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ABSTRACT
The nDCG measure has proven to be a popular measure of
retrieval effectiveness utilizing graded relevance judgments.
However, a number of different instantiations of nDCG ex-
ist, depending on the arbitrary definition of the gain and
discount functions used (1) to dictate the relative value of
documents of different relevance grades and (2) to weight the
importance of gain values at different ranks, respectively.

In this work we discuss how to empirically derive a gain
and discount function that optimizes the efficiency or sta-
bility of nDCG. First, we describe a variance decomposition
analysis framework and an optimization procedure utilized
to find the efficiency- or stability-optimal gain and discount
functions. Then we use TREC data sets to compare the op-
timal gain and discount functions to the ones that have ap-
peared in the IR literature with respect to (a) the efficiency
of the evaluation, (b) the induced ranking of systems, and
(c) the discriminative power of the resulting nDCG measure.

Categories and Subject Descriptors: H. Information
Systems; H.3 Information Storage and Retrieval; H.3.3 In-
formation Search and Retrieval:Retrieval models

General Terms: Experimentation, Measurement, Relia-
bility

Keywords: Evaluation, nDCG, Generalizability Theory

1. INTRODUCTION
The evaluation of retrieval systems has been a significant

area of research in IR. Evaluation measures play a critical
role in the development of retrieval systems either as metrics
in comparative evaluation experiments, or as objective func-
tions to be optimized in a learning-to-rank fashion. Due to

∗We gratefully acknowledge the support provided by NSF
grants IIS-0533625 and IIS-0534482 and by the European
Commission who funded parts of this research within the
Tripod project under contract number IST-FP6-045335.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’09, November 2–6, 2009, Hong Kong, China.
Copyright 2009 ACM 978-1-60558-512-3/09/11 ...$10.00.

their importance, dozens of measures have appeared in IR
literature, with average precision being the dominant one.

One of the main criticism traditional evaluation measures,
such as average precision, have received is due to the as-
sumption they make that retrieved documents can be con-
sidered as either relevant or non-relevant to a user’s request.
In other words, traditional measures treat documents of dif-
ferent degrees of relevance as equally important. Naturally,
however, some documents are more relevant to a user’s re-
quest than others and therefore more valuable to a user than
others.

The nDCG measure [10, 9] has proven to be one of the
most popular measures of retrieval effectiveness that uti-
lizes graded relevance judgments. The underline model of
user search behavior on which nDCG is based makes two
assumptions: (1) highly relevant documents are more valu-
able to the user than marginally relevant documents, and
(2) the greater the rank a relevant document appears the
less valuable to the user that document is.

In the framework used to define nDCG, first relevance
scores are mapped to relevance grades, e.g. a score of 3 is
given to highly relevant documents, a score of 2 to fairly
relevant documents and so on. Relevance scores are viewed
as the gain returned to a user when examining the docu-
ment. Thus, the relative value of relevance scores dictates
how much more valuable for instance a highly relevant doc-
ument is to a user than a marginally relevant. Even though,
relevance scores were used directly as gains when nDCG was
originally introduced, alternative gain functions that map
gain values to relevance scores have appeared in the liter-
ature. To account for late arrival of relevant documents,
gains are then discounted by a function of the rank. The
discount function is viewed as a measure of the patience of
a user to step down the ranked list of documents. As in the
case of gains, a number of different discount functions has
appeared in the literature. The discounted gains are then
summed progressively from rank 1 to k and this discounted
cumulative gain is normalized to range from 0 to 1, resulting
in the normalized discounted cumulative gain (nDCG).

Hence, nDCG can be considered as a functional of a gain
and a discount function. By utilizing different gain and dis-
count functions one is able to accommodate different user
search behavior patterns on different retrieval scenarios.

Even though nDCG offers a flexible family of measures
so far the selection of the gain and discount functions has
been done rather arbitrarily, based on speculations of the



search behavior of an average user and speculations of the
correlation of the measure to user satisfaction. For instance,
Burges et al. [7], introduced an exponential gain function

(2rel(r) − 1, where rel(r) is the relevance score of the docu-
ment at rank r) to express the fact that the gain of a highly
relevant document is not just twice the gain of a relevant
one for an average user. Further, the logarithmic discount
function (1/log(r + 1)) dominated the literature compared
to the Zipfian one (1/r) based on the speculation that the
gain a user obtains by moving down the ranked list of docu-
ments does not drop as sharply as indicated by the Zipfian
discount.

Despite these reasonable speculations, Al-Maskari et al. [1]
exhibited that cumulative gain without discounting (CG) is
more correlated to user satisfaction than discounted cumula-
tive gain (DCG) and nDCG (at least when computed at rank
100). This result not only questions the overall utility of the
discount function but most importantly underlines the need
for a methodological selection of gain and discount functions.
However, given the infinite number of possible gain and dis-
count functions, the vast differences in user search behavior,
the many possible retrieval tasks and the difficulty in mea-
suring user satisfaction, a complete analysis of the different
gain and discount functions with respect to user satisfaction
is prohibitively expensive, if at all possible.

In order to methodologically reduce the space of possible
gain and discount functions, a number of correlation studies
has been conducted to examine whether different functions
lead to equivalent nDCG measures regarding the induced
ranking of systems. Voorhees [14] utilized nDCG in TREC
Web Track evaluation weighting highly relevant documents
by factors 1 to 1000 in relation to marginally relevant docu-
ments and she concluded that varying the gain function leads
to different ranking of systems. In a similar study, Kekäläi-
nen [11] also examined how different weighting schemes of
relevance scores affect the ranking of systems and similarly
to Voorhees [14] concluded that the larger the relative dif-
ference between relevance grades, the more the ranking of
systems deviates from that in the binary case. Furthermore,
by comparing the rankings of systems induced by the dis-
counted cumulative gain (DCG) and cumulative gain with-
out discounting (CG), she demonstrated that discounting
the gain values also alters the induced ranking of systems.

Given the fact that nDCG variations result in different
rankings of systems and thus they evaluate different aspects
of retrieval effectiveness along with the difficulty in studying
gain and discount functions with respect to user satisfaction,
one can compare different variations of nDCG based on other
desirable properties of the resulting measure. For instance
for different gain and discount functions, one can investigate
how informative the resulting variations of nDCG are, i.e.
how well do they summarize the relevance of the underline
ranked list of documents [2], how discriminative they are, i.e.
how well do they discriminate good from bad systems [12],
or how stable they are, i.e. how different the rankings of
systems are over different sets of queries [6]. Sakai [13] com-
pared the effect of a number of different gain and discount
functions on the discriminative power of nDCG.

In this paper, we adopt the variance component analy-
sis framework proposed by Bodoff and Li [4] to measure the
stability/efficiency of the resulting nDCG measure when dif-
ferent gain and discount functions are utilized. Based on this
framework, we define a stability- or efficiency-optimal gain

function by treating gain values of relevance grades as un-
known variables and optimizing for the aforementioned sta-
bility/efficiency measure. We compare the resulting function
to both the linear and the exponential variates that have ap-
peared in the literature, both in terms of stability/efficiency
and induced rankings of systems. Similarly, we also define
a stability- or efficiency-optimal discount function and com-
pare it against the Zipfian, the log and a linear function.
Further, we also define a Pareto optimal combination of gain
and discount function, i.e. the combination of gain and dis-
count function that maximizes the minimum stability. Fi-
nally, we explore whether the stability- (efficiency-) optimal
gain and discount functions lead also to an nDCG measure
with high discriminative power [12].

The rest of the paper is organized as follows: In Section 2
we describe the methodology used to obtain stability- or
efficiency-optimal gain and discount functions, in Section 3
we present the results of our methodology and conclude in
Section 4.

2. METHODOLOGY
In this section, we describe a methodology to numerically

derive stability- (efficiency-) optimal gain and discount func-
tions. First, we adopt the methodology used by Bodoff and
Li [4] to assess the reliability of an IR test collection.

Given an evaluation measure, a number of retrieval sys-
tems, a set of queries and a document collection, Bodoff
and Li considered two sources of variability in the observed
system scores of the retrieval systems when they are run
over the given queries, (a) the actual performance differ-
ences between systems, and (b) differences in the nature of
the queries themselves. This way, Bodoff and Li [4], quanti-
fied the quality of the test collection as the proportion of the
total variability observed in the scores of the retrieval sys-
tems that is due to actual performance differences among
these systems.

In a similar manner, different sources of variability can be
considered and quantified. For instance, earlier than Bodoff
and Li, Banks et al. [3] considered, as an additional to the
systems and queries source of variability, the judges that
assess the relevance of the documents to the queries.

In this work, we consider the evaluation measure itself
as a source of variability. In particular, given a number
of retrieval systems, a set of queries and a document cor-
pus, we consider gain and discount function of nDCG as
unknown variables and we select the ones that maximize
the proportion of variability due to actual performance dif-
ferences among systems. The proportion of variability re-
flects the stability of the evaluation measure, and thus by
maximizing this proportion we maximize the stability of the
measure. Furthermore, the more stable a measure is the less
queries it requires to reliably evaluate the retrieval systems.
Thus, by maximizing stability we also maximize efficiency
in terms of required queries.

We numerically computed the stability optimal gain and
discount function by employing (a) variance decomposition
analysis of the nDCG scores [3, 4, 5] and (b) optimization.
In the following subsections, we describe both components
of our methodology in details.

2.1 Variance component analysis
Assume an experimental design that involves ns systems

run over a sample of nq queries resulting in a set of ns ∗ nq



ranked lists of documents. Further assume that each list of
documents is evaluated by nDCG and the overall quality of
a system is captured by averaging the nDCG values over all
topics. Systems, then, are ranked by their mean scores, i.e.
mean nDCG.

Hypothetically, if a second set of topics was available, the
systems could be run over this new set of topics and new
mean nDCG scores (and consequently new ranking of the
systems) would be produced. The question that naturally
arises is, how many topics are necessary to guarantee that
the mean nDCG scores do not change radically when two dif-
ferent query sets are used, or alternatively how many topics
are necessary to guarantee that the mean nDCG scores of
systems reflect their actual performance?

Given different sets of topics one could decompose the
amount of variability that occurs in mean nDCG scores (as
measured by variance) across all sets of topics and all sys-
tems into three components: (a) variance due to actual per-
formance differences among systems—system variance, (b)
variance due to the relative difficulty of a particular set of
topics—topic variance, and (c) variance due to the fact that
different systems consider different sets of topics hard (or
easy)—system-topics interaction variance. Note that among
the three variance components, only the variance due to sys-
tems and system-topics interactions affect the ranking of
systems—it is these two components that can alter the rel-
ative differences among mean nDCG scores, while the topic
variance will affect all systems equally, reflecting the overall
difficulty of the set of topics.

Ideally, one would like the total variance in mean nDCG
scores to be due to the actual performance differences be-
tween systems rather than the other two sources of variance.
If this would be the case, running the systems over differ-
ent topic sets would result in each system having identical
mean nDCG scores regardless of the topics used, and thus
mean nDCG scores over a single set of topics would be 100%
reliable in evaluating the quality of the systems.

In practice, retrieval systems are run over a single given
set of topics. The decomposition of the total variance into
the aforementioned components in this case can be realized
by fitting an ANOVA model into nDCG scores [3, 4, 8].
Given the variance components tools from Generalizability
Theory [5] can be used to quantify the stability of the eval-
uation.

2.2 Stability coefficients
There are two coefficients that predominate in Generaliz-

ability Theory to quantify the stability of the evaluation, the
generalizability coefficient and the dependability coefficient,
with the former reflecting the stability of the system rank-
ings and the latter the stability of the system effectiveness
scores. They both lie in a zero to one range.

The former coefficient is the ratio of the system variance
and the variance in relative nDCG scores (i.e. in system
rankings), that is the summation of the system and system-
topic interaction variance,

Eρ2 =
σ2(system)

σ2(system) +
σ2(system:topic)

# of topics

(1)

and it can be interpreted as an approximation to the squared
correlation between the relative mean nDCG scores observed
over the given set of topics and the relative mean nDCG

scores that would be observed if infinite number of topics
was available.

The dependability coefficient, Φ, is the ratio of the system
variance and the total variance,

Φ =
σ2(system)

σ2(system) +
σ2(topic)+σ2(system:topic)

# of topics

(2)

and it can be interpreted as an approximation to the squared
correlation between the mean nDCG scores observed over
the given set of topics and the mean nDCG scores that
would be observed if infinite number of topics was avail-
able. Note that both Φ and Eρ2 decrease with the topic
set size. Further note that Eρ2 is always larger than Φ. In
our experiments we employ only the latter coefficient since
stable scores infer stable rankings.

Also note that the computation of the two coefficients is
done independently of the estimation of the variance compo-
nents. That is, first the variance components are estimated
over a set of available topics (50 topics in our experiments).
Then, the two aforementioned coefficients are using these es-
timates to project reliability scores to topic sets of any size.
The topic set size in the computation of the coefficients does
not need to be the same as the topic set size used to estimate
the variance components (it can even be larger).

As mentioned before, in this work we consider the gain
values for different relevance grades and the discount fac-
tors for different ranks used in nDCG as unknown variables.
Given a fixed-size topic set we would like to obtain the gain
values/discount factors that maximize the stability of the
mean nDCG scores of the systems.

2.3 Optimization
In the optimization process employed, we use Φ as the

objective function to maximize with respect to the gain val-
ues/discount factors employed in nDCG.

Note that nDCG is a scale-free measure with respect to
both the gain values and the discount factors in the sense
that multiplying either the gain or the discount with any
number does not affect the nDCG score. For this reason,
we enforced the gain values to be a probability distribution
over relevance grades and the discount factors to be a prob-
ability distribution over ranks. This way we limit the range
of values both for the gain and the discount within the [0, 1]
range and reduce the unknown parameters by one. Further-
more, it so happens that there maybe some fluctuation in
the values of the optimal discount factors, e.g. the discount
factor on a certain rank may happen to be larger than the
one on a lower rank. This is not justifiable from an IR per-
spective and thus, we also enforce that the discount factors
are non-increasing with the rank. The same may be true for
the gain values, hence we enforce them to be non-decreasing
with the relevance grade. Further, we set the gain value for
non-relevant documents equal to zero.

Moreover, note that the coefficient Φ in Equation 2 is
a monotonically non-decreasing function of the number of
queries. In other words, the gain or discount function that
is optimal for n queries is also optimal for n + 1 queries.
Therefore, in the optimization process we set the number of
queries equal to 1.

The optimization setup for the gain/discount function is
mathematically expressed in Figure 1. When we optimize
for the discount factors we consider the gain values as given,



argmax
{gain(gradej)}

σ2(sys)

σ2(sys) + σ2(topic) + σ2(sys:topic)

Subject to:

1.

kX
j=1

gain(gradej) = 1

2. gain(gradej)− gain(gradej+1) ≤ 0∀j : 1 ≤ j ≤ k − 1

where k is the number of relevance grades.

argmax
{disc(rankr)}

σ2(sys)

σ2(sys) + σ2(topic) + σ2(sys:topic)

Subject to:

1.

rX
r=1

disc(rankr) = 1

2. disc(rankr)− disc(rankr+1) ≤ 0∀j : 1 ≥ j ≤ N − 1

where N is the cut-off rank at which nDCG is calculated.

Figure 1: Optimization setup for gain values and discount factors, respectively.

while when we optimize for gain values we consider the dis-
count factors as given. We also perform a multi-objective
optimization to simultaneously optimize for the gain and
the discount function. For the purpose of the optimiza-
tion, we used the fmincon MATLAB function for the nor-
mal optimization and the minimax MATLAB function for
the multi-objective optimization. Both functions employ Se-
quential Quadratic Optimization.

3. RESULTS
The afore-described optimization framework was applied

to the TREC 9 and 10 Web track collections and the TREC
12 Robust track collection. The number of participating sys-
tems for the three collections is 105, 97 and 78 respectively.
All systems were run over 50 queries1. Documents returned
as a respond to these queries were judged by a single asses-
sor in 3 relevance grades scale: highly relevant, relevant and
non-relevant. The task in all tracks was the usual ad-hoc
retrieval task.

For each one of the three test collections, we calculated the
optimal discount factors (given a linear gain function), the
optimal gain values (given a logarithmic discount function)
and the Pareto-optimal gain values and discount factors. We
compared the optimal gain and discount functions with the a
number of commonly used gain and discount functions both
with respect to the stability/efficiency of the resulting nDCG
measure and with respect to the induced by the resulting
nDCG ranking of systems.

3.1 Optimal discount function
In this section we present the results of the optimization

for the discount function. The gain values were set to 0, 1
and 2 for non-relevant, relevant and highly relevant docu-
ments respectively and they were treated as constants dur-
ing the optimization. We performed the optimization over
the TREC 9, 10 and 12 data sets for nDCG computed
at rank 10, 20 and 100 and we report the results in Fig-
ure 2. We compare the optimal discount factors – blue solid
curve with circles as markers in the figure – (a) with the
Zipfian discount function (1/rank) – green solid curve with
plus signs as markers, (b) with the log discount function
(1/log2(1+rank)) – dark blue solid curve with triangles as
markers and (c) with the linear discount function ( (cut-

1The TREC 12 Robust track collection includes 100 queries,
however the first 50 of them were obtained from TREC 6,
7 and 8, where documents were judged as either relevant
or non-relevant. For this reason, we did not use these 50
queries in our studies.

off rank + 1 - rank) / cut-off rank) – magenta solid curve
with crosses as markers. For comparison purposes, we trans-
formed the linear, log and Zipfian discount factors to prob-
ability distributions over the ranks.

As it can observed in Figure 2, the optimal discount func-
tion is the least steep one among the discount function con-
sidered. The log discount function is the one closest to the
optimal, while the Zipfian drops much faster than the op-
timal. The linear discount also appears to be close to the
optimal one, at least when only the top ranks are consid-
ered..

Looking at the right-most plots for each TREC, that is the
plots corresponding to nDCG at rank 100, one can observe
that the top ranks are the ones that mainly matter and thus
they are given higher discount factor, while the rest of the
ranks are given a rather small and constant discount factor.
The number of the top-most ranks that really matter seems
to be collection dependent, with the top 10 ranks being the
important ones for TREC 9 and 12 and the top 20 ranks
being the important ones for TREC 10. A further obser-
vation one can make is that, even though the rest of the
ranks are given a rather constant discount factor, this con-
stant is far from zero (or at least farther than the discount
factors the log and the linear discount function assigns to
those ranks) suggesting that documents lower at the ranked
list may also be useful in discriminating systems efficiently.
This further suggests that computing nDCG at top ranks
is sub-optimal since computing nDCG at some cut-off rank
implicitly assigns zero discount factors to the ranks below
that cut-off.

For the purpose of completeness, Figure 3 illustrates the
results when we optimized the stability (efficiency) of nDCG
without enforcing the non-increasing constraint for the dis-
count factors. We only report results for nDCG at rank 20.
One may observe that the optimal un-constraint discount
factors are not strictly decreasing with the rank. Intuitively,
these fluctuations are due to the fact that often times simi-
lar systems return relevant documents at the top ranks and
thus the only way to discriminate them is by looking deeper
in the ranked list of documents. Thus, once again, this indi-
cates that lower ranks may very well help in discriminating
systems.

Figure 4 illustrates the stability of the nDCG measure (i.e.
the fraction of the variance in the mean nDCG values due to
actual performance differences between systems) when com-
puted using (a) the optimal, (b) the log, (c) the Zipfian, and
(d) the linear discount function. As expected, the optimal
discount function eliminates all variance components other
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than the one due to systems, faster (in terms of queries)
than the rest of the discount functions. The log discount
function is the second most stable one while the Zipfian and
the linear lead to the least stable nDCG measure.

Finally, in Table 1 we compare the efficiency of the nDCG
when the optimal discount function is employed with the
efficiency of nDCG when the log, the Zipfian and the linear
discount functions are employed. To calculate the efficiency,
we fit an ANOVA model into the resulting nDCG scores, for
each one of the discount functions. Then, setting the value
of Φ equal to 0.9, that is 90% of the total variance in the
nDCG scores being due to the actual performance differ-
ences between systems, and using Equation 2 we computed
the necessary number of queries to reach the given stability.
As expected the log discount function is the closest to the
optimal one.

To conclude, the stability- (efficiency-) optimal discount
function is less steep than any of the commonly used dis-
count functions. The widely used log discount function is
the one closest to the optimal discount function, while the
Zipfian and the linear ones are the least stable. Further-
more, the optimal discount factors over low ranks are far
from zero which suggests that looking further down at the
ranked list of documents (regardless of the underline user
search behavior and patience to step down the ranked list)
can improve the reliability of system comparisons.

Table 1: Number of queries required to achieve 0.95
stability in evaluation.

Φ ≥ 0.95 Zipfian linear log Optimal

TREC 9 45 31 29 25
TREC 10 58 64 51 49
TREC 12 104 70 67 53

3.2 Optimal gain function
We also performed an optimization for the gain values as-

signed to the different relevance grades of documents. In this
case, the discount factors were treated as constants. The log
discount function, the closest to the stability- (efficiency-)
optimal discount function, was utilized. Further, we set the
gain value for the non-relevant equal to zero and optimized
for the gain values of the relevant and highly relevant doc-
uments. We performed the optimization over TREC 9, 10
and 12 data sets for nDCG at ranks 3, 10, 20, 100 and
200. Instead of the gain values themselves, we report the
ratio between the gain value assigned to the highly relevant
documents and the gain value assigned to the relevant ones.
The results can be viewed in Table 2. As in the case of the
discount function, we performed both an un-constraint and
a constraint optimization. In the constraint optimization
we enforced the gain value of the highly relevant documents
to be greater than or equal to the gain value of the relevant
ones. The optimal gain value ratios for the un-constraint op-
timization are reported in the first column of Table 2, while
the ones for the constraint optimization are reported in the
second column. The last two columns show the ratio of the
gain values when the linear and exponential gain functions
are utilized.

By comparing the first two with the last two columns of
the table one can observe that the utility of relevant docu-
ments in comparative evaluation of systems is underrated by

the commonly employed gain functions. The optimal ratio
of the gain values for highly relevant and relevant documents
is in most of the cases much smaller than 2 or 3. Intuitively,
this means that relevant documents are almost equally dis-
criminative to the highly relevant ones. Good systems will
retrieve both highly relevant and relevant documents while
bad systems will have difficulties in retrieving either highly
relevant or relevant documents. Thus, discriminating sys-
tems regarding their performance can be similarly done with
either relevant or highly relevant documents. Note that this
is true for the particular TREC collections under study and
the systems run over these collections and it may not be true
in the general case.

In the un-constraint optimization column, highly relevant
documents still appear more discriminative than relevant
documents for most of the cases. However, there are cases,
e.g. in TREC 12 with nDCG computed at low ranks, that
relevant documents appear to be more discriminative than
highly relevant documents. An intuitive explanation of this
behavior may be given by fact that the total number of
highly relevant documents retrieved by systems in TREC
12 is quite small and highly relevant documents tend to
appear at the very top of the ranked lists, while they are
almost absent from the deeper ranks. Thus when deeper
ranks are considered, highly relevant documents lose some
of their discriminative power. The percentage of relevant
and highly relevant documents on average (over all queries)
at each rank for TREC 12 can be viewed in Figure 5.
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Figure 5: The percentage of documents that are
relevant and the percentage of documents that are
highly relevant on average (over all queries) at each
rank for TREC 12.

Finally, for both TREC 9 and 10, one can observe a trend
in the optimal ratio between the grades for relevant and
highly relevant documents, with the ratios originally increas-
ing by the rank nDCG is computed at and then dropping.
This phenomenon needs to be further explored.

In Table 3 we compare the efficiency of the nDCG mea-
sure calculated at rank 100 when the optimal gain function
is employed with the efficiency when the linear or the ex-
ponential gain functions are employed. As in the case of
discount functions, to calculate the efficiency of each mea-
sure, we fit the ANOVA model into the resulting nDCG
scores, for each on of the discount functions. Then, setting
the value of Φ equal to 0.95, that is 95% of the total variance
in the nDCG scores is due to the actual performance differ-
ences between systems, and using Equation 2 we compute
the necessary number of queries to reach the given stability.



Table 2: Ratio among the gain values of highly relevant and relevant documents for TREC 9, 10 and 12

TREC9 optimal ratio optimal ratio optimal ratio hrel/rel (2hrel − 1)/(2rel − 1)
(unconstraint) (log discount) (optimal discount)

nDCG@3 1.1 1.1 1.1 2 3
nDCG@10 1.3 1.3 1.4 2 3
nDCG@20 1.5 1.5 1.6 2 3
nDCG@100 1.2 1.2 1.9 2 3
nDCG@200 1.1 1.1 2.7 2 3

TREC10 optimal ratio optimal ratio optimal ratio hrel/rel (2hrel − 1)/(2rel − 1)
(unconstraint) (log discount) (optimal discount)

nDCG@3 1.2 1.2 1.3 2 3
nDCG@10 1.6 1.6 1.8 2 3
nDCG@20 2.0 2.0 2.0 2 3
nDCG@100 1.8 1.8 1.8 2 3
nDCG@200 1.5 1.5 1.6 2 3

TREC12 optimal ratio optimal ratio optimal ratio hrel/rel (2hrel − 1)/(2rel − 1)
(unconstraint) (log discount) (optimal discount)

nDCG@3 1.2 1.2 1.2 2 3
nDCG@10 1.2 1.2 1.1 2 3
nDCG@20 1.0 1.0 1.0 2 3
nDCG@100 0.8 1.0 1.0 2 3
nDCG@200 0.7 1.0 1.0 2 3

Interestingly, the values in the table are almost identical for
all gain functions for TREC 9 and 10, while only for TREC
12 the optimal gain is significantly better than the linear or
the exponential ones in terms of efficiency.

Comparing Table 3 with Table 1 one can observe that the
choice of the discount function affects much more the effi-
ciency (stability) of the resulting nDCG measure than the
choice of the gain function. As mentioned before, intuitively
this means that at least in these particular collections when
a system is good it retrieves both many highly relevant and
many relevant documents, while when a system is bad it
fails to retrieve either. Even thought, this is true for the
given test collections, this may not be the case for other
test collections and in particular for collections with more
than three relevance grades, where for instance retrieving
enough marginally relevant documents may not necessarily
mean that the system can also retrieve enough excellent doc-
uments (where excellent is more than 1 relevance grade away
from marginally relevant). Unfortunately, currently we do
not possess any such collection and thus we leave this as a
future work.

Table 3: Number of queries required to achieve 0.95
stability in evaluation.

Φ ≥ 0.95 exp linear Optimal

TREC 9 28 29 30
TREC 10 52 51 51
TREC 12 72 67 63

3.3 Pareto-optimal gain and discount functions
Finally, we performed multi-objective optimization in or-

der to optimize efficiency (stability) for both the gain and
the discount functions simultaneously. To do so, we uti-

lized the minimax MATLAB function, which produces the
Pareto optimal discount and gain functions. That is, the
discount and gain functions that maximize the worst case
value of nDCG stability. We performed the optimization
over TREC 9, 10 and 12, concluding that the Pareto opti-
mal gain and discount functions are very close to the optimal
gain and discount functions when the optimization is done
independently for gains and discounts. The multi-objective
optimal discount function for TREC 9 when nDCG is com-
puted at rank 20 is shown in Figure 6. For comparison
reasons, the optimal discount function when linear gain is
used is also shown in the figure. As it can be observed in all
cases the discount factors obtained from the multi-objective
optimization are almost equal to the ones obtained with lin-
ear gains used. The multi-objective optimal ratio between
highly relevant and relevant documents is reported in the
third column of Table 2. As it can be observed, except
for the case of TREC 9, when nDCG is computed at very
low ranks, the multi-objective optimal ratio is very close to
the one obtained with the log discount function. This may
be an indication that gain and discount functions indepen-
dently affect the stability of the measure. Similar plots are
obtained for all TREC’s and all ranks nDCG is computed
at.

3.4 Correlation study
Different gain and discount functions employed in the cal-

culation of nDCG may result in different mean nDCG values
and therefore different rankings of the systems. To investi-
gate how gain and discount functions affect the nDCG score
and thus the induced ranking of systems, we calculated the
mean nDCG at rank 100 for different gain and discount func-
tions and computed the Kendall’s τ between the induced
rankings.

The scatter plots in Figure 7 illustrate the mean nDCG



0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

nDCG with optimal discount

nD
C

G
 w

ith
 lo

g 
di

sc
ou

nt

TREC 9

 

 

Kendall’s tau : 0.93735   RMS Error : 0.004424

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

nDCG with optimal discount

nD
C

G
 w

ith
 Z

ip
fia

n 
di

sc
ou

nt

TREC 9

 

 

Kendall’s tau : 0.8355   RMS Error : 0.0082557

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

nDCG with optimal discount

nD
C

G
 w

ith
 li

ne
ar

 d
is

co
un

t

TREC 9

 

 

Kendall’s tau : 0.9564   RMS Error : 0.0082557

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

nDCG with optimal discount

nD
C

G
 w

ith
 lo

g 
di

sc
ou

nt

TREC 10

 

 

Kendall’s tau : 0.94532   RMS Error : 0.00089939

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

nDCG with optimal discount
nD

C
G

 w
ith

 Z
ip

fia
n 

di
sc

ou
nt

TREC 10

 

 

Kendall’s tau : 0.89548   RMS Error : 0.0030133

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

nDCG with optimal discount

nD
C

G
 w

ith
 li

ne
ar

 d
is

co
un

t

TREC 10

 

 

Kendall’s tau : 0.88087   RMS Error : 0.0030133

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

0.8

nDCG with optimal discount

nD
C

G
 w

ith
 lo

g 
di

sc
ou

nt

TREC 12

 

 

Kendall’s tau : 0.85814   RMS Error : 0.010159

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

0.8

nDCG with optimal discount

nD
C

G
 w

ith
 Z

ip
fia

n 
di

sc
ou

nt

TREC 12

 

 

Kendall’s tau : 0.67566   RMS Error : 0.018024

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

0.8

nDCG with optimal discount

nD
C

G
 w

ith
 li

ne
ar

 d
is

co
un

t

TREC 12

 

 

Kendall’s tau : 0.89943   RMS Error : 0.018024

Figure 7: Scatter plots of the mean nDCG scores for the optimal discount function versus the log, Zipfian
and linear discount function.
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Figure 6: The multi-objective optimal discount
function along with the optimal discount function
when linear gains are used for TREC 9 and nDCG
computed at rank 20.

scores for the optimal discount function (x−axes) computed
at rank 100 against the mean nDCG scores for the log, Zip-
fian and linear discount functions respectively (y−axes) for
TREC 9, 10 and 12. The RMS Error and Kendall’s τ are
reported in the plots. The Kendall’s τ between the rankings
of systems induced by any two discount functions are also
reported in Table 4.

By inspecting both the scatter plots in Figure 7 and the
Kendall’s τ values in Table 4 one can observe that both the
rankings by the linear discount function and the rankings
by the log discount function are very close to the rankings

Table 4: Kentall’s τ
Zipfian linear log Optimal

Zipfian 1.0000 0.8315 0.8960 0.8355
linear 0.8315 1.0000 0.9282 0.9564

TREC 9
log 0.8960 0.9282 1.0000 0.9374

Optimal 0.8355 0.9564 0.9374 1.0000

Zipfian 1.0000 0.7886 0.8625 0.8955
linear 0.7886 1.0000 0.9184 0.8809

TREC 10
log 0.8625 0.9184 1.0000 0.9453

Optimal 0.8955 0.8809 0.9453 1.0000

Zipfian 1.0000 0.7136 0.8149 0.6757
linear 0.7136 1.0000 0.8828 0.8994

TREC 12
log 0.8149 0.8828 1.0000 0.8581

Optimal 0.6500 0.8994 0.8581 1.0000

by the optimal discount function. As illustrated in Fig-
ure 2, these two discount functions are the closest to the
optimal one. The rankings by the Zipfian discount function
are widely different than the ones by the optimal discount
function, especially in TREC 12.

This wide difference between the induced rankings by the
optimal discount function and the Zipfian one can be ex-
plained by revisiting Figure 4. As it can be observed, for the
Zipfian discount function, only 80% of the differences in the
mean nDCG scores over a set of 50 queries (which is the case



in all scatter plots here), is due to actual performance dif-
ferences between the systems, while the corresponding per-
centage for the optimal discount function is about 90%. The
corresponding percentages for TREC 9 (where the ranking
of systems for the two discount functions are closer to each
other) are 90% and 95% respectively, while for TREC 10
(where the ranking of systems are almost identical) the per-
centages are around 88% and 90%, respectively. Therefore,
the ranking by the Zipfian discount in TREC 12 incorpo-
rates a lot of noise which is reduced in the case of TREC 9
and 10.

The scatter plots in Figure 8 illustrate the mean nDCG
scores computed at rank 100 for the optimal gain function
(x−axes) against the mean nDCG scores for the exponential
gain function (y − axes) for TREC 9, 10 and 12. The RMS
Error and Kendall’s τ are also reported in the plots.

As it can be observed in Figure 8 the rankings by the op-
timal discount function are almost identical with the rank-
ings by the exponential gain function. This is one more
indication that for the particular test collections with the
three grades of relevance the ratio between the gain values
for relevant and the gain values for highly relevant docu-
ments does not affect the ranking of systems (at least for
the ratio values examined in our studies, i.e. ratio values
less than 3). What is particularly striking is that even for
TREC 12, where the optimal gain function gives the exactly
same gain value to both relevant and highly relevant, and
thus essentially conflates the two relevance grades in one,
the Kendall’s τ between the rankings is 0.94, with the top
6-7 systems ranked in the exact same order by both gain
functions. This states that good systems do equally good
in retrieving relevant and highly relevant documents, while
bad systems do equally bad in retrieving either relevant or
highly relevant documents.

The corresponding scatter plots for the linear gain func-
tion look very similar to the ones in Figure 8 and for this
reason they are not reported here.

3.5 Discriminative power
As mentioned before, intuitively, efficiency and stability

seem to correlate well with discriminative power, since the
variability in a measure that discriminates systems well will
most probably be due to actual performance differences be-
tween systems. In this section we perform some basic ex-
periments to test whether this hypothesis is correct.

Sakai [12] proposed a methodology to compare evaluation
methods in terms of their ability to discriminate between
systems based on Bootstrap Hypothesis Tests. According
to his framework, all pairs of systems are considered and
the hypothesis that their mean scores over a set of queries
are the same is tested. To test this hypothesis Sakai [12]
employs a bootstrap test, creating 1000 bootstrap samples.
The achieved significance level (ASL), that is the significance
level required to reject the zero hypothesis that two systems
have the same mean score, is computed for each pair of sys-
tems. Finally, evaluation measures are compared in terms
of ASLs. The smaller the ASLs a metric achieves the more
discriminative the metric is.

To optimize for discriminative power, one would need to
minimize the obtained ASLs while treating gain and dis-
count function as unknowns. This is not a trivial opti-
mization and it seems at least computationally inefficient.
However, if stability (efficiency) is well correlated with dis-

criminative power, then the stability-optimal nDCG will also
demonstrate high discriminative power.

To test out thesis, we adopted the bootstrap hypothesis
testing methodology, and compared 4 variations of nDCG,
(a) nDCG with optimal gain and optimal discount, (b) nDCG
with linear gain and log discount, (c) nDCG with exponen-
tial gain and log discount, and (d) nDCG with linear gain
and linear discount. We followed the experimental setup in
Sakai [12] and used only the top 30 systems from each data
set (TREC 9, 10 and 12), since “near-zero” runs are unlikely
to be useful for discussing the discriminative power of the
measures. We considered all the remaining pairs of systems
and for each one of the pairs we created 1000 bootstrap sam-
ples and calculated the achieved significance level (ASL) for
all aforementioned nDCG measures. Figure 9 illustrates,
for each one of the nDCG measures, the ASLs of systems
pairs. The horizontal axis represents all system pairs sorted
by ASL. The pairs of systems at the left of a given ASL
level, are those that the measure cannot discriminate.

As it can be observed from the plots, when the stability-
(efficiency-) optimal gain and discount functions are utilized
nDCG outperforms all other variations with respect to dis-
criminative power. The linear/exponential gain and log dis-
count nDCG measures appear to be the next most discrimi-
native ones, while the linear gain and linear discount nDCG
appears to be the less discriminative one.

4. CONCLUSIONS
Despite the flexibility nDCG offers in the selection of the

appropriate gain and discount function, so far this selection
has been done rather arbitrarily, based on speculations of
the search behavior of an average user and speculations of
the correlation of the measure to user satisfaction. Recent
work [1] has shown that the most commonly employed gain
and discount functions are loosely related to user satisfac-
tion which underlines the need for a more methodological
selection of gain and discount function. However, given the
infinite number of possible gain and discount functions, the
vast differences in user search behavior, the many different
possible retrieval tasks, a complete analysis of the different
gain and discount functions with respect to the user satis-
faction is prohibitively expensive, if at all possible.

In this work, we numerically computed a stability- or
efficiency-optimal gain and discount function by treating
gain values and discount factors as unknowns and optimizing
for a stability/efficiency measure defined based on General-
izability theory. We compared the resulting gain function
to both the linear and the exponential functions and the re-
sulting discount function to the log, Zipfian and linear ones.

According to our results, the optimal discount function is
less steep than all commonly used discount functions, giv-
ing reasonably high weights to lower ranks, while the relative
difference between gain values is much smaller than the com-
monly used ones, giving almost equal weights to both rele-
vant and highly relevant documents. The latter was rather
striking, since weighting relevant and highly relevant docu-
ments equally did not seem to alter the ranking of systems.
Note that this is true for the particular collections and sys-
tems under study and it may not reflect the general case.

Finally, we demonstrated that the stability- (efficiency-)
optimal nDCG measure outperforms the dominant in the lit-
erature nDCG measure with respect to discriminative power
as well.
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Figure 8: Scatter plots of the mean nDCG scores for the optimal gain function versus the exponential discount
function.
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Figure 9: ASL curves for TREC 9, 10 and 12 with nDCG computed at rank 20.
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