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ABSTRACT
Learning-to-rank has attracted great attention in the IR
community. Much thought and research has been placed on
query-document feature extraction and development of so-
phisticated learning-to-rank algorithms. However, relatively
little research has been conducted on selecting documents for
learning-to-rank data sets nor on the effect of these choices
on the efficiency and effectiveness of learning-to-rank algo-
rithms.

In this paper, we employ a number of document selection
methodologies, widely used in the context of evaluation –
depth-k pooling, sampling (infAP, statAP), active-learning
(MTC), and on-line heuristics (hedge). Certain method-
ologies, e.g. sampling and active-learning, have been shown
to lead to efficient and effective evaluation. We investigate
whether they can also enable efficient and effective learning-
to-rank. We compare them with the document selection
methodology used to create the LETOR datasets.

Further, all of the utilized methodologies are different in
nature, and thus they construct training data sets with dif-
ferent properties, such as the proportion of relevant docu-
ments in the data or the similarity among them. We study
how such properties affect the efficiency, effectiveness, and
robustness of learning-to-rank collections.

Categories and Subject Descriptors: H. Information
Systems; H.3 Information Storage and Retrieval; H.3.3 In-
formation Search and Retrieval:Retrieval models

General Terms: Experimentation, Measurement, Theory

Keywords: Learning-to-Rank, Document Selection Method-
ologies, Sampling, Evaluation

1. INTRODUCTION
Ranking is a central problem in information retrieval. Mod-

ern search engines, especially those designed for the World
Wide Web, commonly analyze and combine hundreds of
features extracted from the submitted query and underly-
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ing documents in order to assess the relative relevance of
a document to a given query and thus rank the underlying
collection. The sheer size of this problem has led to the de-
velopment of learning-to-rank algorithms that can automate
the construction of such ranking functions: Given a training
set of (feature vector, relevance) pairs, a machine learning
procedure learns how to combine the query and document
features in such a way so as to effectively assess the relevance
of any document to any query and thus rank a collection in
response to a user input.

Much thought and research has been placed on feature
extraction and the development of sophisticated learning-
to-rank algorithms. However, relatively little research has
been conducted on the choice of queries and documents for
learning-to-rank data sets nor on the effect of these choices
on the ability of a learning-to-rank algorithm to “learn”, ef-
fectively and efficiently.

Constructing data sets for learning-to-rank tasks requires
assembling a document corpus, selecting user information
requests (queries), extracting features from query-document
pairs and annotating documents in terms of their relevance
to these queries (annotations are used as labels for training).
Over the past decades, document corpora have been increas-
ing in size from thousands of documents in the early TREC
collections to billions of documents/pages in the World Wide
Web. Due to the large size of document corpora it is prac-
tically infeasible (1) to extract features from all document-
query pairs, (2) to judge each document as relevant or irrel-
evant to each query, and (3) to train learning-to-rank algo-
rithms over such a vast data set.

The main bottleneck in constructing learning-to-rank col-
lections is annotating documents with relevance grades. It is
essential therefore, both for the efficiency of the construction
methodology and for the efficiency of the training algorithm,
that only a small subset of documents be selected. The doc-
ument selection, though, should be done in a way that does
not harm the effectiveness of learning.

LETOR [14] is the only attempt made to construct a
publicly available learning-to-rank collection. Documents,
queries and relevance judgments were obtained from the
OHSUMED and TREC test collections. Since there are
many documents in these collections, in order to reduce
the computational effort required to extract features and
train ranking functions over these data sets, only a subset
of them was chosen in the following way: Documents were
first ranked by their BM25 [12] score, which is known to
correlate well with the relevance of a document to a query.



Features then were extracted only from the corresponding
top 1000 documents, in an effort to include as many rele-
vant documents as possible in the learning-to-rank dataset.
Features were also extracted from documents that were not
ranked in this top 1000 but were judged as relevant in the
corresponding TREC collections.

Even though LETOR has been widely used by many re-
searchers, recent work demonstrated bias in this document
selection methodology that could harm learning-to-rank al-
gorithms [15, 17], hence the collection has been criticized.
When the LETOR collection was built, the fact that docu-
ments with low BM25 score were selected only if they were
relevant resulted in BM25 being negatively correlated with
relevance in the LETOR collection. This is a highly counter-
intuitive outcome. To avoid the aforementioned implication,
these extra documents with low BM25 scores were dropped
in the latest LETOR release [13].

For the OHSUMED learning-to-rank collection only judged
documents were selected for feature extraction. As pointed
out by Minka and Robertson [15], this selection methodology
results in an atypical proportion of relevant and non-relevant
documents in the collection. Further, the nature of the non-
relevant documents in the learning-to-rank collection is not
representative of that in the entire OHSUMED collection.

These issues clearly manifest the effect a document se-
lection methodology may have on the effectiveness of the
learning-to-rank algorithms, and thus, on the performance
of the resulting retrieval systems. Furthermore, the conclu-
sions about the relative quality of different learning-to-rank
algorithms may not be reliable.

Unlike document selection for learning-to-rank, where lit-
tle work has been done, a significant volume of work has
appeared in the literature regarding document selection for
efficient and effective evaluation of retrieval systems [2, 5,
6, 21]. Most of these methods are based on sampling doc-
uments in an intelligent way to minimize judgment effort
and/or using statistical techniques to compute the values of
traditional evaluation measures efficiently.

In this work, we explore the duality between document se-
lection methodologies for evaluation and document selection
methodologies for learning-to-rank. The main question we
ask is : “Can any of the methodologies designed for efficient
evaluation also be used for constructing effective learning
collections? If yes, which one of these methods is better for
this purpose?”

We employ five different document selection methodolo-
gies that are well studied in the context of evaluation, along
with the method used in LETOR for comparison purposes.
Subsets of documents are chosen according to the six meth-
ods at different percentages of the complete document col-
lection (in our case the depth-100 pool), and features are
extracted from the selected query-document pairs. State of
the art learning-to-rank algorithms are used then to train
ranking functions over each one of the data sets the six se-
lection methods have produced, and the resulting functions
are compared with each other in terms of their performance.

In particular, (1) we explore whether certain document se-
lection methodologies are better than others in terms of both
efficiency and effectiveness; that is, how fast, in terms of doc-
uments, can ranking functions learn to combine features in a
meaningful way over the corresponding data sets such that
their performance is not significantly worse than the per-
formance of functions trained over the complete collection

(depth-100 pool), and (2) we isolate certain characteristics
of the selected subsets of documents (e.g. the percentage of
relevant documents, or the similarity among relevant docu-
ments in the subsets) and study their effect on the efficiency
and effectiveness of learning.

2. METHODOLOGY
In order to investigate the effect of document selection on

the ability of learning-to-rank algorithms to effectively and
efficiently learn a ranking function, five different document
selection methodologies, widely used in retrieval evaluation,
are studied.

Our complete document collection consists of the depth-
100 pools from TREC 6, 7 and 8 adhoc tracks 1. This
collection consists of 150 queries in total, along with the
corresponding relevance judgments. Features are extracted
from all query-document pairs. Using different document se-
lection methodologies, for each query, documents from the
complete collection are selected with different percentages
from 0.6% to 60%, forming different sized subsets of the
complete collection for each methodology.

Features and relevance judgments pairs are then parti-
tioned into five parts in order to conduct five-fold cross val-
idation. For each fold, three parts are used for training, one
part for validation and one part for testing. The documents
in the training and validation sets are samples of the com-
plete collection, as described above. The testing set consists
of the complete set of documents.

State of the art learning-to-rank algorithms are then trained
and the quality of the resulting ranking models is assessed
by mean average precision (MAP).

2.1 Data sets
The document corpus, the queries and the relevance judg-

ments are obtained from TREC 6, 7 and 8 ad-hoc retrieval
track.

The document corpus consists of approximately half a mil-
lion documents (528,155) from the Financial Times, the Fed-
eral Register, the Foreign Broadcast Information Service and
the LA Times document collections [20].

The queries were developed by NIST assessors and they
were chosen based on their estimated number of relevant
documents in the corpus. Collectively, 150 such queries were
developed. A number of retrieval systems were run over
these queries and for each query the depth-100 pools of the
returned documents were judged as relevant or irrelevant by
the same NIST assessor that issued the query.

We extract features from all query-document pairs. The
features extracted are shown in Table 2.1 and they are a
subset of the LETOR3.0 features [13]. The description of
these features along with their exact formulas can be found
in the LETOR3.0 documentation [13]. Each feature is com-
puted over the document text (without the title) and over
the document text combined with the title, resulting in 22
features in total. Note that web features such as PageRank
are not computed since the document corpus is not a web
corpus. The language modeling features are implemented
according to Zhai and Lafferty [22] while the BM25 feature
is implemented according to Singhal [18].

1In the sections that follow we use the “depth-100 pools”
and “complete collection” interchangeably
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Figure 1: Precision and Recall of the selected documents for different selection strategies and for different
sampling percentages.
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Figure 2: Discrepancy among relevant documents and among relevant and non-relevant documents selected
by different selection strategies and for different sampling percentages.

Features
1. BM25
2. LogBM25 Feature
3. LM ABS Feature
4. LM DIR Feature
5. LM JM Feature
6. LogNormalizedTF Feature
7. SumLogTF Feature
8. TF Feature
9. TF IDF Feature
10. LogTF IDF V2 Feature
11. NormalizedTF Feature

Table 1: Feature Set

2.2 Document selection
For each query, six different document selection method-

ologies are employed to choose documents from the complete
collection:

• Depth-k pooling: According to the depth pooling,
the union of the top k documents retrieved by each
retrieval system submitted to TREC in response to a
query is formed and only the documents in this depth-k
pool are selected to form the learning-to-rank collec-
tion. The intuition behind depth-pooling is that most
relevant documents appear at the top of the ranked list

and therefore depth-k pools contain most of them [9,
23].

• InfAP sampling (uniform random sampling):
InfAP sampling [21] utilizes uniform random sampling
to select documents to be judged. In this manner,
the selected documents are representative of the doc-
uments in the complete collection.

• StatAP sampling (stratified random sampling):
StatAP sampling [16] employs stratified sampling. Us-
ing a prior of relevance induced by the average preci-
sion measure, each document is selected with probabil-
ity roughly proportional to its likelihood of relevance.

• MTC (greedy on-line algorithm): MTC [5] is a
greedy on-line algorithm that selects documents ac-
cording to how informative they are in determining
whether there is a performance difference between two
retrieval systems. Our intuition is that many of the
documents selected by MTC, relevant or not, are “in-
teresting” for learning by being relatively close to the
decision surface of the classifier, similar to active learn-
ing.

• Hedge (greedy on-line algorithm): Finally, hedge
is an on-line learning algorithm used to combine ex-
pert advice. It is essentially a feedback-metasearch



technique, which, when applied to the document se-
lection problem, aims at choosing documents that are
most likely to be relevant [1]. Hedge finds many rel-
evant documents “common” to various retrieval sys-
tems, thus documents likely to contain many of the
query words.

• LETOR: For comparison purposes, a LETOR-like doc-
ument selection methodology is also employed. Ac-
cording to this methodology, documents in the com-
plete collection are first ranked by their BM25 scores
for each query and the top-k documents are then se-
lected for feature extraction. This method is designed
to select documents that are considered relevant to the
query by BM25.

When the properties of the above document selection method-
ologies are considered, one can see that infAP creates a
representative selection of documents, statAP and depth-
k pooling aim at identifying more relevant documents uti-
lizing the knowledge that retrieval systems return relevant
documents at higher ranks, the LETOR-like method aims at
selecting as many relevant documents according to BM25 as
possible, hedge aims at selecting only relevant documents,
and MTC greedily selects discriminative documents.

For all these strategies, the precision, computed as the
ratio of the number of relevant documents in the document
sample to the total number of documents in the document
sample, and the recall, computed as the ratio of relevant
documents in the document sample to the total number
of relevant documents in the complete collection, are illus-
trated in the left and right plots of Figure 1, respectively.
As expected, hedge achieves the largest values of precision
and recall, followed by MTC. Pooling and statAP follow by
achieving similar values of precision and recall. Since infAP
is based on uniform random sampling, the precision of in-
fAP stays constant while the recall grows linearly with the
sample percentage. The LETOR-like selection achieves both
high precision and recall at small percentages of data used
for training (up to 5%) and then it drops to the levels of
statAP and depth pooling.

Further, the discrepancy among the selected relevant doc-
uments, along with the discrepancy among the selected rel-
evant and non-relevant documents for the different selec-
tion methods is illustrated in Figures 2. The discrepancy
is measured for each pair of documents by the symmetrized
Kullback-Leibler divergence between the documents’ (smoothed)
language models, then averaged over all pairs in a set. As it
can be observed at the leftmost plot, for all methods except
infAP, the selected documents are very similar to each other.
For small percentages, it can be seen that the relevant doc-
uments picked by hedge are very similar to each other. As
more documents are selected according this algorithm, rele-
vant documents with different properties can be identified.
Depth-pooling and statAP select similar relevant documents
due to the underlying retrieval systems that return simi-
lar relevant documents at the top-end of their ranked lists,
while hedge picks similar relevant documents by design. In
particular, hedge selects very similar documents regardless
of their relevance, as it can be observed in the right-most
plot. At the other end of the discrepancy scale, infAP for
small sampling percentages selects the most diverse relevant
documents while it converges fast to the average discrep-
ancy between documents in the complete collection. The

LETOR-like selection methodology also selects very similar
documents, since the documents selected are those that give
high BM25 values and thus have similar characteristics.

2.3 Learning-to-rank algorithms
We employ five different learning-to-rank algorithms to

test the document selection methodologies,

• RankBoost (boosting): RankBoost is a very well
known ranking mechanism based on the AdaBoost al-
gorithm [8] for supervised learning. RankBoost train-
ing is performed using pairwise preferences, essentially
combining several “weak” rankers into a master one us-
ing on-line learning. Typical weak learners are features
of the data (in our case extracted features from doc-
uments) with a threshold that best differentiates the
relevant documents from non-relevant ones; however,
in general, the weak rankers can be very complicated
retrieval/ranking functions.

Rankboost is widely reported in many learning-to-rank
publications [13], primarily as a baseline ranking algo-
rithm. In our experiments, we run the algorithm for
50 epochs. In some tests we trained Rankboost for
larger number of epochs (up to 1000) and concluded
that performance after 50 epochs was stable, even for
small datasets.

• Regression (regression): We implemented a base-
line linear regression ranker, with the purpose of study-
ing the change in learning performance across various
training sets. The procedure basically fits a linear re-
gression model to the training set, and then it uses
the learned model to predict (and rank) the test doc-
uments.

• Ranking SVM (SVM): The implementation of Sup-
port Vector Machines used is based on SVM-perf [10,
11] and is similar to the ones reported in ranking lit-
erature [13]. We use a polynomial kernel of degree 2
(sparse approximation with 400 basic functions), and
a tradeoff constant of c = 0.01. We experimented with
several loss functions; the results presented here use
as loss function a variant of ROC area, specifically the
percentage of swapped positive/negative pairs. The
structural learning algorithm uses a shrinking heuris-
tic2 in order to speed up the training.

• RankNet (neural network): RankNet [3] is one of
the basic learning-to-rank algorithms based on neural
networks. The algorithm is based on training the neu-
ral net on pairs of documents (or feature vectors) that
have different relevance. During training, single fea-
ture vectors are first forward propagated through the
net and are sorted based on their scores. The RankNet
cost is a sigmoid function followed by a cross entropy
cost that evaluates the difference of the learned prob-
ability that a document pair will be ranked in some
order from the actual probability. In our experiments,
the training was run for 300 epochs (no significant im-
provement was observed if more epochs were used).

• LambdaRank (neural network): LambdaRank [4]
aims at directly optimizing an IR metric, in particular,

2http://svmlight.joachims.org/svm perf.html



NDCG. Since the IR metrics are not smooth as they
depends on ranks of documents, it uses the approach
of defining the gradient of the target evaluation metric
only at the points needed. Given a pair of documents,
the gradients used in LambdaRank are obtained by
scaling the RankNet cost with the amount of change
in the value of the metric obtained by swapping the
two documents. Similar to RankNet, LambdaRank
training was also run for 300 epochs.

As a summary, RankBoost optimizes for pairwise pref-
erences, Regression optimizes for classification error in the
relevance judgments, and SVM optimizes for the area under
the ROC curve. RankNet aims to optimize for the prob-
ability that two documents are ranked in correct order in
the ranking. Finally, LambdaRank directly optimizes for
nDCG and even though the gradients are virtually defined,
the method is shown to find the local optimum for the target
metric.

All the algorithms, with the exception of Regression, are
“pair-wise” because they consider pairs of documents while
training, either directly in the learning mechanism or indi-
rectly in the loss function.

3. RESULTS
The performance of the learning-to-rank algorithms when

trained over the different data sets produced by the six docu-
ment selection methodologies is illustrated in Figure 3. The
x-axis on the plots is the percentage of documents sampled
from the complete document collection (depth-100 pool).
The performance of the rankers (y-axis) is measured by the
mean average precision (MAP) of the ranked list of docu-
ments returned by the rankers in response to the queries in
the testing data sets. Each one of the document selection
methods employed corresponds to a curve in the plot.

As one can observe in Figure 3, for most of the cases,
the learning-to-rank algorithms reach almost optimal per-
formance with as little training data as 1% of the complete
collection. The Student’s t statistical test was employed
in order to test whether the difference among the achieved
MAP scores of the ranking function for different sampling
percentages and the maximum MAP score the ranking func-
tions obtain (MAP using full training data) are statistically
significant. The t-test exhibits no significant differences for
ranking functions trained over infAP, statAP, depth-pooling
and MTC at any of document sampling percentage above
2%.

Therefore, training data sets whose sizes are as small as
1% to 2% of the complete collection are just as effective for
learning-to-rank purposes as the complete collection. Thus,
one can train much more efficiently over a smaller (though
effectively equivalent) data set or at equal cost one can train
over a far “larger”and more representative data set either by
increasing the number of queries of by selecting documents
deeper in the rankings. Note that the number of features
used by the learning-to-rank algorithms may well affect the
efficiency of these algorithms to learn an effective ranking
function [19]. In our experiments only twenty two (22) fea-
tures where used, most of which are ranking functions of
their own (e.g. BM25 or language models). Therefore, in
the case where hundreds of (raw) features are employed,
ranking functions may need more than 1% of the complete
collection to achieve optimal performance. Nevertheless, in

a setup similar to LETOR setup, as in our experiments, we
show that substantially less documents than the ones used
in LETOR can lead to similar performance of the trained
ranking functions.

Furthermore, it is apparent from Figure 3 that the ef-
fectiveness of small data sets for learning-to-rank purposes
eminently depends on the document selection methodology
employed. The most striking example of an inefficient docu-
ment selection methodology is that of hedge. Ranking func-
tions trained on data sets constructed according to the hedge
methodology only reach their optimal performance when
trained over data sets that are at least 20% of the com-
plete collection, while in the worst case, the performance of
some ranking functions is significantly lower than the opti-
mal one even when trained over 40% to 50% of the complete
collection (e.g. the performance of RankBoost, Regression
and RankNet with the hidden layer).

Ranking functions exhibit their second worst performance
when trained over data sets constructed according to the
LETOR-like document selection methodology. Even though
LETOR data sets have been widely used by researchers, our
results show that the document selection methodology em-
ployed in LETOR is neither the most effective nor the most
efficient way to construct learning-to-rank collections.

The deficiency of learning-to-rank data sets produced ac-
cording to hedge and LETOR-like document selection method-
ologies may seem counterintuitive. One would expect rele-
vant documents to be much more “informative” than non-
relevant documents for the purpose of learning-to-rank, and
both hedge and LETOR-like document selection methodolo-
gies are designed to choose as many relevant documents as
possible. Clearly this is not the case according to our results.

In what follows, we try to give an explanation of these
counterintuitive. Figure 4 illustrates the performance of
two of the learning-to-rank algorithms (SVM and Rank-
Boost) for which data sets created according to hedge and
LETOR-like methods seem the least effective. The y-axis
corresponds to the performance of the ranking functions.
The x-axis in the top-row plots corresponds to the percent-
age of relevant documents in the learning-to-rank data sets,
while at the bottom-row plots, it corresponds to the dis-
crepancy among the selected relevant and non-relevant doc-
uments. Each dot in these plots corresponds to a training
data set at some sampling percentage, regardless of the doc-
ument selection algorithm employed. As can be observed,
there is a clear negative correlation between the percentage
of relevant documents (above a certain threshold) and the
performance of both ranking functions. Further, a strong
positive correlation is exhibited between the dissimilarity
among relevant and non-relevant documents and the perfor-
mance of the two algorithms. This is a strong indication that
over-representation of relevant documents in the training
data sets may harm the learning-to-rank algorithms. Fur-
thermore, when relevant and non-relevant documents in the
training data set are very similar to each other, performance
of the resulting ranking functions decline.

Both hedge and LETOR-like document selection method-
ology, by design, select as many relevant documents as pos-
sible. As shown in Figure 2, the documents selected by the
two methods also exhibit very high similarity to each other.

In contrast to the aforementioned selection methodologies
that are designed to select as many relevant documents as
possible, infAP, statAP, depth-pooling and MTC tend to
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Figure 3: RankBoost, Regression, Ranking SVM, RankNet (linear and nonlinear) and LambdaRank ranking
performance across several document selection methods at various sampling percentages.

construct data sets that are more representative of the com-
plete collection. In particular, infAP randomly samples the
complete collection, and thus, all documents in the collec-
tion have equal probability to be included in the training
data set, regardless of their relevance grade. Even though
depth-pooling tends to select documents from the top end of
the ranked lists of the underlying participating systems, it
treats all systems in a fair manner regardless of their qual-
ity, giving poor underlying systems an equal opportunity to
contribute to the constructed data sets. Thus, many non-
relevant documents are included in the resulting training
sets. StatAP selects the documents that are commonly re-
trieved by multiple systems due to the way the sampling

prior is computed. Hence, the quality of the sampled docu-
ments depend on the quality of the underlying systems. If
a non-relevant document is retrieved by many retrieval sys-
tems, then this document is still very likely to be sampled by
the statAP sampling. Finally, MTC, by design, selects the
most informative documents for the purpose of evaluation,
regardless of their relevance.

Therefore, the percentage of relevant documents in the
learning-to-rank data sets along with the similarity of rel-
evant and non-relevant documents appear to be good ex-
planatory parameters for the efficiency and effectiveness of
all the aforementioned document selection methodologies.

In order to quantify the explanatory power of these two
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Figure 4: Scatter plots of the performance of RankBoost and SVM ranking functions versus the percentage of
relevant documents and the discrepancy between relevant and non-relevant documents in the training data.

parameters, we formulate a linear model, with the perfor-
mance of RankBoost and SVM as measured by MAP over
the testing data sets expressed as a linear function of the per-
centage of relevant documents and the dissimilarity among
relevant and non-relevant documents in the data sets. Both
the adjusted R2 and the F-statistic of the resulting linear
models indicate an excellent goodness of fit, with the former
being equal to 0.99 and with the p-value of the latter being
equal 10−16.

Further, to assess the relative importance of the two ex-
planatory parameters, with respect to the performance of
the learning-to-rank algorithms, we also fit an ANOVA model
to the data and performed a variance decomposition analy-
sis, according to which the percentage of relevant documents
accounts for about 60% of the variance in the MAP scores
across all data sets and the discrepancy between relevant and
non-relevant documents accounts for about 39%. Therefore,
we conclude that both the proportion of relevant documents
and the dissimilarity between documents are highly impor-
tant for the quality of a learning-to-rank collection, with the
former affecting the quality more than the latter.3

Finally, by revisiting Figure 3, one can observe that some
learning-to-rank algorithms are more robust to document

3Note that we have tested the effect of other explanatory
parameters to the variability of MAP values (e.g. recall, total
number of documents, total number of relevant documents,
similarity between relevant documents, interactions between
these parameters). None of these parameters appeared to be
significant.

selection methodologies than others. In particular, Lamb-
daRank and RankNet seem to be more robust than Regres-
sion, RankBoost and Ranking SVM. To assess the relative
importance between the learning-to-rank algorithms’ effect
on MAP and the selection methodologies’ effect on MAP,
we fit a 2-way ANOVA model to the MAP values and again
perform a variance decomposition. According to ANOVA
26% of the variance in the MAP scores is due to the selec-
tion methodology and 31% due to the learning-to-rank algo-
rithm, while 5% is due to the algorithm-selection method-
ology interaction. When we perform the same analysis to
MAP values over datasets up to 10% of the complete collec-
tion, then 44% of the variance in the MAP scores is due to
the selection methodology and 23% is due to the learning-to-
rank algorithm, while 10% is due to the algorithm-selection
methodology interaction.

4. CONCLUSIONS
In this paper, we analyzed the problem of building docu-

ment collections for efficient and effective learning-to-rank.
In particular, we explored (1) whether the algorithms that
are good for reducing the judgment effort for efficient evalu-
ation are also good for reducing judgment effort for efficient
learning-to-rank and (2) what makes one learning-to-rank
collection better than another.

For this purpose we constructed different sized learning
collections employing depth pooling, infAP, statAP, MTC,
hedge and the LETOR methodology. We then ran a number
of state of the art learning-to-rank algorithms over these



training collection and compared the quality of the different
methods used to create the collections based on the relative
performance of the learning algorithms.

We showed that some of these methods (infAP, statAP
and depth pooling) are better than others (hedge and the
LETOR method) for building efficient and effective learning-
to-rank collections. This is a rather surprising result given
the wide usage of the LETOR datasets as it suggests that
using the same judgment effort, better collections could be
created via other methods.

Furthermore, we showed that both (1) the proportion of
relevant documents to non-relevant documents and (2) the
similarity between relevant and non-relevant documents in
the data sets highly affect the quality of the learning-to-rank
collections, with the latter having more impact.

Finally, we observed that some learning-to-rank algorithms
(RankNet and LambdaRank) are more robust to document
selection methodologies than others (Regression, RankBoost
and Ranking SVM).
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