
A Framework for Access Methods for Versioned
Data

Betty Salzberg�1, Linan Jiang2, David Lomet3, Manuel Barrena4��,
Jing Shan1, and Evangelos Kanoulas1

1 College of Computer & Information Science, Northeastern University,
Boston, MA 02115

2 Oracle Corporation, Oracle Parkway, Redwood Shores, CA 94404
3 Microsoft Research, One Microsoft Way, Redmond, WA 98052

4 Universidad de Extremadura, Cáceres, Spain

Abstract. This paper presents a framework for understanding and con-
structing access methods for versioned data. Records are associated with
version ranges in a version tree. A minimal representation for the end set
of a version range is given. We show how, within a page, a compact repre-
sentation of a record can be made using start version of the version range
only. Current-version splits, version-and-key splits and consolidations are
explained. These operations preserve an invariant which allows visiting
only one page at each level of the access method when doing exact-match
search (no backtracking). Splits and consolidations also enable efficient
stabbing queries by clustering data alive at a given version into a small
number of data pages. Last, we survey the methods in the literature to
show in what ways they conform or do not conform to our framework.
These methods include temporal access methods, branched versioning
access methods and spatio-temporal access methods. Our contribution
is not to create a new access method but to bring to light fundamental
properties of version-splitting access methods and to provide a blueprint
for future versioned access methods. In addition, we have not made the
unrealistic assumption that transactions creating a new version make
only one update, and have shown how to treat multiple updates.

1 Introduction

Many applications such as medical records databases and banking require his-
torical archives to be retained. Some applications such as software libraries ad-
ditionally require the ability to reconstruct different historical versions, created
along different versioning branches. For this reason, a number of access methods
for versioned data, for example [11,4,1,10,7,13,8], have been proposed.

In this paper, we present a framework for constructing and understanding
versioned access methods. The foundation of this framework is the study of
version splitting of units of data storage (usually disk pages).
� This work was partially supported by NSF grant IRI-9610001 and IIS-0073063 and

by a grant for hardware and software from Microsoft Corp.
�� This work was partially supported by DGES grant PR95-426.

E. Bertino et al. (Eds.): EDBT 2004, LNCS 2992, pp. 730–747, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [594.962 841.96] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: AbbrechenEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Error /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

A Framework for Access Methods for Versioned Data 731

Version splitting takes place when a storage unit becomes full. However,
unlike in B-tree page splitting, some data items are copied to a new storage unit.
Thus the data items are in both the old storage unit and the new storage unit.
The motivation for copying some of the data when a storage unit is too full
to accept a new insertion is to make the stabbing query (sometimes called
“version-slice query”, “time-slice query” or “snapshot query”) (“Find all data
alive at this version”) efficient. Version splitting (and version-and-key splitting
and page consolidation, both of which include version-splitting) cluster data in
storage units so that when a storage unit P is accessed, a large fraction of the
data items in P will satisfy the stabbing query.Many access methods for versioned
data [11,4,1,10,7,13,8,12,6,9] use version-splitting techniques.

Our contribution is to explain version-splitting access methods as a general
framework which can be applied in a number of circumstances. We also consider
a more general situation where one transaction that creates a version can have
more than one operation.(Many existing papers assume that a new version is
created after each update. This is an unrealistic assumption.) It is hoped that
the clearer understanding of the principles behind this technique will simplify
implementation in future versioned access methods. In particular, it should be-
come obvious that several methods which have been described in very different
ways in the literature share fundamental properties.

Outline of Paper

The paper is organized as follows. In the next section, we will describe what we
mean by versioned data and how it can be represented. Version splitting, version-
and-key splitting and page consolidation is presented in section 3. In section 4,
we describe operations on upper levels of the access method. In section 5, we
will show how the related work fits into our framework. Section 6 concludes the
paper with a summary. Boldface is used when making definitions of terms and
italics is used for emphasis.

2 Versions, Versioned Data, and Version Ranges

In this section, we discuss versions, versioned data and version ranges. To illus-
trate our concepts, we begin with a database with three data objects or records,
which are updated over time. We will start our first example with only two
versions, followed by the second one with three versions. After presenting these
examples, we will give some formal definitions.

2.1 Two-Version Example

First we suppose we have only two versions of the database. The first version is
labeled v1 and the second version is labeled v2. In this example we have three
distinct record keys. Each record is represented by a triple: a version label, a

732 B. Salzberg et al.

 3

version v

v(),,

v d,,(
kv d(),,

dk

1

1

1

1

k)
 1 1

 2 2

 3

Fig. 1. Database start-
ing with one version.

’

version v

v(),,

v d,,(
kv d(),,

1

1

1

1

)
 1

 2 2

 3 3

version v

v(,,

v d,,(
kv(),,

k
k) 2 2

 3 3

2

 1 1d2

2

2

d)

d

k
k

 1

Fig. 2. Database with
two versions.

’(),,v k1 1 1

d,k) 2 2v1v , 2

d,k)v1v{(, 2 3 3

v(,,) 1 1d2

{

 } ,

, }(

d k

Fig. 3. Records are associ-
ated with a set of versions.

key, and the data. So with two versions, we get six records. Keys are version-
invariant fields which do not change when a record is updated. For example,
if records represent employees, the key might be the social security number of
the employee. When the employee’s salary is changed in a new version of the
database, a new record is created with the new version label and the new data,
but with the old social security number as key.

Figure 1 gives the records in version v1. The ki’s are the version-invariant
keys, which do not change from version to version. The di’s are the data fields.
These can change. Now let us suppose that in the second version of the database,
v2, only the first record changes. The other two records are not updated. We
indicate this by using d′

1 instead of d1 to show that the data in the record with
key k1 has changed. We now list the records of both v1 and v2 in Figure 2 so
they can be compared.

Note that there is redundancy here. The records with keys k2 and k3 have
the same data in v1 and v2. The data has not changed.

What if instead of merely three records in the database there were a million
records in the database and only one of them was updated in version v2? This
motivates the idea that the records should have a representation which indicates
the set of versions for which they are unchanged. Then there are far fewer records.
We could, for example, list the records in Figure 3.

Indicating the set of versions for which a record is unchanged is in fact what
we shall do. However, in the case that there are a large number of versions for
which a record does not change, we would like a shorter way to express this
than listing all the versions where there is no change. For example, suppose the
record with key k2 is not modified for versions v1 to v347 and then at version
v348 an update to the record is made. We want some way to express this without
writing down 347 version labels. One solution is to list the start and the end
version labels, only. But there is another complication. There can be more than
one end version since in some application areas, versions can branch [10,7,8].

2.2 Three-Version Example with Branching

Now we suppose we have three versions in the database. When we create version
v3, it can be created from version v2 or from version v1. In the example in Figure
4, we have v3 created from v1 by updating the record with key k2. The record
with key k1 is unchanged in v3. We illustrate the version derivation history for

A Framework for Access Methods for Versioned Data 733

1 v2

v(),,

v d,,(
kv d(),,

dk1

1

1

k)
 1 1

 2 2

 3 3

(,,

v d,,(
kv d(),,

k
k) 2 2

 3 3

 1 12

2

2

v)d’

version v

v(),,

v ,,(
kv d(),,

dk
k

 1 1

 2

 3 3

3

3

3

3

 2d)’

version v version

Fig. 4. Database with three ver-
sions.

3
1v

v2

v

Fig. 5. Version
tree for the three-
version example.

’d,k),v{(,

d,k) 2 2,v1v{(, 2

v1 3 1 1

v{(1 , 2v v, 3 d,k), 3 3

v(,,) 1 12

v(,, k)3 2 2

d

d

 }

 }

 }

k

’

Fig. 6. Records are
listed with a set of
versions.

this example in Figure 5. Now we show the representation of the records in this
example using a single version label with each record.

We list with each record the set of versions for which they are unchanged in
Figure 6.

We see that we cannot express a unique end version for a set of versions when
there is branching. There is a possible end version on each branch. So instead
of a list of versions we might keep the start version and the end version on each
branch.

However, we also want to be able to express “open-endedness”. For example,
suppose the record with key k3 is never updated in a branch. Do we want to keep
updating the database with a new version label as an “end version” for k3 every
time there is a new version of the database in that branch? And what if there
are a million records which do not change in the new version? We would have
to find them all and change the end version set for each record. We shall give
a representation for end sets with the property that only when a new version
updates a record need we indicate this in the set of end versions for the original
record.

To explain these concepts more precisely, we now introduce some formal
definitions.

2.3 Versions

We start with an initial version of the database, with additional versions being
created over time. Versions V is a set of versions. Initially V = {v1}, where v1 is
called the initial version. New versions are obtained by updating or inserting
records in an old version of V or deleting records from an old version in V.
(Records are never physically deleted. Instead, a kind of tombstone or null record
is inserted in the database.)

The set of versions can be represented by a tree, called the version tree.
The nodes in the version tree are the versions and they are indicated by version
labels such as v1 and v2. There is an edge from vj to vk if vk is created by
modifying (inserting, deleting or updating the data) some records of vj . At the
time a new version is created, the new version becomes a leaf on the version tree.
There are many different ways to represent versions and version trees, e.g.[2]. We
do not discuss these versioning algorithms here because our focus is an access

734 B. Salzberg et al.

method for versioned data, not how to represent versions. The version tree of
our three-version example is illustrated in Figure 5.

Temporal databases are a special case of versioned databases where the ver-
sions are totally ordered (by timestamp). In this case, the version tree is a simple
linked list.

We denote the partial order (resp. total order for a temporal database) on
the nodes (versions) of the version tree with the “less than” symbol. We say
that for v ∈ V , anc(v) = {a|a < v} is the set of ancestors of v. The set
desc(v) = {d|v < d} is the set of descendents of v. A version vk is more
recent than vj if vj < vk (i.e. vk ∈ desc(vj)).This is standard terminology. For
our three-version tree in Figure 5, desc(v1) = {v2, v3}, anc(v3) = anc(v2) =
{v1} and v2 and v3 are more recent than v1.

2.4 Version Ranges

As we have seen in the two-version and three-version example above, records
correspond to sets of versions, over which they do not change. Such a set of
versions (and the edges between them) forms a connected subset of the version
tree. We call a connected subset of the version tree a version range. (In the
special case of a temporal database a version range is a time interval.) We wish
to represent records in the database with a triple which is a version range, a key
and the record data. We show here how to represent version ranges for records
in a correct and efficient way.

A connected subset of a tree is itself a tree which has a root. This root is the
start version of a version range. Part of our representation for a version range
is the start version. We have seen that listing all the versions in a version range
is inefficient in space use. Thus, we wish to represent the version range using the
start version and end versions on each branch.

The major concern in representing end versions along a branch is that we do
not want to have to update the end versions for every new version for which the
record does not change. We give an example to illustrate our concern.

Let us look at Figure 7(a). Here we see a version tree with four nodes.
Suppose the version v4 is derived from v3 and the record R with key k3 in our
(three-record) database example is updated in v4. So we might say that v3 is an
end version for the version range of R. However, the Figure 7(b) shows that a
new version (version v5) can be derived from version v3. If v5 does not modify
R, v3 is no longer an end version for R. This example motivates our choice of
“end versions” for a version range to be the versions where the record has been
modified. The end versions will be “stop signs” along a branch, saying “you can’t
go beyond here.” End versions of a version range will not belong to the version
range.

For our example with R in Figure 7(b), we say the version range has start
version = v1 and end version = v4. The set of versions inside the version range
where R is not modified is S = {v1, v2, v3, v5}. Later, any number of descendents
of versions in S could be created. If these new descendents do not modify R,
one need not change the end set for the version range of R, even though the

A Framework for Access Methods for Versioned Data 735

(b)

1v 1v

v4

v3

v2

v

v2

v5

v
3

4

(a)

Fig. 7. Version range of R can not
go further along the branch of v4.

{}
d,k), 1 1)}v(,v1({
d,k),)}v(,v1(

 2

 3 2 2

(1(d,k),) 3 3

(,v(,k),)
(,v(,k),) 2

2

3

 1

 2d’
 1d’

{
v ,{}

{}

Fig. 8. The three-version ex-
ample with version range1.

version range of R has been expanded. No descendent of v4, however, can join
the version range of R. Now we give a formal definition for end versions of a
version range.

Let vr be a version range (hence a connected subset of the version tree). Let
start(vr) be the start version for vr. Remember that “<” is a partial order, so
saying ¬(a <= b) does not imply that a > b. Given these preliminaries we state
our definition as a minimality constraint on a set of versions.

The set of end versions for vr (denoted end(vr)) is the minimal set of
versions ev with the property that v ∈ vr if and only if start(vr) <= v and
∀ev ∈ end(vr),¬(ev <= v). That is, the set of end versions is the smallest
set of versions such that elements of vr other than start(vr) are descendents of
start(vr) which are not end versions nor descendents of end versions.

Saying that the set of end versions with this property is minimal implies two
interesting properties of end versions:

1. End versions must be descendents of the start version. Otherwise they could
be on some other branch, neither a descendent nor an ancestor of the start
version and hence redundant.

2. End versions cannot be ancestors or descendents of one another. Otherwise,
the more recent one would be redundant.

Using the definitions in this section, we represent records with a three-
tuple: (version range vr, key, data). The version range is in turn a pair
(start(vr), end(vr)). The three-version example is thus represented in Figure 8.

3 Pagination

In this section, we show how to store records in storage units (usually disk pages)
which partition the version-key space and produce good access properties. Let
us call the storage units “pages”. We will only look at data pages in this section.
In the next section we will look at the index pages which direct search to data
pages.

1 In figures we use { } to represent the null set, whereas in the text we use ∅

736 B. Salzberg et al.

3.1 Data Pages

Data pages correspond to one version range and one key range. A key range
for a page P is of form [LowKey(P), HighKey(P)). (Key ranges are half-open.)
(We consider only one-dimensional key spaces in this discussion.) Keys of records
stored in a data page P always lie within the key range of P . Version ranges of a
record stored in P always have a non-empty intersection with the version range
of P .

A key-version range (kr, vr) is a combination of key range kr and version
range vr. We denote KR(P) as the key range of page P , VR(P) as the version
range of page P and KVR(P) as the key-version range of page P . Using this
notation, a data page D with KV R(D) = (kr, vr) stores all records (vr′, k, d)
such that k ∈ kr and vr ∩ vr′ �= ∅.

Two key-version ranges (kr1, vr1) and (kr2, vr2) intersect when kr1 ∩ kr2
�= ∅ and vr1 ∩ vr2 �= ∅. The set of data pages partitions the key-version space.
This implies no two distinct data pages have intersecting key-version ranges and
every point in key-version space is in exactly one data page.

3.2 Compact Record Representation in Pages

It is possible to omit the end versions of a version range when storing a record in
a data page and still have correct search. When we do this we say that we have a
compact-record representation. This not only saves space, it makes updates
very easy. The record being updated does not need to be found or modified; one
only inserts the new record with the new data and the new start version and the
same key.

In the three-version example, if we use the usual representation of version
ranges as a pair (start version, set of end versions) we have Figure 9(a).

In this example, the end version set for the first record, R1, with key k1 is
{v2}, indicating that R1 was updated in version v2 to create a new record. The
start version of a new record (updating a previous record) is the same as an
end version of the previous record with the same key. We use this redundancy
to eliminate listing end versions of version ranges for records in data pages.
Let vr be a version range and let (vr, k, d) be a record in a page P . We say
(start(vr), k, d) is a compact record. The representation of the three-version
example using compact records is shown in Figure 9 (b). As we can see, the two
different representations of version ranges can be constructed from one other. So
in the rest of the paper, without lose of generality, we will adopt the compact
record representation.

Search for a given key k and version v which has been directed to page P
must look at all the records in P with key k and find the one whose start version
sv is the most recent one such that sv ≤ v.

If only the start versions, and not the end versions are stored, one must
explicitly mark deletion events to indicate that along some branch, a record is
no longer there. For this reason we define null records.

A Framework for Access Methods for Versioned Data 737

A null record is a triple (vr, k, null) where for each v ∈ vr, the versioned
record corresponding to key k has been deleted. A null record is really a marker
indicating that there is no data associated with version range vr and key k.
If (vr′, k, null) is a null record we say (start(vr′), k, null) is a null compact
record.

From now on, (v, k, d) means a compact record, and in the special case when
d = null, (v, k, null) is a null compact record. Here, v is the start version for the
version range of the record.

3.3 Operation Properties for Efficiency

In the next few subsections, we discuss page splitting and page consolidation.
The goal in these operations is to produce efficient stabbing queries without
too much replication. We will show the operations do yield efficient queries.
The replication factor has been measured experimentally in many papers (in
particular, [11]) not to be “too bad”; at most an average of three times the size
of the database with no replication and no empty space, a good trade-off for the
query efficiency.

To be deemed “efficient for stabbing queries” the access method should have
the property that whenever a data page is accessed in a stabbing query for
version v, a substantial percentage of the records in the page are alive for v. (A
record is alive for v if its version range contains v.) After describing current-
version splitting, key splitting, version-and-key splitting and page consolidation,
we shall show under what conditions efficiency guarantees for the stabbing query
can be made.

3.4 Splitting by Current Version

A current version is a leaf of the version tree. When new updates, deletes
or inserts are made by a version v which is a current version, they should be
inserted into the data page P whose key range contains the key of the update
and whose version range contains the parent of the new (current) version v in
the version tree. However, if P is full, a new page P ′ must be allocated. The
page P ′ will contain the new record. The records of P which were updated by
v will be moved to page P ′ and some of the records in P will be copied to page
P ′.

The new version v will become an end version for VR(P). The version range
for P ′ will be (v,∅). This is called current-version splitting. In this section, we
always split by a current version, i.e., a leaf of the version tree. (In some papers
we discuss in the related work section [11,8] splitting by non-current versions is
suggested.)

Records Copied or Moved to the New Page. The records which are copied
to the new page P ′ are those whose version range intersects both the version
range of P ′ and the version range of the old page P . The records which are

738 B. Salzberg et al.

 { }

d,k), 1 1)}v(,1({
d,k),)}v(,v1({

 2

 3 2 2

(,1(

v v1 ,k) 1 d(, 1

v1 k 3,)d(, 3

1 ,k) 2 d(, 2v

(,v2(

v(

v2 ,k 1,)(v2 ,k 1, 1)d(

v3 ,k 2, 2)(

d’

d’(

v

(a) (b)

,),) dk 3 3

,,) 1k 1)d’

,3 ,k,) 2 2)d’

 { }
 { }

Fig. 9. Three version example with
its compact record representation.

(b)

v1 ,k) 1 d(, 1

v2 ,k) 1 d’(,

v1 k 3,)d(, 3

v1 ,k) 2 d(, 2

 1

v1 ,k) 1 d(, 1

v1 ,k) 3 d(,

v3 k 2,)d’(, 2

 3

v1 ,k) 1 d(, 1

v2 ,k) 1 d’(,

v1 k 3,)d(, 3

v1 ,k) 2 d(, 2

 1

(a)

Fig. 10. When (v3, k2, d
′
2) is inserted, page

D is split by current version v3.

moved are records in P whose start version is v, and which are not null records.
Null records only mark the end of a version range for another record, so there is
no need to copy them to the new page if they do not have that function there.

More precisely, Let D be a data page identified by a key version range (kr, vr).
We define contents(D) = {(v, k, d)|(v, k, d) is a compact record in D}. We now
define the subset of contents(D) which will be moved or copied to a new page
during a current-version split.

Let vn be the new version which makes an update causing D to be current-
version split. The set of compact records moved from D to the new page is:

{(v′, k, d)|(v′, k, d) ∈ contents(D) ∧ ((v′ = vn) ∧ (d �= null))}

This is the set of records created by vn. This happens when the new version
updated several records in D and the first few fit in the page, but at some point
the page D became full and further updates by vn required a split. No null
records are moved.

Let T be a logical (not physical) temporary page holding records created by
vn with key in KR(D). The set of compact records of page D to be copied to
the new page is defined to be:

{(v′, k, d)|((v′, k, d) ∈ contents(D)) ∧ (v′ < vn ∧ d �= null)∧
(∀(v′′, k, d′) ∈ contents(D ∪ T) such that (v′′ ≤ vn ∧ v′′ �= v′), v′′ < v′)}

When we copy records from D to the new page, we do not want to copy any
with the same key as any record in T. The above definition for copied records
has this property. In the case, where a key k is not a key of a record in T, the
record in D with key k having start version as the most recent ancestor of vn is
copied. Null records are not copied.

Let us give an illustration using the two version example and the three-version
example. Suppose we have in page D our two-version records, create by v1 and
v2 and represented as compact records as in Figure 10 (a).

Suppose D can only hold 4 records. Now we update the record with key k2 in
v3 as before. We then have the records in the new page, D′ as shown in Figure
10 (b).

We have copied the two records which are not changed by v3 and we have
inserted the new updated record. The record created by version v2 is not included
in the new page because its start version is not an ancestor of v3. All three records

A Framework for Access Methods for Versioned Data 739

in D′ are alive for v3. The upper levels of the index will be directing search for
v1 and for v2 to D and for v3 to D′.

When we copy a compact record to a new page, we do not change its start
version even if the start version is not in the version range of the new page. In
the example in Figure 10(b), we retained the start version v1 in the two moved
records even though v1 is not in V R(D′) = (v3, ∅). There are several reasons for
this:

1. If a version range (or time interval) query (rather than a stabbing query) is
made, we will be able to recognize identical records obtained from different
data pages. (This is a query to find all the records alive in a version range.)

2. Copying is easier. No changes are made to the copied records.
3. Search within a page is unchanged and still correct.
4. Finding the set of historical records with the same key may have less disk

accesses. For example, given the most recent version number sv, to find all
historical records of key k1, we can search the index pages for key k1 and
version v < sv to find the previous versions. Otherwise, search will be less
efficient if a record of this version is copied over many pages.

3.5 Key Splits and Version-and-Key Splits

We will also be splitting data pages by key. For this we define subsets of contents
of pages which fall within a given key range. Splitting pages by key is done exactly
like in B-trees: a split key sk is chosen in KR(P). Then all records with key less
than sk remain in P and all records with key greater or equal to sk are moved
to the new page.

If the number of records copied or moved to a new data page during a current-
version split is above a certain threshold value Tk, a version-and-key split is made.
Here a current-version split is followed by a key split. Note that Tc < �Tk/2�
where Tc is the threshold for consolidation and Tk is the threshold for version-
and-key split.

A key split instead of version-and-key split will be used if the full page has
version range (v, ∅), where v is the current version. This can happen when a
transaction makes multiple updates. Figure 11 is an example. Assume v2 is the
current version. VR(P2) = (v2, ∅). Assume maximum page capacity is 4. When
a record (v2, k7, d7) is inserted into P2, a version-and-key split will be triggered,
as shown in figure 11(b). Actually the version split is not necessary since the
version range of P2 is only one version. In this situation, a pure key split, as
shown in figure 11(c), should be used instead. After the split, P3 will be posted
to the same parent as P2. It is the only parent of P3. The pure-key-split problems
mentioned later in this section and in section 4.1 will not happen in this situation
because the version range here contains only the current version. Note that this
is the only situation where a key split is not combined with a version split. We
call this a restricted key split. It is restricted to the case when the (old) full
page version range contains only one version.

740 B. Salzberg et al.

Fig. 11. When (v2, k7, d7) is inserted, a re-
stricted key split instead of a version and key
split is used.

Fig. 12. After (v4, k4, d4) and
(v5, k5, d5) are inserted, D′ need
to be split. (a) Pure key split with
split key = k3. (b) Version-and-key
split: first split at version v5 and
then key split at k3.

Our framework does not include pure key splits other than restricted key
splits as in figure 11, only version-and-key splits and version splits. Here is an
example to explain why we never do non-restricted key splits.

Look at D′ in Figure 10(b). There are three records in D′, all alive for v3.
Now suppose we insert into D′ the record (v4, k4, d4) using the version tree from
Figure 7(b). At this point there are three records alive in D′ for v3 and four for
v4.

Now we wish to insert (v5, k5, d5) in D′ but D′ is full. We shall use the version
tree in Figure 7(b) for v5 also, so we have v4 and v5 in desc(v3). Suppose we do
a pure key split by split key sk = k3, assuming k1 < k2 < k3 < k4 < k5.

As shown in Figure 12(a), in the old page D′ we have two records alive for
v3, v4 and v5. In D′′, the new page with the higher key values, (v1, k3, d3) is
the only record alive for v3, and (v1, k3, d3) and (v4, k4, d4) are alive for v4 and
(v1, k3, d3) and (v5, k5, d5) for v5. The point is that in D′′ we now have only one
record alive for v3. Pure key splits cannot give good guarantees for numbers of
records alive for a given version after the split unless the version range of the
original page contains just one version (the restricted key split case).

If we had split by v5 first, and then done a key split by k3, as we do in
Figure 12(b), we would get two pages whose version ranges are both (v5, ∅) and
both would have two records alive for v5. The original D′ would have 4 records,
three alive for v3 and four for v4 as before.

3.6 Consolidation

In B-trees, pages are consolidated when their contents falls below a certain level.
In versioned access methods, pages never lose contents from record deletions,
which are logical, not physical. However, the number of records in the page
satisfying the “stabbing” query (“Find all data alive for this version”) may fall
below an acceptable threshold Tc.

Let pageSlice(D, v) be the set of records in D whose version range contains
v. This is the set of records alive in D at version v. After a record is deleted from

A Framework for Access Methods for Versioned Data 741

D, one checks to see if |pageSlice(D, v)| < Tc where v is the version of the delete
operation and Tc is the threshold. If so, we say D is sparse and we attempt to
perform a page consolidation on D.

Consolidation is allowed when there is a suitable sibling with which to con-
solidate: another page with the same parent index page and with an adjacent
key range. In this case, a current-version split is made first, both on the sparse
page and on its sibling. The two new pages are then combined. If the combined
page has too many records, a key split is made.

There are very few scenarios where a suitable sibling would not be available.
This would happen when the whole database for a given version v fits in one
data page and then only current-version splits are made (no version-and-key
splits). This could happen near the creation time of the database until a sufficient
number of insertions are made, or it could happen in a highly degenerate case
when so many deletions were made that either one data page would hold all
the records alive for some version v or there are too many null records to fit
in one data page. (It is not possible that one data page becomes sparse when
deleting at v and has no sibling while another data page (with a different parent)
has records alive at v because upper levels would have consolidated before that
happened.)

In the case when a transaction makes a large number of deletes, a special
problem occurs. Let us look at an example in figure 13. Assume a transaction
that creates the current version v2 deletes all four records in page P1 and inserts
one record with key k3. Assume the maximum page capacity is 5. After record
(v2, k1, null) is inserted in P1 and an attempt is made to insert (v2, k3, d3) in P1,
P1 is version split as shown in figure 13(b). Now P1 has v2 as the end version of
its version range. VR(P2) is (v2, ∅). Some of the records in P2 in figure 13(b) are
“temporary records”, which will be replaced by records of the current version
with the same key. For example, (v1, k2, d2) will be replaced by (v2, k2, null) and
(v1, k4, d4) will be replaced by (v2, k4, null). Note that this replacement only
happens when the page’s version range is (vcurrent, ∅). After replacing these
records, P2 becomes sparse as shown in figure 13(c). Say that there is a sibling
P5, described in figure 13(d), with which P2 can be consolidated. We do a version
split on v2 for P5 and a version split on v2 for P2 (meaning here, we only copy
live records) and obtain a new consolidated page P3 with version range (v2, ∅).
We now have two pages P2 and P3 with the same version range and overlapping
key ranges. For this case, consolidating a sparse page whose version range is only
one version, we call P2, as in figure 13(d), a ghost page. A ghost page has a
ghost mark in its parent indicating that it is NOT to be used in any search
not strictly including its one version. (A range strictly includes a version v if
v is in the range and is not the start version of the range.) This rules out using
ghost pages in exact match search. The purpose of maintaining ghost pages is
merely to facilitate version range searches in determining end versions of records.
We anticipate few ghost pages in most applications since massive deletions are
rare. Following our policy for moving records created by split versions, P2 now
contains only null records as in figure 13(d).

742 B. Salzberg et al.

,

,, 12 nullkv)

v(,,) 101 dk 10

v(,,) 111 dk 11

v(,,) 121 dk 12

v(,,) 3 32 dk

(,,) 1 11 dkv

v(,, k)1 2 2d

v(,,) 4 41 dk

(,,) 1 11 dkv

v(,, k)1 2 2d

v(,,) 4 41 dk
v(,,) 5 51 dk

P 1

v(,, k)1 2 2d

v(,,) 4 41 dk

P 2

v(,,) 5 51 dk (,) 3 3dv ,2 k
(,) 5 5dv ,1 k

)

)
)

(,,

(,, 22 nullkv

 52 nullkv
(,, 42 nullkv

P P 5

(a) (c)

P 1 2

(b) (d)

P 2

)(

)
)

(,

,, 22 nullkv

 52 nullkv
(,, 42 nullkv

v(,,) 3 32 dk

v(,,) 101 dk 10

v(,,) 111 dk 11

v(,,) 121 dk 12

P 3

(

Fig. 13. After deletions and consolidation
with P5, all records in P2 will be null
records. P2 is called ghost page.

{}

v
v3

,k) 1 d(, 1

v1 k 3,)d(, 3

1 ,k) 2 d(, 2

v1 ,k 1(,

v1 ,k 3(,

k 2,,(

v2 ,k) 1 d’(, 1

)d 1

)d
)d’ 2

 3

v

v1 , v3((),(

88 +− ,),D)
3 , ((),(

88 +− ,),D’)v

1

Fig. 14. Index page and
data pages for the three-
version example.

3.7 Stabbing Query Efficiency

The following assertions illustrate why copying some records as we do in version
splitting, version-and-key splitting and consolidation helps stabbing queries to
be efficient. In what follows, we assume that we start with one page D with
the initial version v1 having n alive records. The first assertion arises from the
observation that if only inserts and updates are made, no version can have less
than the number of records alive for v1, the initial version. If, in addition, only
version-splits are made, all the records alive for the split version are copied or
moved into the new page.

Assertion 1 If only version splits are made and there are only inserts and updates
(no deletes), then for any data page D and any version v ∈ V R(D), there will be at
least n records in D satisfying the stabbing query for v.

If we also do version-and-key splits, and assume Tk is the threshold for
version-and-key splits, we get our second assertion. This is due to the obser-
vation that version-and-key splits only occur when the number of records alive
for the splitting version to be copied or moved is greater than Tk, so the number
in each of the two new pages is at least Tk/2.

Assertion 2 If we do only updates and insertion and have only current-version or
version-and-key or restricted-key splits, the stabbing query for v ∈ V R(D) will obtain
at least min(n, Tk/2) records in P .

Now allow deletes and let Tk be the threshold for version-and-key split and
let Tc be the threshold for consolidation. We get a third assertion.

Assertion 3 If it is always possible to find a sibling for node consolidation when
|pageSlice(v)| < Tc then we can guarantee the stabbing query for v ∈ V R(D) will
obtain at least min(Tc, n) records in D, allowing version splits, version-and-key splits,
restricted-key splits and node consolidation. (Note that ghost page will be not used for
consolidation or stabbing query.)

This shows that the stabbing query for v will be efficient since search in
upper levels of the access method, as we show in the next section, will only
retrieve data pages D with v ∈ V R(D). In each of these accessed data pages, we
have shown that at least min(Tc, n) records satisfying the query will be found
(provided that consolidation siblings are always available when needed).

A Framework for Access Methods for Versioned Data 743

4 Upper Levels

In this section we consider index pages, which direct search, as well as data
pages. Let P , C be two (index or data) pages. We say page C is a child page
of page P if the disk address of page C and some description of the key-version
range of C is stored in page P . We will use children(P) to denote the set of
child pages of page P . If C ∈ children(P), we say page P is a parent page of
page C. We will use parents(C) to denote the set of parent pages of page C.

The set of index pages and data pages form a Directed Acyclic Graph, or
DAG. If C is a child page of P , there is an edge from P to C. Data pages do not
have any outgoing edges. They are all leaves of the DAG. Two pages which are
the same distance from the set of data pages are said to be at the same level.
All the pages at levels above the data pages are index pages.

Index pages also correspond to key-version ranges. The set of index pages at
a given level partitions the key-version space. An index page P with KV R(P) =
(kr, vr) channels searches for the version, key pair (v, k) with v ∈ vr and k ∈ kr.

The contents of an index page are references to its children and we will use
a list of the children of an index page I as contents(I). In Figure 14, we
show the index page and two data pages for the three-version example when the
data page has split at v3. An entry in an index page referencing a child C is of
the form (start(V R(C)), end(V R(C)), KR(C), disk page address(C)). (In the
related work section, we will discuss some alternative forms for child entries in
index pages.)

Access methods that fit our framework satisfy the following:

Invariant 1 If page C is one level below page P and KV R(P) intersects
KV R(C), then page C ∈ children(P).

At each level, since Invariant 1 is true, it is possible to decide exactly which
page to access on the next level. For exact match search (search on one version
and one key) there is only one page to visit at each level.

4.1 Index Page Splits and Consolidations

Index page splits and consolidations are similar to those of data pages. A current
version split copies entries whose version ranges intersect the version range of
both the old page P and the new page N . Any child entry whose version range
lies only in V R(P) stays in P . Any child entry whose version range lies only in
V R(N) is moved to N .

Since, in index page version splits, children entries can be copied from P
to N , this creates multiple parents for these children. This is why the access
method is a DAG and not a tree.

Now for index pages, we need to take into account that children pages have
a key range, unlike data records, which have only a single key value. In this case
there is an additional reason why it is desirable to do no pure key split without
a version split first.

744 B. Salzberg et al.

It is unlikely that for a given index page I, there is a key value k such
that for every child C of I, either k >= HighKey(KR(C)) or else k <=
LowKey(KR(C)). Thus, if we do a pure key split, we will probably have to
copy child entries whose key range intersects the key range of both the new and
old index page. Consider for example a database which starts with one data page
D and then does a version-and-key split with split key sk, creating new data
pages D′ and D′′. If we use sk as a split key for the parent index page I, some
records in D will have keys greater than sk and others will have keys larger than
sk. Thus, D will be a child both of I and of the new index page I ′.

If, on the other hand, we do a current-version split first, we can choose a split
key which is a boundary between two of the children and all the other children
also have key ranges strictly above or strictly below the split key. In this case,
we need not have copies of the same children entries in both two pages resulting
from the key split.

When version splits occur on root nodes, previous work has considered two
strategies. One is to increase the height by creating a new root with the old
root as its child [7,8,11]. The other strategy is to maintain multiple roots and
create a forest with shared subtrees [1,4,10]. In this case, when a version split
occurs at a root, the new page becomes an additional root. A directory is kept
with the addresses and version ranges of each root. Different trees have different
heights and cover disjoint version ranges. Single root methods have the property
that pages on each level partition the version-key sparce. Multiple root methods
have the property that pages of each level within a given tree (under one root)
partition the version range of the tree and the key range.

Consolidation of an index page I is indicated when consolidation of some of
children(I) at some current version v has resulted in too few children of I alive
for v. That is,

|{P |(P ∈ children(I)) and (v ∈ V R(P))}| < Tci,

where Tci is a threshold for index page consolidation. We say that the fan-out
of I at v is sparse. In this case, as with data page consolidation, we find a
sibling and do a current-version split on both the sparse page and its sibling and
combine the result into one or two new index pages.

Before children are unable to consolidate because there is no suitable sibling
for a given version v, the parent must have sparse fan-out at v. Thus the parent
will consolidate with another index page on the same level, gaining suitable
siblings for its child. This is why not finding suitable siblings for consolidation
is unusual and only occurs in the degenerate cases we discussed before.

The index page splitting and consolidation definitions above guarantee the
following: if any index page P satisfies Invariant 1, then any resulting page R
from splitting or consolidating page P satisfies Invariant 1 too.

4.2 Posting

In order to have correct search, when a split or a consolidation takes place,
information about the new page(s) N and the new boundaries of the old page

A Framework for Access Methods for Versioned Data 745

P must be posted to the parents of P . If this information were posted to all
the parents of P , it is clear that Invariant 1 would still hold. But in fact, if we
do current-version splitting and no pure key splits (no key splits that are not
version-and-key splits nor restricted-key splits) less is needed. Posting need take
place to only one parent.

Let v be a current version. If N is a new page created from any split or
consolidation, VR(N) = (v, φ). (This is not true if we allow pure key splits or
splitting at other than current versions.) Further, since there are no pure key
splits on index pages, for all index pages I, if P ∈ children(I), KR(P) ⊆ KR(I).
So there is one index page I among the parents of P such that KVR(N) ⊆
KVR(I). This is the only parent where posting takes place.

5 Related Work

In this section, we outline how the methods proposed in the literature fit or
do not fit our framework. Note that most of these methods are called “trees”
although they are DAGs. (When restricted to one version, each of these DAGs is
a tree.) None of these methods consider the problems of versions with multiple
updates as we have done.

In [4], a write-once optical disk is used and the storage units are sets of
optical disk pages. Since an update of optical disk data at the time the paper
was written required indelibly burning about 1Kbyte of data and 300 bytes of
checksum, it was not possible to go back and insert endpoints to version ranges of
records. So the compact representation of records is used. This is a linear version
tree, or temporal access method. It is presented as a way to store a B-tree and
update it even though old versions had to be kept (because they could not be
erased). There is no page consolidation. The multiple root strategy is used. This
is called the Write-Once B-tree, or WOBT.

Another paper, [1] does have page consolidation and it does not have compact
record representation in data pages. This is also a temporal access method with
multiple roots. It is called MVBT, or Multi-version B-tree.

The paper [13] is based on the observation that page consolidation is done on
sparse pages which however are not necessarily full pages. There is empty space
in these pages. This paper places two or more logical pages (with a key range
and time interval) in one physical page. There are then multiple references to a
physical child page in a parent page. This increases space utilization. This is a
temporal method.

The Fully Persistent B-tree [10] has page consolidation. It does not use the
compact record representation. It has extra “version blocks” in the index levels
which make the height of the “tree” larger than need be. It uses multiple roots.

(Versioned access methods are called fully persistent [3] if any version can
be updated creating a new version. This causes branching in the version tree. A
partially persistent access method only allows update on a current version,
creating a linear version tree. Temporal access methods are partially persistent.)

746 B. Salzberg et al.

The BT-tree, or Branched and Temporal tree [7] is also a fully persistent
(branched) access method. It does page consolidation and it uses the compact
data record representation. In index pages, instead of using the child entries we
have described, a small binary tree called a split history or sh tree is used.
This directs search depending on the key values and version values in the internal
sh-tree nodes. The leaves of the sh-tree are child page addresses. The BT-tree
has a single root.

All of the above methods do only current-version splits and version-and-key
splits and no pure key splits. The next two methods allow splitting at versions
other than the current version. As in current-version splitting, records whose
version range is in the version range of both pages are copied and records whose
version range is only in the new page are moved to the new page. The difference
is that the set of moved records is larger than just those created by the splitting
version.

The TSB-tree [11] is a temporal method and uses compact representation
of records. It has no page consolidation. It has a single root. To save space
and make retrieval quicker, pure key splits and non-current version splitting are
allowed. In order to make posting to only one parent possible, it is required to
split index pages I at a version v with the property that for all current children
C of I, v ≤ start(V R(C)). (Current pages in a temporal access method
have end(vr) = ∅.) This results in current pages (the only ones that are split in
a temporal access method) having only one parent.

The other paper to consider non-current version splits is the BTR-tree [8].
This is done to reduce the number of copies of records made when there is a
great deal of branching. To achieve single-parent posting, only certain versions
can be used for splitting. The set of possible splitting versions is derived from
information gathered during the search. The BTR-tree uses compact data record
representation and it supports page consolidation. It uses an sh-tree in index
pages. It has a single root.

Recently, there have been some methods proposed for spatial and moving
objects data (spatial-temporal data) which use current-version splitting. For
example, [12] [6] both do version-splitting on an R-tree. Since the R-tree has
spatial overlapping, neither satisfies Invariant 1 (with the key range understood
to be a spatial key range). Thus exact match search (for a key and version)
requires backtracking. On the other hand [9] is based on [5] (the hB-Pi tree),
which is a spatial method without overlapping, so Invariant 1 is satisfied. The
paper [9] uses the compact data record representation.

6 Summary

In this paper, we have presented a framework for versioned access methods.
Records are associated with version ranges, which are connected subsets of the
version tree. A definition for end sets for version ranges using minimality was
given. Compact record representation, using only the start version of the version
range, was introduced with its benefits in algorithmic simplicity and space usage.

A Framework for Access Methods for Versioned Data 747

We have shown, for the first time, how to handle versions which contain multiple
updates. Previous work made the unrealistic assumption that each update was
in a different version, created by a different transaction.

Current-version splits, version-and-key splits and consolidations were dis-
cussed and their effects on stabbing query efficiency were presented. For upper
levels of the index, an invariant was introduced which allows visiting only one
page at each level of the access method when doing exact-match search (no
backtracking). Splits and consolidations of index pages preserve this invariant.

References

1. B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P. Widmayer. On optimal multi-
version access structures. In Proc. Int. Symp. on Spatial Databases, pages 123–141,
Singapore, 1993.

2. Paul F. Dietz and Daniel D. Sleator. Two algorithms for maintaining order in a list.
In Proceedings of the nineteenth annual ACM conference on Theory of computing,
1987.

3. James R. Driscoll, Neil Sarnak, and Daniel D. Sleator. Making data structure
persistent. Journal of Computer and System Sciences, 38, February 1989.

4. M. C. Easton. Key-sequence data sets on indelible storage. IBM J. Res. Develop-
ment, pages 230–241, 1986.

5. Georgios Evangelidis, David B. Lomet, and Betty Salzberg. The hB-Pi-Tree: A
multi-attribute index supporting concurrency, recovery and node consolidation.
The VLDB Jounal, pages 1–25, January 1997.

6. Marios Hadjieleftheriou, George Kollios, Vassilis J. Tsotras, and Dimitrios Gunop-
ulos. Efficient indexing of spatiotemporal objects. In EDBT 2002, LNCS 2287,
pages 251–268, 2002.

7. Linan Jiang, Betty Salzberg, David Lomet, and Manuel Barrena. The BT-Tree: A
branched and temporal access method. In International Conference on Very Large
Data Bases, pages 451–460, 2000.

8. Linian Jiang, Betty Salzberg, David Lomet, and Manuel Barrena. The BTR-
Tree: Path-defined version-range splitting in a branched and temporal structure.
In Proceedings of the Eighth International Symposium on Spatial and Temporal
Databases, SSTD 2003, Santorini Island, Greece, LNCS 2750.

9. Evangelos Kanoulas and Georgios Evangelidis. Indexing of spatiotemporal data
with the hB-Pi Tree. In HDMS’02 1st Hellenic Data Management Symposium,
Athens, Hellas, July 2002.

10. Sitaram Lanka and Eric Mays. Fully persistent B+-trees. In Proceedings of
ACM/SIGMOD Annual Conference on Management of Data, pages 426–435, 1991.

11. D. Lomet and B. Salzberg. The performance of a multiversion access method. In
Proceedings of ACM/SIGMOD Annual Conference on Management of Data, pages
354–363, 1990.

12. Yufei Tao and Dimitris Papadias. The MV3R-Tree: A spatio-temporal access
method for timestamp and interval queries. In VLDB 2001, Proceedings of 27th
International Conference on Very Large Data Bases, pages 431–440, Sep. 2001.

13. Peter J. Varman and Rakesh M. Verma. An efficient multiversion access struc-
ture. In IEEE Transaction on Knowledge and Data Engineering, pages 391–409,
May/June 1997.

	Introduction
	Versions, Versioned Data, and Version Ranges
	Two-Version Example
	Three-Version Example with Branching
	Versions
	Version Ranges

	Pagination
	Data Pages
	Compact Record Representation in Pages
	Operation Properties for Efficiency
	Splitting by Current Version
	Key Splits and Version-and-Key Splits
	Consolidation
	Stabbing Query Efficiency

	Upper Levels
	Index Page Splits and Consolidations
	Posting

	Related Work
	Summary

