
Finding Fastest Paths on A Road Network with Speed Patterns

Evangelos Kanoulas Yang Du Tian Xia Donghui Zhang∗

College of Computer & Information Science

Northeastern University, Boston, MA 02115

{ekanou, duy, tianxia, donghui}@ccs.neu.edu

Abstract

This paper proposes and solves theTime-Interval All
Fastest Path (allFP) query. Given a user-defined leaving or
arrival time intervalI, a source nodes and an end nodee,
allFP asks for a set of all fastest paths froms to e, one for
each sub-interval ofI. Note that the query algorithm should
find a partitioning ofI into sub-intervals. Existing methods
can only be used to solve a very special case of the problem,
when the leaving time is a single time instant. A straightfor-
ward solution to the allFP query is to run existing methods
many times, once for every time instant inI. This paper
proposes a solution based on novel extensions to the A* al-
gorithm. Instead of expanding the network many times, we
expand once. The travel time on a path is kept as a function
of leaving time. Methods to combine travel-time functions
are provided to expand a path. A novel lower-bound estima-
tor for travel time is proposed. Performance results reveal
that our method is more efficient and more accurate than
the discrete-time approach.

1 Introduction

Have you ever been stuck in traffic while driving, wish-
ing that you had known a better route? In the United states,
only 9.3% of the households do not have cars. Driving
is part of people’s daily life. GIS systems like MapQuest
and MapPoint are heavily relied on to provide driving di-
rections. However, surprisingly enough, existing systems
either ignore the driving speed on road networks, or as-
sume the speed remains constant on the road segments. In
both cases the users’ preferred leaving time does not af-
fect the query result. For instance, MapQuest does not ask
the users to input the day and time of driving. But we all
know that during rush hours, inbound highways to big cities
have much lower speed than usual. So a fastest path com-
puted during non-rush hours, which may consists of some

∗Partially supported by NSF CAREER Award IIS-0347600.

inbound highway segments, may not remain the fastest path
during rush hours.

To capture speed changes, we propose theCAtegorized
PiecewisE COnstant speeD (CapeCod) pattern, which is
an extension of the Flow Speed Model (FSM) [19] by in-
corporating categorized speed patterns. Here days are cat-
egorized, e.g. workdays and non-workdays. Within each
category, we assume the speed on each road segment is
piecewise constant. For instance, in a working day, dur-
ing rush hour (say from 7am to 9am) the speed is 0.3 miles
per minute (mpm), and at other times of the day the speed
is 1mpm.

The paper proposes and solves theTime Interval All
Fastest Paths (allFP) Query, on a road network with
CapeCod speed patterns. As the road network may be large,
it is reasonable to assume that it is stored on disk. We
adapt the Connectivity-Cluster Access Method (CCAM)
[18] to store and access the network information. Besides
the source nodes and the end nodee, a query consists of
a leaving time interval ats (or e). All fastest paths are
enumerated, each corresponding to a disjoint sub-interval
of leaving time. The union of all sub-intervals should cover
the entire query time interval. An allFP query example is:I
may leave for work any time between 7am and 9am; please
suggest all fastest paths, e.g. take route A if the leaving time
is between 7 and 7:45, and take route B otherwise.

A variation is theTime Interval Single Fastest Path (sin-
gleFP) query, which only reports a single fastest path: the
one that minimizes the travel time among all leaving time
instants in the query time interval.

If instead of a time interval, a single leaving time instant
is given, both allFP and singleFP correspond to the same
special case, which is trivial. The special case actually de-
grades into the shortest-path problem. The reason is that for
each edgeni → nj , if we know the leaving time instant
at ni, the arrival time atnj is fixed. This special case is
a well studied problem in multiple disciplines: transporta-
tion systems, networks, graph theory, artificial intelligence,
and spatial databases. One of the best algorithms, named
A* [15], extends Dijkstra’s single-source-shortest-path al-

gorithm. The idea is as follows. Keep a setE of expanded
nodes (initially empty) and a priority queueF of frontier
nodes (initially consisting only of the source nodes). Each
iteration chooses one node fromF , expands it by adding its
non-expanded neighbors toF , and moves it toE. To choose
the next node fromF , instead of choosingi where the travel
time froms to i is the smallest (as in Dijkstra’s algorithm),
choose the nodej such that the travel time froms to j plus
the estimated travel timefrom j to e is the smallest. As
pointed in[15], the estimation must be a lower bound of the
actual travel time to ensure correctness. Also, the closer the
estimation is to the actual travel time, the more efficient the
search is.

In allFP and singleFP queries, the leaving timel at s is
not fixed, but can be any instant in a given intervalI. In
this case, the travel time on each road segment is a function
of time and therefore, none of the existing algorithms can
be applied to solve these queries. For instance, in A*, in
each iteration a node is chosen to be expanded. In the new
queries, since different leaving time suggests that different
nodes should be expanded, which one do we choose? To
get around this problem, one approach to answer the new
queries (but only approximately) is to assume discrete time
model. For instance, if we assume the leaving time can only
be at the very beginning of every minute, we can call the A*
algorithm many times, one per minute. But this approach is
neither accurate nor efficient.

We propose an algorithm calledIntAllFastestPathsto ac-
curately and efficiently solve the allFP query. One interme-
diate step of the algorithm identifies the result for the sin-
gleFP query, and therefore the algorithm also can answer
the singleFP query, without spending the time to find the
complete result for the allFP query. The algorithm consists
of some novel extensions to the A* Algorithm. (i) Each en-
try in the priority queue has a travel-time function instead of
a single travel time value, and we tell which node should be
expanded in each iteration. (ii) Given the travel-time func-
tion T1(l ∈ I) of a paths ⇒ ni and an edgeni → nj , we
discuss how to determine the intervalI ′ of leaving time at
ni. (iii) Once we get such an interval and the correspond-
ing functionT2(l′ ∈ I ′), we present a way to combineT1()
with T2() to get the new travel function for the expanded
paths ⇒ ni → nj . (iv) Another important issue is how
to provide a lower-bound estimation to the travel time from
some nodenj to the end nodee. A straightforward choice
is to use the Euclidean distance divided by the maximum
speed in the network, as it is guaranteed to be a lower bound
of the actual travel time. In Section 5, we propose a better
(i.e. closer to the actual travel time) estimator, namely the
boundary nodeestimator.

The major contributions of the paper are:

1. We propose the allFP query and its variation the sin-
gleFP query, where the speed changes are captured by

the CapeCod patterns. By allowing the users to pro-
vide a leaving time interval, the queries are practical
extensions to the queries considered in existing path-
computation systems.

2. We present an algorithm (IntAllFastestPaths) to solve
the two fastest-path queries. The algorithm is based
on novel extensions to A*. The priority queue stores
travel-time functions associated with expanded paths.
We describe how to choose a path to keep expanding,
how to determine the leaving time interval at each in-
termediate node, and how to produce the compounded
function for the newly expanded path (Section 4).

3. We provide a novel lower-bound estimator to reduce
the search space (Section 5). The estimator is based on
graph partitioning and pre-computation.

The rest of the paper is organized as follows. Problem
definition appears in Section 2. Related work is reviewed
in Section 3. The fastest-path algorithms are presented in
Section 4. The new lower-bound estimator appear in Sec-
tion 5. Performance results are shown in Section 6. Finally,
Section 7 concludes the paper.

2 Problem Definition

This section formally defines the CapeCod patterns, the
road network which incorporates these patterns and the two
queries addressed in this paper. The storage model and the
required operations are also discussed.

2.1 CapeCod Network and Fastest Path Queries

Definition 1 A (day-)category setD is a list of categories
such that each day belongs to exactly one category inD.
For any two days belonging to the same category, a road
segment exhibits the same speed patterns.

For example, such a category set may be:workday, non-
workday. Here the assumption is that for two days in the
same category, a road segment has the same speed at the
same time of day. Although this may not be 100% accu-
rate, it is a reasonable assumption for two reasons. First,
if the volume of traffic on a road segment is high at some
time on one workday, it is likely the same to happen the
same time on another workday. Second, the approximation
becomes more accurate by increasing the number of cate-
gories. For instance, if for some road segment the speed
pattern for Fridays is different from that of other workdays,
we can identify Friday as another category.

Definition 2 Given a category setD, a CAtegorized Piece-
wisE COnstant speeD (CapeCod) patternconsists of one

daily speed pattern for every day-category inD. Here each
daily pattern has piecewise constant speed for the 24-hour
duration.

An example of a CapeCod pattern may be: for a non-
workday: [0:00-24:00):1mpm1; and for a workday: [0:00-
7:00):1mpm, [7:00-9:00):1/2mpm, [9:00-24:00):1mpm.
This pattern indicates that traffic congestion occurs every
workday from 7am to 9am.

Definition 3 Given a category setD, a CapeCod net-
work is a directed graphG(N, E) such that, N =
{(ni, loci)|i ∈ [1, m]} is the set of nodes (road inter-
sections and end points) with their spatial locations, and
E = {(ni, nj , dij , patij)|i, j ∈ [1, m]} is the set of edges
ni → nj , where dij is the distance andpatij is the
CapeCod pattern.

The Flow Speed Model (FSM) in which the speed on
each network edge is a piecewise-constant function, was
proposed in [19]. The CapeCod model slightly extends
FSM by involving a category of days to fit the need for spa-
tial road networks.

Definition 4 Given a CapeCod network, a start nodes
and an end nodee, and a leaving time intervalI, the All
Fastest Path (allFP) queryreturns a full partitioning of
I: I1, . . . , Ik, where each sub-interval is associated with
a fastest path, such that two leaving time instants in one
sub-interval leads to the same fastest-path and two leaving
time instants in two adjacent sub-intervals leads to different
fastest paths.

While focusing on the allFP query, this paper also ad-
dresses thesingle fastest path (singleFP) query. That is,
given a start nodes, an end nodee, and a leaving time in-
tervalI, find the time instantl0 ∈ I and the corresponding
fastest path froms to e such that leaving froms at timel0
minimizes the travel time froms to e.

Both queries compute fastest paths from nodes to e for
a leaving time intervalI. The singleFP query reports the
best leaving time instant duringI to minimize travel time
and the corresponding fastest path. The allFP query finds
all different fastest paths, one per disjoint sub-interval ofI.

2.2 Storage Model

Assuming that the network has reasonably large size,
it needs to be stored on disk. We adopt the connectivity-
cluster access method (CCAM) [18] to store and access the
network information.

1Here we use mile per minute instead of mile per hour to be consistent
with the examples in later sections.

In particular, for each nodeni, the corresponding infor-
mation to be stored on disk, denoted asinfoi, stores the
locationloci of it in space plus a list of neighbors. For each
neighbor,nj , we store its Euclidean distancedij from ni

and the CapeCod speed pattern of the road segmentpatij .
To cluster the information of nodes in disk pages, accord-

ing to [18], we should preserve the connectivity relation-
ship by heuristically partitioning the graph. Information for
nodes in the same partition is stored in the same disk page.

On top of the disk pages that store the node information,
a B+-tree is kept to efficiently locate the information of any
node. The one-dimensional ordering of all nodes is gen-
erated using the Hilbert values of their locations. CCAM
supports all the necessary operations for our algorithms -
such asFindNode(ni) andGetSuccessor(ni) - and the
appropriate operations to update the network.

3 Related Work

Most existing work on path computation has been fo-
cused on the shortest-path problem. Several extensions of
the Dijkstra algorithm have been proposed, mainly focus-
ing on the maintenance of the priority queue. The A* algo-
rithm [15, 10] finds a path from a given start node to a given
end node by employing a heuristic estimate. Each node is
ranked by an estimate of the best route that goes through
that node. A* visits the nodes in order of this heuristic es-
timate. A survey on shortest-path computation appeared in
[14].

Performance analysis and experimental results regard-
ing the secondary-memory adaptation of shortest path algo-
rithms can be found in [5, 17]. The work in [4] contributes
on finding the shortest path that satisfies some spatial con-
straints. A graph index that can be used to prune the search
space was proposed in [20].

One promising idea to deal with large-scale networks is
to partition a network into fragments. The boundary nodes,
which are nodes having direct links to other fragments, con-
struct the nodes of a high-level, smaller graph. This idea of
hierarchical path-finding has been explored in the context of
computer networks [9] and in the context of transportation
systems [8, 6, 7]. In [16], the materialization trade-off in
hierarchical shortest path algorithms is examined.

The fastest-path problem is a generalization of the
shortest-path problem in the sense that the cost measure (in
particular, the travel time) to traverse a road segments varies
over time. This makes the fastest-path problem more com-
plicated since the fastest path from a source nodes and an
end nodee is not unique and depends on the leaving time
from s. One way to deal with this complexity is to assume
a discrete-time model [1, 11]. [1] proposes a backward la-
belling algorithm based on the assumption that the cost to
traverse an edge remains constant after some time. [11] ap-

plies the A* algorithm for every leaving time instant simul-
taneously. Discrete-time models effectively capture trans-
portation networks (e.g. railway or bus networks) in which
vehicles depart on particular time instants. However, re-
garding road networks they are not accurate enough, since
what happens between two adjacent time instants cannot be
told. Moreover, discrete-time algorithms are not efficient.
Suppose we want to know all fastest paths during some time
interval (allFP Query). Independent to the number of differ-
ent fastest paths (which may be small) in the answer set, the
discrete-time algorithm needs to perform one query per time
instant in the query interval. Even if this is done simultane-
ously for all leaving time instants it is still computationally
inefficient.

Another work on fastest-path computation is [12, 13].
However, the network model proposed is beyond GIS. For
instance, it allows unrestricted waiting of objects at the
nodes, which is not applicable in road networks since un-
restricted waiting at road junctions is prohibited. Also, they
consider the possibility of non-FIFO behavior, where an ob-
ject that leaves a node later than a previous object may arrive
the next-hop node earlier. Moreover, continuous-time mod-
els necessitate the processing of functions of leaving time.
Here, [12] only suggested operations on functions that are
necessary without investigating how this operations can be
supported. Therefore, regarding path computations in road
networks, this work is of theoretical interest only.

The Flow Speed Model (FSM) has been proposed in
[19]. In FSM the travel time on each road segmentni → nj

is a piece-wise linear function of the leaving time fromni.
The model is proven to preserve the FIFO property. The
paper only addresses the fastest path query for a given leav-
ing time instant. As we have discussed before, this makes
the fastest path problem degrade to the shortest path prob-
lem and therefore it avoids the complexity of manipulating
continuous-time functions.

Moreover, [3] proposes a storage model and an update
process of the speed on each road segment of road network.
The network model used is discrete-time model. To solve
the fastest path problem, the paper adopts an algorithm first
proposed in [14] . Although the system proposed is highly
adaptive to any change in the status of the road network it
does not guarantee that the actual fastest path is found.

4 Fastest-Path Computation

In this section, we present the basic version of our algo-
rithm. It novelly extends the A* algorithm, while using the
Euclidean distance divided by maximum network speed as
the lower-bound travel-time estimator.

4.1 From Speed Patterns To Travel Time Func-
tions

We first describe how to derive travel time functions on
each road segment from the CapeCod speed patterns. Con-
sider a road segmentni → nj . Let the distance bed. Let
the speed bev1 during [t1, t2) and v2 after t2 (including
t2). The travel time on the road segmentni → nj is a con-
tinuous, piecewise-linear function of the leaving time from
ni, l. In more detail, the travel-time function, denoted as
T (l ∈ [t1, t2], ni → nj), is equal to:

{
d
v1

, l ∈ [t1, t2 − d
v1

)
(1− v1

v2
)(t2 − l) + d

v2
, l ∈ [t2 − d

v1
, t2]

(1)

The relationship between speed and travel time on a road
segment is illustrated in Figure 1. As a corollary, the travel
time along any given path is also a continuous, piecewise-
linear function of the leaving time.

t1

v1

v2

t2

Speed

Leaving time

v
1

v
2

t
1

t − d /
2

v
1

t
2

Travel time

d /

d /

Leaving time

(a) Speed (b) Travel time

Figure 1. The travel time on a road segment
as a piecewise linear function of the leaving
time.

In case an object moving on a single road segment en-
counters more than two different speed patterns (unlikely to
happen in practice), the travel time function is still a contin-
uous, piecewise linear function of leaving time with more
than two linear segments.

4.2 Overview of Algorithm IntAllFastestPaths

A simple extension to the A* algorithm cannot be used
to solve neither the allFP nor the singleFP query, for these
queries involve a time interval instead of a single time in-
stant. Letn0 be the node to be expanded next and let
n0 have three neighbor nodes,n1, n2 and n3. A* picks
the neighbor nodeni (i ∈ [1..3]) to continue expanding if
T (l, s ⇒ ni) plus the estimated travel time fromni to e is
the smallest. The problem is that the leaving timel is not
a single value, i.e.l ∈ I and for different values ofl, dif-
ferent neighbors should be picked. One possible solution is
to expand all such neighbors simultaneously. However, ex-
panding all picked neighbors may result in an exponential

number of paths being expanded regardless the size of the
answer set.

Instead, we propose a new algorithm calledIntAll-
FastestPaths. The main idea of the algorithms is summa-
rized below:

1. Maintain a priority queue of expanded paths, each of
which starts withs. For each paths ⇒ ni, maintain
T (l, s ⇒ ni) + Test(ni ⇒ e) as a piecewise-linear
function of l ∈ I. Here, Test(ni ⇒ e) is a lower
bound estimation function of the travel time fromni

to the end nodee. In the basic version, we choose
the naive estimator,deuc(ni, e)/vmax, which is the Eu-
clidean distance betweenni ande, divided by the max
speed in the network.

2. Similar to the A* Algorithm, in each iteration pick a
path from the priority queue to expand. Pick the path,
whose maintained function’s minimum value duringI
is the minimum among all paths. Here, how to expand
a path is non-trivial and will be discussed in details
later in this section.

3. The first path ending toe that is picked from the pri-
ority queue is the answer to the singleFP query. The
optimal leaving time is the time instant at which the
travel time function of the path is getting its minimum
value.

4. Maintain a special travel-time function called the
lower border function. It is the lower border of travel
time functions for all identified paths (i.e. paths al-
ready picked from the priority queue) that end toe. In
other words, for any time instantl ∈ I, the lower bor-
der function has a value equal to the minimum value
of all travel time functions of identified paths froms
to e. This function consists of multiple travel time
functions, each corresponding to some path froms to
e and some subinterval ofI during which this path is
the fastest.

5. Stop either when there is no more path left in the pri-
ority queue, or if the path picked to be expand next
has a minimum value no less than the maximum value
of the lower border function. Report the lower border
function as the answer to the allFP query.

Below we use a running example to further describe the
ideas of the algorithm.

4.3 Initialization

The example involves a simple road network given in
Figure 2. We are interested in finding the fastest path from
s to e at some time duringI =[6:50-7:05].

1
s e

n

2

2
s → e: [6-8):1/3
s → n: [6-7):1/3, [7-8):1
n → e: [6-7:08):1/3, [7:08-8):1/10

Figure 2. A simple road network. Distances
are given on the edges. Speed patterns
(#mpm) are given at the right of the network.

Initially, the priority queue contains only one entry,
which corresponds to the unexpanded nodes. To get the
required information regardings and the outgoing edges
we perform aFindNode(s) operation. In its adjacency list
there are two neighbors of it:e andn. According to Equa-
tion 1, we have,T (l ∈ [6:50-7:05) , s → e) = 6min
andT (l ∈ [6:50-7:05) , s → n) equal to





6, l ∈ [6:50-6:54)
2
3 (7:00 − l) + 2, l ∈ [6:54-7:00)

2, l ∈ [7:00-7:05]

As expressed in step 1 of Algorithm IntAllFastestPaths, in
the priority queue we order the paths not byT (), but by
T ()+Test(). The functions of the two paths are compared in
Figure 3. Here,Test(n ⇒ e) = 1min, sincedeuc(n, e) = 1
mile andvmax = 1mpm.

T()+Test()

6:50 6:54 7:00 7:05 l

3

6

7

s −> n

s −> e

Figure 3. Comparison of the functions T () +
Test() associated with paths s → e and s → n.

According to step 2, the paths → n to be expanded next,
since its minimum value, 3, is smaller than the minimum
value, 6, of the paths ⇒ e.

4.4 Path Expansion

In general, to expand a paths ⇒ n, first all the required
information for n and its adjacent nodes needs to be re-
trieved, Then, for each neighbornj of n the following steps
need to be followed:

• Given the travel time function for the paths ⇒ n and
the leaving time intervalI from s, determine the time

interval during which the travel time function for the
road segmentn → nj is needed.

• Determine the time instantst1, t2, . . . ∈ I at which
the resulting function, i.e. the travel time function for
the paths ⇒ nj , T (l ∈ I, s ⇒ nj), changes from one
linear function to another.

• For each time interval[t1, t2), . . . , determine the cor-
responding linear function of the resulting function
T (l ∈ I, s ⇒ nj).

In our example, the time interval forn → e is determined
to be [6:56, 7:07] as shown in Figure 4. At time 6:50 (start
of I), the travel time along the paths → n is 6 minutes.
Therefore, the start of the leaving time interval forn →
e, i.e. the start of arrival time interval ton, is 6:50+6min
= 6:56. Similarly, the end of the leaving time interval is
7:05+2min = 7:07.

T(l, s −> n)

6:50 6:546:56 7:00 7:05 l

6

7:07

2

Figure 4. The time interval, [6:56-7:07], during
which the speed on n → e is needed.

During the time interval [6:56-7:07], the travel time on
n → e, T (l ∈ [6:56-7:07] , n → e) is

{
3, if l ∈ [6:56-7:05)
10− 7

3 (7:08 − l), if l ∈ [7:05-7:07]

There are two cases that trigger the resulting travel time
function T (l, s ⇒ n → e) to change from one linear
function to another. In the first, simple case the function
T (l, s ⇒ n) changes. The time instants at which the re-
sulting function changes are the ones at whichT (l, s ⇒ n)
changes. In Figure 5, these correspond to time instants 6:50,
6:54 and 7:00. In the second, trickier case, the changes
of the resulting function are triggered by the changes of
T (l, n → e), e.g. at time 7:05. In this example, we de-
termine that at time 7:03,T (l, s ⇒ n → e) changes. The
reason is that if one leavess at 7:03, since the travel time
on s ⇒ n is 2 minutes, one will arrive atn at 7:05. At
that time the travel time function ofn → e changes. To
find the time instant 7:03, we find the intersection of the
functionT (l, s ⇒ n) with a 135o line passing through the
point (7:05, 0). The time instant 7:03 is the leaving time
corresponding to that intersection point.

T(l, n −> e)

l6:50 6:54 6:56 7:00 7:05 7:077:03

Travel time

9

3

2

6

5

T(l, s => n −> e)

T(l, s => n)

Figure 5. The time instants at which T (l, s ⇒
n → e) changes to another linear function,
and the T (l, s ⇒ n → e) function.

Now that we have determined the four time instants 6:50,
6:54, 7:00, and 7:03, we are ready to create the 4-piece func-
tion T (l ∈ I, s ⇒ n → e) by combiningT (l, s ⇒ n) and
T (n → e).

We know that for eachl, T (l, s ⇒ n → e) is equal to
T (l, s ⇒ n) plus T (l′, n → e), wherel′ is the time at
which noden is reached. That is,l′ = l + T (l, s ⇒ n).
We have the following algorithm to expand a path, for every
identified time instantt ∈ {t1, t2, . . . } (e.g. 6:50):

• Retrieve the linear function ofT (l, s ⇒ n) at timet.
Let it beα ∗ l + β.

• Retrieve the linear function ofT (l′, n → e) at time
t′ = t + (α ∗ t + β). Let it beγ ∗ l′ + δ.

• Compute a new linear function(α ∗ l + β) + (γ ∗ (l +
α ∗ l + β) + δ)), which can be re-written as(α ∗ γ +
α+γ) ∗ l +(β ∗γ +β + δ). This is the linear function
as part ofT (l, s ⇒ n → e), for the time interval from
t to the next identified time instant.

For instance, the combined functionT (l ∈ I, n ⇒ e),
which is shown in Figure 5, is computed as follows. At
t =6:50, the first linear function is a constant function 6.
We gett′ = t+6=6:56. The second linear function starting
with 6:56 is another constant function 3. So the combined
function is 9, which is valid until the next identified time
instant.

At t =6:54, the first linear function is23 (7:00 − l) + 2.
We havet′ =6:54+6=7:00. The second linear function is 3.
The combined function is23 (7:00 − l) + 5.

At t =7:00, the first function is constant 2. At
t′ =7:00+2=7:02, the second function is 3. So the com-
bined function is 5.

Finally, at t =7:03, the first function is 2, and at
t′ =7:03+2=7:05, the second function as10− 7

3 (7:08 −l′).
And thus the combined function is2+(10− 7

3 (7:08 −(l+
2))) = 12− 7

3 (7:06 − l).

4.5 The singleFP Query Result

After the expansion, the priority queue contains two
functions, as shown in Figure 6. Note that in both func-
tions, the lower bound estimation part is 0, since both paths
already end toe.

T()+Test()

l6:50 6:54 7:00 7:057:03

9

6

5

T(l, s => n −> e)T(l, s => n −> e)

T(l, s −> e)

Figure 6. The two functions in the priority
queue. s ⇒ n → e is the result for singleFP.
At 7:00 it has the least travel time (5 min).

The next step of Algorithm IntAllFastestPaths is to pick
the paths ⇒ n → e, as its minimum value (5min) is glob-
ally the smallest in the queue. As step 3 of Algorithm In-
tAllFastestPaths shows, this path is the answer to the sin-
gleFP query since it ends toe. Any time instant in [7:00-
7:03] is an optimal leaving time, for it will result in the
minimum travel time. If we only want to solve the singleFP
query, the algorithm terminates.

4.6 The Lower Border Function and The allFP
Query Result

If we want to solve the allFP query, we are not done yet.
Some other path to be identified later on may be the fastest
path at some time inI other than [7:00-7:03]. So we remove
this path from the priority queue and continue expanding
other paths. An important question that arises here is when
do we stop expanding, as expanding all paths to the end
node is prohibitively expensive. The algorithm terminates
when the next path has a minimum value no less than the
maximum value of the maintainedlower border function.

When there is only one identified path that ends withe,
the lower border function is the function of this path. In
Figure 6,T (l, s ⇒ n → e) is the lower border function.
As each new path ending withe is identified, its function is
combined with the previous lower border function. E.g. in
Figure 7 the new lower border function, after the function
T (l, s → e) is removed from the priority queue, is shown
as the thick polyline.

The algorithm can terminate if the next path to be ex-
panded has a minimum value no less than the maximum
value of the lower border function (in this case, 6).Since the
maximum value of the lower border keeps decreasing, while

T()+Test()

l6:50 6:54

9

6

5

T(l, s => n −> e)T(l, s => n −> e)

T(l, s −> e)

7:057:037:00

6:58:30 7:03:26

Figure 7. The lower border and the result for
Query 3.

the minimum travel time of paths in the priority queue keeps
increasing, the algorithm IntAllFastestPaths is expected to
terminate very fast. In our example, the set of all fastest
paths froms to e whenl ∈[6:50-7:05] is:





s → e, if l ∈ [6:50-6:58:30)

s → n → e, if l ∈ [6:58:30-7:03:26)

s → e, if l ∈ [7:03:26-7:05]

5 Lower-Bound Travel-Time Estimator

In Section 4, we used the Euclidean distance between
an intermediate noden and the end nodee divided by the
maximum speed on the network to estimate the travel time
from n to e. Although this estimator is guaranteed to be
a lower bound of the actual travel time, it can be highly
inaccurate. This will result in an inefficient execution of the
IntAllFastestPaths algorithm.

In this section, we propose a novel lower-bound travel
time estimator, theboundary-node estimator. The
boundary-node estimator is based on pre-computation and,
in most cases, is tighter than the Euclidean distance divided
by the maximum speed estimator. For clarity, we present
the idea in terms of distance. And extension to travel time
is omitted due to space limitations.

To compute the boundary-node distance estimator (1)
we partition the space into non-overlaping cells. Non-
overlaping space partinioning has appeared before in the lit-
erature, e.g. [2]. Aboundary node [9] of a cell is a node
directly connected with some other node in a different cell.
That is, any path linking a node in a cellC1 with some node
in a different cellC2 must go through at least two bound-
ary nodes, one inC1 and one inC2. (2) For each pair of
cells, (C1, C2), we pre-compute the distance of the short-
est path from each boundary node inC1 to each boundary
node inC2 and store the smallest one among them. This
computation can be performed efficiently by collapsing the
set of boundary nodes inC1 into a single start node and
the set of boundary nodes inC2 into a single end node.

(3) For each node in a cell, we pre-compute the distance
of the shortest path from and to each boundary node and
store the smallest one among them. (4) The computation of

C2 b
2

b
4

b
1

b
3

C1

e n

Figure 8. Boundary-node estimator

the boundary-node distance estimator is illustrated in Fig-
ure 8. Letb1 be a boundary node inC1 andb2 a boundary
node inC2. Let’s assume that the distance of the short-
est path fromb1 to b2 (thick poly-line) is smaller than the
distance of all other shortest paths from some boundary
node inC1 to some boundary node inC2. That is, if b′1
is some boundary node inC1 andb′2 some boundary node
in C2, d(b1, b2) ≤ d(b′1, b

′
2). Let b3 be the nearest boundary

node fromn, and letb4 be the nearest boundary toe. The
boundary-node distance estimator is calculated as:

dest(n, e) = d(n, b3) + d(b1, b2) + d(b4, e)

Theorem 1 The boundary-node estimator is a lower bound
of the network distanced(n, e).

Proof. Any path fromn to e consists of three parts: (i)
from n to some boundary nodeb′1 ∈ C1; (ii) from b′1 to
some boundary nodeb′2 ∈ C2; and (iii) from b′2 to e. By
the fact thatd(n, b1) ≤ d(n, b′1), d(b1, b2) ≤ d(b′1, b

′
2), and

d(b2, e) ≤ d(b′2, e) the theorem holds.¤

6 Experimental Results

In this section we experimentally evaluate the algorithm
and the proposed optimizations for both allFP and singleFP
Queries. Moreover, we compare the CapeCod model ap-
proach to answer the singleFP Query with the Discrete Time
model approach.

Finally, under the experimental setup described in Ta-
ble 1, we compare the CapeCod model approach with the
approach used by most commercial navigation systems i.e.
the speed on a road segment is assumed to be constant and
equal to the speed limit. The CapeCode model gives 50%
improvement regarding the travel time. This improvement
varies depending on the speed on the road network during
the rush hours. For instance, if the there is no speed dif-
ference between the inbound highways and the local roads
during the rush hours then our method saves nothing re-
garding the travel time. Due to space limitations, we do not
present the results of this comparison.

6.1 Experiment Setup

Our evaluation is performed using real data for the road
network and synthetic data for the CapeCod speed patterns.

In particular, our road network is built on a real dataset
of 20,461 directed edges and 14,456 nodes, representing all
roads in the Suffolk county of Massachusetts. The Suffolk
county covers the metropolitan of Boston and therefore, it
suffers the rush-hour traffic symptoms. The dataset is ex-
tracted from U.S. Census Bureau, 2003 Tiger/Line which
classifies the roads into different types, e.g. interstate high-
ways, local rural roads, etc. The nodes in the road network
represent the intersections and the start/end of roads.

Note that, our solution is mostly meaningful in networks
that exhibit traffic congestion, that is networks around
metropolitan cities. Countryside roads rarely get congested
and this is the main reason we pick the small network of
the Suffolk county. On the other hand, our fastest path
algorithm can easily scale in larger networks by employ-
ing hierarchical network partitioning [9, 7, 8, 16]. In this
case, the size of the network partitions can be chosen to
be equal to the size of the network explored in our experi-
ments. That will require applying our algorithm few more
times (twice at each level of the hierarchy and once at the
top level) which will not affect much the performance of
our approach.

Regarding the CapeCod patterns, we define two day-
categories: workday and non-workday, while we distin-
guish the road segments into (a) inbound highways, (b) out-
bound highways, (c) local roads outside Boston and (d) lo-
cal roads in Boston. Based on our unofficial driving experi-
ence, we assign realistic driving speed to roads as shown in
Table 1.

To represent the disk-based road network, we used the
connectivity-clustered access method (CCAM) [18] as de-
scribed in Section 2. In all our experiments, we set the page
size to 2048 bytes. All the algorithms are coded in Java, and
running on a Dell PC with a 2.66-GHz Pentium 4 processor.

6.2 Measuring the Effects of Optimizations

This set of experiments investigates the effect of the pro-
posed optimizations, i.e. the new lower bound estimator.
The number of expanded nodes shows the extent to which
the search space is pruned and the computational effort that
is needed to answer a query. We pick to report the num-
ber of expanded nodes instead of the query time, since the
former is independent from any programming language and
system used. The query time for all the experiments varies
between a fraction of a second to a few seconds. For each
experiment we pose 100 queries varying the Euclidean dis-
tance between the source and the destination nodes. For
each query we use the following approaches: (a) the naive

Inbound Highways Outbound Highways Local Roads in Boston Local Roads outside Boston
Non-workday 65 MPH 65 MPH 40 MPH 40 MPH

Workday
20 MPH 7am-10am
65 MPH otherwise

30 MPH 4pm-7pm
65 MPH otherwise

20 MPH 7am-10am & 4pm-7pm
40 MPH otherwise 40 MPH

Table 1. The CapeCod pattern schema used.

(a) singleFP Query (b) allFP Query

Figure 9. The effect of the optimizations vary-
ing the Euclidean Distance

lower bound estimator (naiveLB), i.e. the Euclidean dis-
tance divided by the maximum speed estimator; and (b) the
boundary node lower bound estimator (bdLB).

Figure 9 illustrates the effect of the optimization for both
singleFP (a) and allFP Query (b). The query time interval
is set to 3 hours (the morning rush hours) while the distance
between source and end node varies from 1 to 8 miles. As
it can be seen the proposed lower-bound estimator signif-
icantly prunes the search space during the network expan-
sion. The effect of the optimizations becomes larger as the
the Euclidean distance between the source and the destina-
tion node increases.

6.3 Comparison with the Discrete Time Model

In the following set of experiments we compare the
CapeCod model approach proposed in this paper to answer
the singleFP Query (i.e. find the fastest path between a
source and a destination node given a query time interval)
and the Discrete Time model approach. Recall that in the
Discrete Time model the continuous query time interval is
discretized into several time instants and a fastest path query
is posed for every time instant. The fastest path among all
the resulting fastest paths is returned as an answer. For the
time instant fastest path query we use the original A* algo-
rithm [15].

As mentioned in Section 3, the discrete time model lacks
accuracy on picking the fastest path and therefore on the
resulting travel time. The accuracy of the result depends
on the degree of the discretization. The more the discrete
time instants the better the accuracy and the worse the query
time. On the other hand our method is 100% accurate (since
a continuous time models is used).

For each one of the two models we pose 100 queries.
Regarding the discrete time model, each one of the queries
runs multiple times for different degree of discretization.
The query time interval for all the queries is set to 2 hours
during the rush hours (during which the speed changes),
while the Euclidean distance between the source and the
destination node is about 7 to 8 miles. We compare the
travel time and the query time of the two models. In both
cases we use the ratio of the two measurements, i.e. Dis-
crete Time model query time divided by CapeCod model
travel time and Discrete Time model query time divided by
CapeCod model query time respectively.

Figure 10(a) compares the travel time of the two ap-
proaches while Figure 10(b) compares the query time for
four different degrees of discretization. That is, for the dis-
crete time model we pose a query every (i) 1 hour (ii) 10
minutes (iii) 1 minute and (iv) 10 seconds, within the query
time interval. Posing a query every 1 hour results in around
1.27 times worse travel time compared to our method while
the query time is better than the query time of our method.
While the degree of discretization increases, although the
travel time given by the discrete model approaches the travel
time given by our model, the query time increases exponen-
tial. Posing a query every 10 minutes results in 1.21 times
worse travel time accuracy while making the discrete time
approach 5 times slower than our approach. For the last de-
gree of discretization, i.e. posing a query every 10 seconds,
although the discrete model is accurate enough regarding
the travel time, the query time is around 200 times worse
than our approach.

7 Conclusions

In this paper, we addressed the problem of computing
fastest paths over road networks with traffic speed pat-
terns. We proposed the CapeCod patterns to capture real-
life speed information. Moreover, we proposed and solved
two variations of the fastest path query given a leaving (or
arrival) time interval. These queries have direct real-life ap-
plications. Our solutions to the queries are novel extensions
to the A* algorithm. An interesting and novel contribution
is the proposal of a new lower-bound estimator. Our al-
gorithms were experimentally evaluated. The experimental
results confirmed that our methods are more accurate and
more efficient than straightforward approaches (e.g. the dis-
crete time model). GIS systems like MapQuest can be im-
proved by incorporating our ideas.

(a) Accuracy (b) Query Time Ratio

Figure 10. CapeCod vs. Discrete Time Model. Travel Time and Query Time comparison for different
levels of discretization.

This paper opens many interesting and practical issues
for future work. Most existing work on spatial queries
(kNN, RNN, closest pairs, clustering, etc.) considers either
the Euclidean distance or the shortest network distance. It is
interesting to study the impact on these work if we consider
the fastest travel time instead.

References

[1] I. Chabini. Discrete Dynamic Shortest Path Problems
in Transportation Applications.Transportation Research
Record, 1645:170–175, 1998.

[2] V. Chakka, A. Everspaugh, and J. Patel. Indexing Large
Trajectory Data Sets With SETI. InBiennial Conf. on Inno-
vative Data Systems Research (CIDR), 2003.

[3] H. D. Chon, D. Agrawal, and A. E. Abbadi. FATES: Find-
ing A Time dEpendent Shortest path. InProceedings of the
4th International Conference on Mobile Data Management,
pages 165–180. Springer-Verlag, 2003.

[4] Y. Huang, N. Jing, and E. Rundensteiner. Spatial Joins Using
R-trees: Breadth-First Traversal with Global Optimizations.
In VLDB, pages 396–405, 1997.

[5] B. Jiang. I/O-Efficiency of Shortest Path Algorithms: An
Analysis. InICDE, pages 12–19, 1992.

[6] N. Jing, Y.-W. Huang, and E. A. Rundensteiner. Hierarchi-
cal Optimization of Optimal Path Finding for Transporta-
tion Applications. InProc. of Int. Conf. on Information and
Knowledge Management (CIKM), pages 261–268, 1996.

[7] N. Jing, Y.-W. Huang, and E. A. Rundensteiner. Hierarchical
Encoded Path Views for Path Query Processing: An Optimal
Model and Its Performance Evaluation.TKDE, 10(3):409–
432, 1998.

[8] S. Jung and S. Pramanik. HiTi Graph Model of Topograph-
ical Roadmaps in Navigation Systems. InICDE, pages 76–
84, 1996.

[9] F. Kamoun and L. Kleinrock. Hierarchical Routing for Large
Networks: Performance Evaluation and Optimization.Com-
puter Networks, 1:155–174, 1977.

[10] R.-M. Kung, E. N. Hanson, Y. E. Ioannidis, T. K. Sellis,
L. D. Shapiro, and M. Stonebraker. Heuristic Search in

Data Base Systems. InExpert Database Systems Workshop
(EDS), pages 537–548, 1984.

[11] K. Nachtigall. Time depending shortest-path problems with
applications to railway networks.European Journal of Op-
erational Research, 83:154–166, 1995.

[12] A. Orda and R. Rom. Shortest-Path and Minimum De-
lay Algorithms in Networks with Time-Dependent Edge-
Length. Journal of the Association for Computing Machin-
ery (JACM), 37(3):607–625, 1990.

[13] A. Orda and R. Rom. Minimum Weight Paths in Time-
Dependent Networks.Networks: An International Journal,
21, 1991.

[14] S. Pallottino and M. G. Scutellà. Shortest Path Algorithms
in Transportation Models: Classical and Innovative Aspects.
In P. Marcotte and S. Nguyen, editors,Equilibrium and Ad-
vanced Transportation Modelling, pages 245–281. Kluwer
Academic Publishers, 1998.

[15] S. Russell and P. Norvig.Artificial Intelligence: A Modern
Approach. Prentice-Hall, Englewood Cliffs, NJ, 2nd edition
edition, 2003.

[16] S. Shekhar, A. Fetterer, and B. Goyal. Materialization
Trade-Offs in Hierarchical Shortest Path Algorithms. In
SSTD, pages 94–111, 1997.

[17] S. Shekhar, A. Kohli, and M. Coyle. Path Computa-
tion Algorithms for Advanced Traveller Information System
(ATIS). In ICDE, pages 31–39, 1993.

[18] S. Shekhar and D.-R. Liu. CCAM: A Connectivity-
Clustered Access Method for Networks and Network Com-
putations.TKDE, 9(1):102–119, 1997.

[19] K. Sung, M. Bell, M. Seong, and S. Park. Shortest paths
in a network with time-dependent flow speeds.European
Journal of Operational Research, 121(1):32–39, 2000.

[20] J. L. Zhao and A. Zaki. Spatial Data Traversal in Road Map
Databases: A Graph Indexing Approach. InProc. of Int.
Conf. on Information and Knowledge Management (CIKM),
pages 355–362, 1994.

