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3D Vectors 

What we said about 2D vectors holds for 3D 
vectors too. 

a =( xa, ya, za )    b =( xb, yb, zb ) 
( ) ( ) 2 2 2Length Norm= = = + +a a ax y za a a

  ab = xa xb + ya yb + za zb  

  ab = ||a||||b||cos(φ) 

( )cos ϕ→ = = ia ba b a
b
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Vector Cross Product 

sinϕ× =a b a baxb 

a

b 
φ 

axb is perpendicular to a and b. 

Use the right hand rule to 
determine the direction of axb. 

Image from www.physics.udel.edu 
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Cross Product and Area 

sinϕ× =a b a baxb 

a

b 
φ 

a

b

φ 

sinϕb

||a|| 

||a x b|| = area of the parallelogram. 
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Computing the Cross Product 

( ) ( ) ( )

x y z

x y z

y z z y z x x z x y y x

i j k

i j k

× =

= − + − + −

a a a
b b b

a b a b a b a b a b a b

a b
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Linear Interpolation 

•  LERP: /lerp/, vi.,n. 
– Quasi-acronym for Linear Interpolation, used 

as a verb or noun for the operation. 
“Bresenham's algorithm lerps incrementally 
between the two endpoints of the line.” 

             p = (1 – t) a + t b = a + t(b – a) 

a

b 

L 

(1-t)L 
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Lerping 

b 

a 
L 

p = (1 – t) a + t b = a + t(b – a) 

t = .5 

t = 1 

t = .25 

t = .75 

t = 0 
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Triangles 
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If (x, y) is on the edge ab, 
(x, y) = (1 – t) a + t b = a + t(b – a). 

Similar formulas hold for points on 
the other edges. 

If (x, y) is in the triangle: 

  (x, y) = α a + β b + γ c 

 α  + β  + γ  = 1 

(α , β , γ ) are the  

Barycentric coordinates of (x, y). 

a 

b 

c 

(x,y) 
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Triangles 
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a b

c

b-a 

p = a + β(b-a) + γ(c-a) 

γ = 0 

γ = 1 

γ = 2 

γ = -1 Barycentric 
coordinates 

α = 1- β - γ  
p = p(α, β, γ) =  
           αa + βb + γc 

p = (1- β - γ)a + βb + γc 
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 Computing 
Barycentric Coordinates 

( )( ) ( )( ) 0a b a b a ay y x x y y x x− − − − − =

a b a

a b a

y y y y
x x x x
− −=
− −

( ) ( )( ) ( )( ),ab a b a b a af x y y y x x y y x x= − − − − −

( )
( )
,
,

ab

ab c c

f x y
f x y

γ =
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a 

b 
c 

(x,y) 
(x,y) 



©College of Computer and Information Science, Northeastern University 

Barycentric Coordinates  
as Areas 

/
/
/

A A
A A
A A

α
β
γ

=
=
=

a

b

cAb

Aa

Ac
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a 

b 

c 

(x,y) 

where A is the area of the  
triangle. 
           α + β + γ = 1 
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3D Triangles 
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/
/
/

A A
A A
A A

α
β
γ

=
=
=

a

b

c
Ab

Aa

b 

c 

(x,y,z) 
Ac

where A is the area of the  
triangle. 
           α + β + γ = 1 

This all still 
works in 3D. 

a 
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Wireframe Rendering 

Copyright (C) 2000,2001,2002 Free Software 
Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, 
MA 02110-1301 USA Everyone is permitted to copy 
and distribute verbatim copies of this license 
document, but changing it is not allowed.  

Hidden-
Line 
Removal 

Hidden-
Face 
Removal 



©College of Computer and Information Science, Northeastern University October 8, 2011 14 

Convex Polyhedra 

We can see a face if and only if 
its normal has a component 
toward us. 

 N·V > 0 
V points from the face toward 
the viewer. 

N point toward the outside of the 
polyhedra. 
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Hidden Surface Removal 
•  Backface culling  

–  Never show the back of a polygon. 
•  Viewing frustum culling   

–  Discard objects outside the camera’s view. 
•  Occlusion culling  

–  Determining when portions of objects are hidden. 
•  Painter’s Algorithm 
•  Z-Buffer 

•  Contribution culling  
–  Discard objects that are too far away to be seen. 

   
http://en.wikipedia.org/wiki/Hidden_face_removal 
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Painter’s Algorithm 
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Painter’s Algorithm 

 Sort objects back to front relative to the 
 viewpoint. 

 for each object (in the above order) do 
  draw it on the screen 

-- more on this later 



©College of Computer and Information Science, Northeastern University October 8, 2011 18 

Visible Surface Determination 

•  If surfaces are invisible, don’t render them. 
– Ray Tracing 

•  We only render the nearest object. 
– Binary Space Partitioning (BSP) 

•  Recursively cut up space into convex sets with 
hyperplanes. 

•  The scene is represented by a BSP-tree. 
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Rendering a Polymesh 

•  Scene is composed of triangles or other 
polygons. 

•  We want to view the scene from different 
view-points. 
– Hidden Surface Removal 

•  Cull out surfaces or parts of surfaces that are not 
visible. 

– Visible Surface Determination 
•  Head right for the surfaces that are visible. 
•  Ray-Tracing is one way to do this. 
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Polygon Table 

Polygon Table 
 A, B, C, D of the plane equation 
 shading or color info (e.g. color and N) 
 in (out) boolean 
  initialized to false (= out) at start of scanline 
 z – at lowest y, x 
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Coherence 

•  Non-penetrating polygons maintain their 
relative z values. 
–  If the polygons penetrate, add a false edge. 

•  If there is no change in edges from one 
scanline to the next, and no change in 
order wrt x, then no new computations of z 
are needed. 
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Active Edge Table  
Keep in order of increasing x.  

At (1)  AET  AB  AC  DF  EF 
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Running the Algorithm 1 
If more than one in is true, compute the z values at that 
point to see which polygon is furthest forward.!

If only one in is true, use that polygon’s color and shading.!
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Running the Algorithm 2 
On crossing an edge 

 set in of polygons with that edge to not in.  
At (2)  AET  AB  DF  AC  EF 

If there is a third polygon, 
GHIJ behind the other two, 
after edge AC is passed at 
level (2) there is no need to 
evaluate z again - if the 
polygons do not pierce 
each other.  
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Painter’s Algorithm 

 Sort objects back to front relative to the 
 viewpoint. 

 for each object (in the above order) do 
  draw it on the screen 
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Painter’s Problem 
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Z-Buffer 

This image is licensed under the  
Creative Commons Attribution License v. 2.0. 

The Z-Buffer is usually part of 
graphics card hardware. It can 
also be implemented in software. 

The depth of each pixel is stored 
in the z-buffer. 

The Z-Buffer is a 2D array that 
holds one value for each pixel. 

An object is rendered at a pixel 
only if its z-value is higher(lower) 
than the buffer value.  The buffer 
is then updated. 
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Visible Surface Determination 

•  If surfaces are invisible, don’t render them. 
– Ray Tracing 

•  We only render the nearest object. 
– Binary Space Partitioning (BSP) 

•  Recursively cut up space into convex sets with 
hyperplanes. 

•  The scene is represented by a BSP-tree. 
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Sorting the Polygons 

The first step of the Painter’s algorithm is: 
Sort objects back to front relative to the 

 viewpoint. 
The relative order may not be well defined. 
We have to reorder the objects when we 

change the viewpoint. 
The BSP algorithm and BSP trees solve 

these problems. 
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Binary Space Partition 

•  Our scene is made of triangles. 
– Other polygons can work too. 

•  Assume no triangle crosses the plane of 
any other triangle. 
– We relax this condition later. 

    following Shirley et al. 
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BSP – Basics 
•  Let a plane in 3-space (or line in 2-space) be 

defined implicitly, i.e. 
–  f(P) = f(x, y, z) = 0   in 3-space 
–  f(P) = f(x, y) = 0   in 2-space 

•  All the points P such that f(P) > 0 lie on one side 
of the plane (line). 

•  All the points P such that f(P) < 0 lie on the other 
side of the plane (line). 

•  Since we have assumed that all vertices of a 
triangle lie on the same side of the plane (line), 
we can tell which side of a plane a triangle lies 
on. 
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BSP on a Simple Scene 

 Suppose scene has 2 triangles  
  T1 on the plane f(P) = 0 

    T2 on the f(P) < 0 side 
   e is the eye. 

   if f(e) < 0 then 
    draw T1; draw T2 
    else 
    draw T2; draw T1 
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The BSP Tree 
Suppose scene has many triangles, T1, T2, … . 
We still assume no triangle crosses the plane of any other 

triangle. 
Let fi(P) = 0 be the equation of the plane containing Ti. 
The BSPTREE has a node for each triangle with T1 at the 

root. 
At the node for Ti, 

 the minus  subtree contains all the triangles whose 
vertices have fi(P) < 0 
 the plus  subtree contains all the triangles whose vertices 
have fi(P) > 0. 
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BSP on a non-Simple Scene 

 function draw(bsptree tree, point e)   
 if (tree.empty) then 
  return 
 if (ftree.root(e) < 0) then 

  draw(tree.plus, e) 
  render tree.triangle 
  draw(tree.minus, e) 

 else 
  draw(tree.minus, e) 
  render tree.triangle 
  draw(tree.plus, e) 
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2D BSP Trees Demo 

http://www.symbolcraft.com/graphics/bsp/index.php 

This is a demo in 2 dimensions.   

The objects are line segments. 

The dividing hyperplanes are lines. 
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Building the BSP Tree 
We still assume no triangle crosses the plane of another triangle. 

tree = node(T1) 
for  I in {2, …, N} do tree.add(Ti) 

function add (triangle T)  
if (f(a) < 0 and f(b) < 0 and f(c) < 0) then 
 if (tree.minus.empty) then   
  tree.minus = node(T) 
 else 
   tree.minus.add(T) 

else if (f(a) > 0 and f(b) > 0 and f(c) > 0) then 
  if (tree.plus.empty) then   
   tree.plus = node(T) 
 else 
  tree.plus.add(T) 
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Triangle Crossing a Plane 
a 

c 

b 

A

B 

Two vertices, a and b, 
will be on one side and 
one, c,  on the other side. 

Find intercepts , A and B, 
of the plane with the 2 
edges that cross it. 
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Cutting the Triangle 
a 

c 

b 

A

B 

Cut the triangle into three 
triangles, none of which 
cross the cutting plane. 

Be careful when one or 
more of a, b, and c is 
close to or on the cutting 
plane. 


