information Science, Northeastern University October 8, 2011 33

The BSP Tree
Suppose scene has many triangles, T1, T2, … .
We still assume no triangle crosses the plane of any other

triangle.
Let fi(P) = 0 be the equation of the plane containing Ti.
The BSPTREE has a node for each triangle with T1 at the

root.
At the node for Ti,

 the minus subtree contains all the triangles whose
vertices have fi(P) < 0
 the plus subtree contains all the triangles whose vertices
have fi(P) > 0.

©College of Computer and Information Science, Northeastern University October 8, 2011 34

BSP on a non-Simple Scene

 function draw(bsptree tree, point e)
 if (tree.empty) then
 return
 if (ftree.root(e) < 0) then

 draw(tree.plus, e)
 render tree.triangle
 draw(tree.minus, e)

 else
 draw(tree.minus, e)
 render tree.triangle
 draw(tree.plus, e)

©College of Computer and Information Science, Northeastern University October 8, 2011 35

2D BSP Trees Demo

http://www.symbolcraft.com/graphics/bsp/index.php

This is a demo in 2 dimensions.

The objects are line segments.

The dividing hyperplanes are lines.

©College of Computer and Information Science, Northeastern University

Building the BSP Tree
We still assume no triangle crosses the plane of another triangle.

tree = node(T1)
for I in {2, …, N} do tree.add(Ti)

function add (triangle T)
if (f(a) < 0 and f(b) < 0 and f(c) < 0) then
 if (tree.minus.empty) then
 tree.minus = node(T)
 else
 tree.minus.add(T)

else if (f(a) > 0 and f(b) > 0 and f(c) > 0) then
 if (tree.plus.empty) then
 tree.plus = node(T)
 else
 tree.plus.add(T)

©College of Computer and Information Science, Northeastern University October 8, 2011 37

Triangle Crossing a Plane
a

c

b

A

B

Two vertices, a and b,
will be on one side and
one, c, on the other side.

Find intercepts , A and B,
of the plane with the 2
edges that cross it.

©College of Computer and Information Science, Northeastern University October 8, 2011 38

Cutting the Triangle
a

c

b

A

B

Cut the triangle into three
triangles, none of which
cross the cutting plane.

Be careful when one or
more of a, b, and c is
close to or on the cutting
plane.

