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ABSTRACT
We consider the problem of large scale retrieval evaluation.
Recently two methods based on random sampling were pro-
posed as a solution to the extensive effort required to judge
tens of thousands of documents. While the first method pro-
posed by Aslam et al. [1] is quite accurate and efficient, it is
overly complex, making it difficult to be used by the com-
munity, and while the second method proposed by Yilmaz et
al., infAP [14], is relatively simple, it is less efficient than the
former since it employs uniform random sampling from the
set of complete judgments. Further, none of these methods
provide confidence intervals on the estimated values.

The contribution of this paper is threefold: (1) we de-
rive confidence intervals for infAP, (2) we extend infAP to
incorporate nonrandom relevance judgments by employing
stratified random sampling, hence combining the efficiency
of stratification with the simplicity of random sampling,
(3) we describe how this approach can be utilized to esti-
mate nDCG from incomplete judgments. We validate the
proposed methods using TREC data and demonstrate that
these new methods can be used to incorporate nonrandom
samples, as were available in TREC Terabyte track ’06.

Categories and Subject Descriptors: H.3 Information
Storage and Retrieval; H.3.4 Systems and Software: Perfor-
mance Evaluation

General Terms: Experimentation, Measurement, Theory

Keywords: Evaluation, Sampling, Incomplete Judgments,
Average Precision, nDCG, infAP

1. INTRODUCTION
We consider the problem of large scale retrieval evaluation,

in particular, retrieval evaluation with incomplete relevance
judgments.
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The most commonly employed methodology for assessing
the quality retrieval systems is the Cranfield methodology
adopted by TREC [7]. The main assumption behind this
methodology is that the relevance judgments are complete,
i.e., for each query, all documents in the collection relevant
to this query are identified.

When the document collection is large, obtaining com-
plete relevance judgments is infeasible due to the need for
extensive human effort. Instead, TREC employs depth-k
pooling (typically, depth-100 pooling) to overcome this bur-
den, combining top k documents retrieved by the submitted
systems and assuming the rest of the documents are nonrel-
evant. While a depth-100 pool is significantly smaller than
the document collection, it still requires extensive judgment
effort (e.g. 86,830 judgments for TREC 8). Furthermore,
even though depth-100 pools were shown to contain most of
the relevant documents [8], the size of document collections
tends to increase and thus these pools may be inadequate
for identifying most of the relevant documents.

Recently, evaluation with incomplete relevance judgments
has gained attention as a solution to the problem of exten-
sive judgment effort. New evaluation measures have been
proposed in the literature [1, 5, 11, 12, 14] since standard
evaluation measures such as average precision are not robust
to incomplete judgments [3].

As a solution to this problem, Buckley and Voorhees [3]
proposed bpref, a now commonly used measure by informa-
tion retrieval community. Sakai [12] instead applied tradi-
tional measures to condensed lists of documents obtained
by filtering out all unjudged documents from the original
ranked lists and showed that these versions of measures are
actually more robust to incompleteness than bpref.

Carterette et al. [5] and Moffat et al. [11] select a subset
of documents to be judged based on the benefit documents
provide in fully ranking systems or identifying the best sys-
tems, respectively.

Even though the aforementioned approaches are all shown
to be more robust to incompleteness than standard evalu-
ation measures, these methods are not guaranteed to com-
pute or estimate the values of standard evaluation measures.
Hence, the values of measures obtained by these methods are
difficult to interpret.

Yilmaz and Aslam [14] and Aslam et al. [1] instead use
random sampling to estimate the actual values of average
precision when relevance judgments are incomplete. Both
of these methods are based on treating incomplete relevance



judgments as a sample drawn from the set of complete judg-
ments and using statistical methods to estimate the actual
values of the measures. These methods are both shown to (1)
produce unbiased estimates of average precision even when
relevance judgments are incomplete and (2) be more robust
to incomplete relevance judgments than any other measures
such as bpref [3] or the condensed versions of the measures
(referred to as induced AP in the paper)[14].

The measure proposed by Yilmaz and Aslam, infAP [14],
became a commonly used measure by information retrieval
community [2, 13] and was used in TREC VID and Terabyte
tracks in 2006 [10, 4].

A limitation of infAP accrues from the measure’s assump-
tion that incomplete relevance judgments are a simple ran-
dom sample drawn from the set of complete judgments.
Typical evaluation measures give more weight to documents
retrieved towards the top of a retrieved lists and therefore,
a “top-heavy” sampling strategy would lead to more accu-
rate results with higher efficiency in terms of judgment effort
needed.

On the other hand, according to the method by Aslam
et al. [1] samples are drawn according to a carefully chosen
non-uniform distribution over the documents in the depth-
100 pool. Even though this method is more efficient in terms
of judgment effort than infAP, it is very complex both in con-
ception and implementation and therefore less applicable.

Furthermore, although average precision estimators as pro-
posed by both of the aforementioned methods are unbiased
in expectation, in practice, when calculated using a single
sample of relevance judgments, may vary in value. This
necessitates the derivation and use of confidence intervals
around the estimated values in order to allow confident con-
clusions regarding the actual value of average precision and
thus the ranking of retrieval systems.

In this paper, we mainly focus on inferred average preci-
sion. First, we derive confidence intervals for the measure
and validate them using TREC data. We show that in-
fAP along with the corresponding confidence intervals can
allow researchers to reach confident conclusions about ac-
tual average precision, even when relevance judgments are
incomplete.

We then focus on the efficiency of the measure. We em-
ploy a stratified random sampling methodology and extend
the measure to incorporate relevance judgments created ac-
cording to any such sampling distribution. This extended
infAP combines the simplicity of random sampling with the
efficiency of stratification and thus it is simple and easy to
compute while, at the same time, it is much more efficient
than infAP in terms of reducing the judgment effort. We
further claim that the same methodology can be applied to
other evaluation measures and demonstrate how nDCG (a
commonly used measure that incorporates graded relevance
judgments [9]) can be estimated using incomplete relevance
judgments.

2. CONFIDENCE INTERVALS FOR INFAP
The inferred average precision, by statistical construction,

is an unbiased estimator of average precision and thus it is
designed to be exactly equal to average precision in expec-
tation. However in practice, it may be low or high due to
the nature of sampling (especially when the subsets of docu-
ments whose binary relevance is available is small). In other
words, there is variability in the values of infAP because dif-

ferent samples from the collection of documents give rise to
different values of infAP. The amount of the variability in
infAP is measured by its variance.

Before computing the variance of infAP let’s revisit the
random experiment whose expectation is average precision [14]
and identify all sources of variability in the outcome of this
random experiment. Given a ranked list of documents with
respect to a given topic:

1. Select a relevant document at random and let the rank
of this relevant document in list be k.

2. Select a rank, j, at random from the set {1, ..., k}.
3. Output the binary relevance of the document at rank

j.

In expectation, steps (2) and (3) effectively compute the
precision at a relevant document and in combination, step
(1) computes the average of these precisions.

The aforementioned experiment can be realized as a two-
stage sampling. At the first stage — step (1) — a sample of
cut-off levels at relevant documents is selected. The infAP
value is computed as an average of the estimated precision
values at the sampled cut-off levels. Even if we assume that
these precision values are the actual precision values, infAP
varies because different samples of cut-off levels will result in
different values of infAP. Therefore, computing infAP using
precision values only at a subset of cut-off levels introduces
the first component of variability.

Let rel be the set of the judged relevant documents of size
r. This first variance component can be estimated as1

var. comp. 1 = (1 − p) · s2/r

where p·100% is the sampling percentage and s2 the variance
among the precision values at the judged relevant documents

calculated as s2 =
“P

k∈rel(
dPCk − infAP)

”
/r.

At the second stage — step (2) — for each one of the se-
lected cut-off levels, a sample of documents above that cut-
off level document is used to estimate the corresponding to
the cut-off precision value. Therefore, even for a given sam-
ple of cut-off levels, infAP has variability because different
samples of documents give rise to different values of preci-
sions and thus different values of infAP. Hence, computing
the precision at some cut-off using only a subset of the doc-
uments above that cut-off introduces a second component of
variability.

Assuming that precisions at different cut-off levels are in-
dependent from each other, this second variance component
can be estimated as,

var. comp. 2 =
“ X

k∈rel

var[dPCk]
”
/r2

where var[dPCk] is the variance of the estimated precision at
cut-off k.

According to the Law of Total Variance, the total variance
of infAP can be computed as the sum of the two aforemen-
tioned variance components; hence,

var[infAP] = (1 − p) · s2

r
+

P
k∈rel var[dPCk]

r2

1The complete formula of infAP variance along with the
derivation can be found at the Appendix



When evaluating retrieval systems, the average of infAP val-
ues across all topics (mean infAP) is employed. The vari-
ance of the mean infAP can be computed as a function of
the variance of infAP as

var[mean infAP] =
X

var[infAP]/(# of queries)2

According to the Central Limit Theorem one can assign 95%
confidence intervals to mean infAP as a function of its vari-
ance. A 95% confidence interval centered at the mean infAP
intimate that with 95% confidence the actual value of MAP
is within this interval.

We used TREC 8,9 and 10 data to validate the derived
variance of the mean infAP when relevance judgments are
incomplete. We simulated the effect of incomplete relevance
judgments as in [14]. For each TREC, we formed incomplete
judgments sets by sampling from the entire depth-100 pool
over all submitted runs. This is done by selecting p% of
the complete judgment set uniformly at random, where p ∈
{10, 20, 30}. The results of our experiments led to identical
conclusions over all TREC dataset and therefore, due to
space limitations, we report only results for TREC 8.

Figure 1 illustrates the mean infAP values computed from
a single random sample of documents per topic for each
run against the actual MAP values for p ∈ {10, 20, 30} for
TREC 8. The 95% confidence intervals are depicted as er-
ror bars around the mean infAP values. As one can observe,
the greatest majority of the confidence intervals intersect
the 45o dashed line indicating that the greatest majority of
the confidence intervals cover the actual MAP values.

Furthermore, we computed the mean infAP values and the
corresponding confidence intervals for 100 different sampling
trials over TREC 8 data and we accumulated the deviation
of the computed mean infAP values from the actual MAP
values in terms of standard deviations. This way we gen-
erated a Cumulative Distribution Function of divergence of
mean infAP values per system. According to the Central
Limit Theorem each of these CDF’s should match the CDF
of the Normal Distribution. We performed a Kolmogorov-
Smirnov test of fitness and for 90% of the systems the hy-
pothesis that the two CDF’s match could not be rejected
(α = 0.05) which validates our derived theoretical results.

3. INFERRED AP ON NONRANDOM
JUDGMENTS

In the previous section we derived confidence intervals for
infAP in a setup where documents to be judged were a ran-
dom subset of the entire document collection. Confidence
intervals can be further reduced (i.e. the accuracy of the
estimator can be improved) by utilizing a “top-heavy” sam-
pling strategy. In this section we consider a setup where
relevance judgments are not a random subset of complete
judgments and show how infAP can be extended to produce
unbiased estimates of average precision in such a setup. We
denote the extended infAP measure as xinfAP.

Similar to the infAP paradigm, consider the case where we
would like to evaluate the quality of retrieval systems with
respect to a complete pool and assume that relevant judg-
ments are incomplete. Further assume that the set of avail-
able judgments are constructed by diving the complete col-
lection of documents into disjoint contiguous subsets (strata)
and then randomly selecting (sampling) some documents
from each stratum to be judged. The sampling within each

stratum is performed independently, therefore, the sampling
percentage can be chosen to be different for each stratum.
For instance, one could choose to split the collection of doc-
uments into two strata (based on where they appear in the
output of search engines), and sample 90% of the documents
from the first stratum and 30% of the documents from the
second stratum. In effect, one could think a large variety
of sampling strategies in terms of this multi-strata strategy.
For example, the sampling strategy proposed by Aslam et
al. [1] can be thought as each stratum containing a single
document, with different sampling probabilities assigned to
different strata.

Let dAP be the random variable corresponding to the es-
timated average precision of a system. Now consider the
first step of the random experiment whose expectation cor-
responds to average precision, i.e. picking a relevant docu-
ment at random. Note that in the above setup, this relevant
document could fall into any one of the different strata s.
Since the sets of documents contained in the strata are dis-
joint, by definition of conditional expectation, one can write

E[dAP ] as:

E[dAP ] =
X

∀s∈Strata

Ps · Es[dAP ]

where Ps corresponds to the probability of picking the rele-

vant document from stratum s and Es[dAP ] corresponds to
the expected value of average precision given that the rele-
vant document was picked from stratum s.

Let RQ be the total number of relevant documents in the
complete judgment set and Rs be the total number of rele-
vant documents in stratum s if we were to have all complete
relevance judgments. Then, since selecting documents from
different strata is independent for each stratum, the prob-
ability of picking a relevant document from stratum s is,
Ps = Rs/RQ.

Computing the actual values of RQ and Rs is not pos-
sible, since the complete set of judgments is not available.
However, we can estimate their values using the incomplete
relevance judgments. Let rs be the number of sampled rele-
vant documents and ns be the total number of sampled doc-
uments from stratum s. Furthermore, let Ns be the total
number of documents in stratum s. Since the ns documents
were sampled uniformly from stratum s, the estimated num-
ber of relevant documents within stratum s, R̂s, can be com-
puted as R̂s = (rs/ns) · Ns. Then the number of relevant
documents in query Q can be estimated as the sum of these
estimates over all strata, i.e. R̂Q =

P
∀s R̂s. Given these es-

timates, the probability of picking a relevant document from
stratum s can be estimated by, P̂s = R̂s/R̂Q.

Now, we need to compute the expected value of estimated

average precision, Es[dAP ], if we were to pick a relevant doc-
ument at random from stratum s.

Since the incomplete relevance judgments within each stra-
tum s is a uniform random subset of the judgments in that
stratum, the induced distribution over relevant documents
within each stratum is also uniform, as desired. Therefore,
the probability of picking any relevant document within this
stratum is equal. Hence, the expected estimated average

precision value within each stratum, Es[dAP ], can be com-
puted as the average of the precisions at judged (sampled)
relevant documents within that stratum.
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Figure 1: TREC-8 mean inferred AP along with estimated confidence intervals when relevance judgments
are generated by sampling 10, 20 and 30 % of the depth-100 pool versus the mean actual AP.

Now consider computing the expected precision at a rele-
vant document at rank k, which corresponds to the expected
outcome of picking a document at or above rank k and out-
putting the binary relevance of the document at this rank
(steps 2 and 3 of the random experiment).

When picking a document at random at or above rank k
and outputting the binary relevance of that document, one
of the following two cases may occur. With probability 1/k,
we pick the current document, and since this document is
by definition relevant the outcome is 1. With probability
(k − 1)/k we pick a document above the current document,
in which case we need to calculate the expected precision (or
expected binary relevance) with respect to the documents
above rank k. Thus,

E[dPCk] =
1

k
· 1 +

k − 1

k
E[dPCabove k

]

Let Nk−1
s be the total number of documents above rank k

that belong stratum s, nk−1
s be the total number of judged

(sampled) documents above rank k that belong to stratum s
and rk−1

s be the total number of judged (sampled) relevant
documents above rank k that also belong to stratum s.

When computing the expected precision within the (k−1)
documents above rank k, with probability Nk−1

s /(k − 1) we
pick a document from stratum s. Therefore, the expected
precision above rank k can be written as:

E[prec above k] =
X
∀s

Nk−1
s

k − 1
· Es[dPCabove k

]

where Es[dPCabove k
] is the expected precision above rank k

within stratum s. Since we have a uniform sample of judged
documents from stratum s, we can use these sampled doc-
uments to estimate the expected precision within stratum
s. Since the incomplete relevance judgments from each stra-
tum is obtained by uniform random sampling, this expected
precision can be computed as rk−1

s /nk−1
s .

Note that in computing the expected precision in stratum
s, we may face the problem of not having sampled any docu-
ments from this stratum that are above the current relevant
document at rank k. Adapting the same idea used in infAP,
we employ Lindstone smoothing [6] to avoid this problem.
Therefore, expected precision above rank k can be computed
as:

E[dPCabove k
] =

X
∀s

Nk−1
s

k − 1
· rk−1

s + ε

nk−1
s + 2ε

It is easy to see that when complete judgments are available,
xinfAP is exactly equal to average precision (ignoring the
smoothing effect). Further, note that infAP is a particular
instantiation of this formula with a single stratum used.

Overall, the advantage and real power of the described
stratified random sampling and the derived AP estimator,
xinfAP, is the fact that it combines the effectiveness of the
sampling method proposed by Aslam et al. [1] by employing
stratification of the documents and thus better utilization of
the judgment effort with the simplicity of infAP by employ-
ing random sampling within each stratum.

3.1 Inferred AP in TREC Terabyte
As mentioned, xinfAP can be used with a large variety of

sampling strategy. In this section, we focus on the sampling
strategy used in TREC Terabyte 2006 [4] and we show that
(1) xinfAP is highly effective at estimating average precision
and (2) it better utilizes the judgment effort compared to
infAP.

First, let’s briefly consider the sampling strategy used in
TREC Terabyte 2006. In this track, three different sets of
relevance judgments were formed, with only two of them
being used for evaluation purposes. Out of these two sets,
the first set of judgments, constructed by the traditional
depth-50 pooling strategy, was used to obtain a rough idea
of the systems average precision. The second set of judg-
ments was constructed using random sampling in such a
way that there are more documents judged from topics that
are more likely to have retrieved more relevant documents.
Since, in Terabyte track, the size of the document collection
is very large, the systems may continue retrieving relevant
documents even at high ranks (deeper in the list). This set
of judgments was created to obtain an estimate of average
precision if complete judgments were present.

To estimate average precision, infAP was used as the eval-
uation measure. Since, by design, infAP assumes that the
set of relevance judgments is a random subset of complete
judgments, even though the entire depth-50 pool was judged,
infAP was computed only using the random sample of judg-
ments (second set) without utilizing judgments from the
depth-50 pool. Therefore, many relevance judgments were
not used even though they were available.

Note that xinfAP can easily handle this setup and it could
be used to utilize all the judgments, obtaining better esti-
mates of average precision.

To test how xinfAP compares with infAP we simulate the
sampling strategy used in TREC Terabyte 06 on data from



TREC 8. The TREC Terabyte data was not used due to
the fact that in TREC Terabyte the actual value of average
precision is not known since complete judgments are not
available.

To simulate the setup used in TREC Terabyte, we first
form different depth-k pools where k ∈ {1, 2, 3, 4, 5, 10,
20, 30, 40, 50} and obtain judgments for all documents in
each one of these pools. Then, for each value of k, we com-
pute the total number of documents that are in the depth-k
pool and we randomly sample equal number of documents
from the complete judgment set2 excluding the depth-k pool.
After forming these two sets of judgments (depth-k and ran-
dom) we combine them and compute xinfAP on these com-
bined judgments.

This setup exactly corresponds to a sampling strategy
where complete judgments are divided into two strata and
judgments are formed by uniformly and independently sam-
pling within each stratum.

Note that in TREC, there are some systems that were
submitted but that did not contribute to the pool. To fur-
ther evaluate the quality of our estimators in terms of their
robustness for evaluating the quality of unseen systems (sys-
tems that did not contribute to the pool), when we form the
incomplete relevance judgments, we only consider the sys-
tems that contribute to the pool but we compute the xinfAP
estimates for all submitted systems.

Figure 2 demonstrates how xinfAP computed using judg-
ments generated by combining (left) depth-10, (middle) depth-
5 and (right) depth-1 pools with equal number of randomly
sampled judgments compares with the actual AP. Each of
these depths correspond to judging 23.1%, 12.7% and 3.5%
of the entire pool, respectively. The plots report the RMS er-
ror (how accurate are the estimated values?), the Kendall’s
τ value (how accurate are the estimated rankings of sys-
tems?) and the linear correlation coefficient, ρ, (how well
do the estimated values fit in a straight line compared to
the actual values?). The dot signs in the figures refer to the
systems that were used to create the original pools and the
plus signs refer to the systems that did not contribute to the
pool.

The results illustrated in these plots reinforce our claims
that xinfAP is an unbiased estimator of average precision.
Furthermore, it can be seen that the measure can reliably be
used to evaluate the quality of systems that were not used
to create the initial samples, hence the measure is robust to
evaluating the quality of unseen systems.

Figure 3 illustrates how xinfAP computed on a non-random
judgment set compares with infAP computed on a random
judgment set for various levels of incompleteness. In a sim-
ilar manner to the experimental setup of the original infAP
work, for each value of k, we generated ten different sample
trials according to the procedure described in the previous
paragraph, and for each one of the ten trials we computed
the xinfAP for all systems. Then, all three statistics were
computed for each one of the trials and the averages of these
statistics over all ten trials were reported for different levels
of judgment incompleteness. Using the same procedure, we
also created ten different sample trials where the samples
were generated by merely randomly sampling the judgment

2Throughout this paper, we assume that the complete judg-
ment set corresponds to the depth-100 pool as the judgments
we have are formed using depth-100 pools and assuming the
remaining documents are nonrelevant.

set and the infAP values were computed on them. For com-
parison purposes, to show how the original version of infAP
behaves when this randomness assumption is violated, we
also include infAP run on the same judgment set as ex-
tended infAP (marked as infAP depth+random judgments
in the Figure).

It can be seen that for all levels of incompleteness, in
terms of all three statistics, xinfAP is much more accurate
in estimating average precision than the other two measures.

We further compared xinfAP to the sampling method pro-
posed by Aslam et al. [1]. The robustness of xinfAP to in-
complete relevance judgments is comparable to (and in some
cases even better than) this method. (These results were
omitted due to space limitations.)

4. ESTIMATION OF NDCG WITH
INCOMPLETE JUDGMENTS

There are different versions of the nDCG metric depend-
ing on the discount factor and the gains associated with
relevance grades, etc. In this paper, we adopt the version of
nDCG in trec_eval.

Let = denote a relevance grade and gain(=) the gain as-
sociated with =. Also, let g1, g2, . . . gZ be the gain values
associated with the Z documents retrieved by a system in
response to a query q, such as gi = gain(=) if the relevance
grade of the document in rank i is =. Then, the nDCG value
for this system can be computed as,

nDCG =
DCG

DCGI
where DCG =

ZX
i=1

gi/ lg(i + 1)

and DCGI denotes the DCG value for an ideal ranked list
for query q.

The estimation of nDCG with incomplete judgments can
be divided into two parts: (1) Estimating DCGI and (2)
Estimating DCG. Then, the DCG and the DCGI values
can be replaced by their estimates to obtain the estimated
nDCG value.3

4.1 Estimating DCGI
The normalization factor, DCGI , for a query q can be

defined as the maximum possible DCG value over that query.
Hence, the estimation of DCGI can be derived in a two-step
process: (1) For each relevance grade = such as gain(=) >
0, estimate the number of documents with that relevance
grade; (2) Calculate the DCG value of an optimal list by
assuming that in an optimal list the estimated number of
documents would be sorted (in descending order) by their
relevance grades.

Using the sampling strategy described in the previous sec-
tion, suppose incomplete relevance judgments were created
by diving the complete pool into disjoint sets (strata) and
randomly picking (sampling) documents from each stratum
to be judged, possibly with different probability for each
stratum.

3Note that this assumes that E[nDCG] =
E[DCG]/E[DCGI ], i.e., that DCGI and DCG are in-
dependent of each other, which is not necessarily the case.
This assumption may result in a small bias and better
estimates of nDCG can be obtained by considering this
dependence. However, for the sake of simplicity, throughout
this paper, we will assume that these terms are independent.
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infAP as the judgment sets are reduced when half of the judgments are generated according to depth pooling
and the other half is a random subset of complete judgments and of inferred AP when the judgments are a
random subset of complete judgments.

For each stratum s, let rs(=) be the number of sampled
documents with relevance grade =, let ns be the total num-
ber of documents sampled from strata s and Ns be the total
number of documents that fall in strata s. Since the ns doc-
uments are sampled uniformly from strata s, the estimated
number of documents with relevance grade = within this
strata can be computed as

R̂s(=) =
rs(=)

ns
· N

Then, the expected number of documents with relevance
grade = within the complete pool can be computed as

R̂(=) =
X
∀s

R̂s(=)

Once these estimates are obtained, one can estimate DCGI .

4.2 Estimating DCG
Given Z documents retrieved by a search engine with rel-

evance gain gi for the document at rank i, for each rank
i, define a new variable xi such as xi = Z · gi

lg(i+1)
. Then,

DCG can be written as the output of the following random
experiment:

1. Pick a document at random from the output of the
search engine, let the rank of this document be i.

2. Output the value of xi.

It is easy to see that if we have the relevance judgments
for all Z documents, the expected value of this random ex-
periment is exactly equal to DCG.

Now consider estimating the outcome of this random ex-
periment when relevance judgments are incomplete. Con-
sider the first step of the random experiment, i.e. picking a
document at random. Let Zs be the number of documents
in the output of a system that fall in stratum s. When pick-
ing a document at random, with probability Zs/Z, we pick
a document from stratum s.

Therefore, the expected value of the above random exper-
iment can be written as:

E[DCG] =
X
∀s

Zs

Z
· E[xi|document at rank i ∈ s]

Now consider the second step of the random experiment,
computing the expected value of xi given that the document
at rank i falls in strata s. Let sampleds be the set of sampled
documents from strata s and ns be the number of documents
sampled from this strata. Since documents within stratum
s are uniformly sampled, the expected value of xi can be
computed as

E[xi|document at rank i ∈ s] =
1

ns

X
∀j∈sampleds

xj

Once E[DCGI ] and E[DCG] are computed, infNDCG can
then be computed as infNDCG = E[DCG]/E[DCGI ].

5. OVERALL RESULTS
Until now, we have shown that using a similar sampling

strategy as the one used in TREC Terabyte 06 (complete



judgments divided into 2 different strata), xinfAP is highly
accurate. In this section, we show that (1) this claim is con-
sistent over different TRECs for both xinfAP and infNDCG
and that (2) the two measures can be used with the complete
judgments divided into more than two strata.

In order to check (2), we use a different sampling strategy
than the one in Terabyte; we divide the complete judgment
set (assuming depth-100 pool is the complete judgment set)
into 4 different strata. The first stratum is the regular depth-
k pool, fully judged. Instead of randomly sampling equal to
the depth-k pool number of judgments from the remainder of
the collection, we now divide the rest of the documents into
three other strata and distribute the remaining judgments
with a ratio of 3:1.5:1 (judge 55% of the documents in the
top depth stratum, 27% of the documents in the middle
depth stratum and 18% in the lowest depth stratum). This
way, more weight is given to judging documents retrieved
towards the top of the ranked lists of the search engines.
Note, however, that as the number of strata increase, there
values of the estimates may slightly deviate from the actual
values since the effect of smoothing also increase (smoothing
is needed for each stratum).

Figure 4 shows the quality of xinfAP and infNDCG (re-
ferred as extended infNDCG to avoid confusion) computed
on these samples according to Kendall’s τ and RMS Error
statistics, for TRECs 8, 9 and 10. For comparison purposes,
the plots also contain infAP and nDCG (the standard for-
mula computed on random judgments, assuming unjudged
documents are nonrelevant).

Looking at all plots, it can be seen that according to
both statistics, using the same number of judgments, the
extended infAP (xinfAP) and infNDCG consistently outper-
form infAP and nDCG on random judgments, respectively.
The high RMS error of nDCG on random judgments is due
to the fact that nDCG is computed on these judgments as
it is, without aiming at estimating the value of the measure.

6. CONCLUSIONS
In this work, we extended inferred AP in two different

ways. First, we derived confidence intervals for infAP to cap-
ture the variability in infAP values. Employing confidence
intervals enables comparisons and eventually ranking of sys-
tems according to their quality measured by AP with high
confidence. Second, we utilized a stratified random sampling
strategy to select documents to be judged and extended in-
fAP to handle the non-random samples of judgments. We
applied the same methodology for estimating nDCG in the
presence of incomplete non-random judgments. Stratified
random sampling combines the effectiveness of stratification
and thus better utilization of the relevance judgments with
the simplicity of random sampling. We showed that xinfAP
and infNDCG are more accurate than infAP and nDCG on
equal number of random samples.

Note that the sampling strategy (i.e. the number of strata,
the size of each stratum and the sampling percentage from
each stratum) used here is rather arbitrary. The confidence
intervals as described in the first part of this paper could be
used as an objective function to determine an optimal sam-
pling strategy. The sampling strategy is highly important
for the quality of the estimates and identifying an optimal
strategy is a point of future research.

Furthermore, confidence intervals as a function of the sam-
ple size could be used to determine the appropriate number

of documents to be judged for an accurate MAP estimation
which is a point we plan to investigate.
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APPENDIX
Let sd be a sample of cut-off levels at relevant documents.
According to the Law of Total Variance, the variance in
infAP can be calculated as,

var[infAP] = var[E[infAP|sd]] + E[var[infAP|sd]]

Let’s consider the first term of the right-hand side of the
above equation, which corresponds to the variance due to
sampling cut-off levels.
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Figure 4: Comparison of extended inferred map, (extended) mean inferred ndcg, inferred map and mean
ndcg on random judgments, using Kendall’s τ (first row) and RMS error (last row) for TREC 8, 9 and 10.

Let r the number of relevant documents in sd. Then, the
conditional expectation of infAP is,

E[infAP|sd] =
1

r

X
k∈sd

E[dPCk|sd] =
1

r

X
k∈sd

PCk

where dPCk and PCk denote the estimated and actual pre-
cision at cut-off k, respectively. Thus,

var[E[infAP|sd]] = var

241

r

X
k∈sd

PCk

35 = (1 − p)
σ2

r

where p100% is the sampling percentage of documents from
the entire depth-100 pool and σ2 is the actual variance among
the precision values at all cut-off’s of relevant documents and

it can be estimated by,
“P

k∈sd
(dPCk − infAP)2

”
/(r − 1).

Now, let’s consider the second term of the right-hand side
of the equation deduced by the Law of Total Variance, that
is the variance due to sampling documents above a cut-off
level in order to estimate the precision at that cut-off level,

var[infAP|sd] = var

241

r

X
k∈sd

dPCk

35 =
1

r2
var

24 X
k∈sd

dPCk

35
Considering dPCk independent from each other
If we consider precisions at different cut-off levels indepen-
dent from each other the variance of infAP for a given set
of sampled cut-off levels depends on the summation of the
precision variances at each individual cut-off level,

var[infAP|sd] =
1

r2

X
k∈sd

var[dPCk|sd]

The precision at cut-off 1 is always 1 and therefore the vari-
ance is 0. Moreover, the precision at relevant documents not

in the retrieved list is always assumed to be 0 and therefore,
the variance at those cut-off levels is also 0. In all other casedPCk is calculated as, dPCk = 1/k + ((k− 1)/k) · dPCabove k
and therefore,

var[dPCk|sd] =

„
k − 1

k

«2

var[dPCabove k]

Let rk−1 and nk−1 be the number of relevant documents
and total number of documents sampled above cut-off k,
respectively and let |d100|k−1 be the number of documents
in the depth-100 pool above cut-off k. The precision above

cut-off k is estimated by 4, dPCk−1 =
|d100|k−1

k−1
· rk−1

nk−1
, which

follows a hypergeometric distribution and its variance can be
calculated as,

var[dPCk−1|sd] =

„
p(1 − p)

nk−1

«
·

„
1 − nk−1 − 1

|d100|k−1 − 1

«
By considering the expected value of var[infAP|sd] over all
samples of cut-off levels we get,

E[var[infAP|sd]] =

P
k∈sd

var[dPCk|sd]

r2

Considering dPCk dependent to each other
If we do not consider precisions at different cut-off levels
independent from each other the covariance between preci-
sions can be calculated as,

cov[dPCk, dPCm] =
k

m
var[dPCk] where k < m

4For simplicity reasons we ignore the effect of smoothing
that is introduced in the formula of infAP. Smoothing was
considered in all experiments ran and it was observed that
the effect of smoothing in variance is negligible.


