
Supplementary Materials:

Learning to Segment Actions from Visual and Language Instructions

via Differentiable Weak Sequence Alignment

Yuhan Shen
Northeastern University

shen.yuh@northeastern.edu

Lu Wang
University of Michigan
wangluxy@umich.edu

Ehsan Elhamifar
Northeastern University

e.elhamifar@northeastern.edu

1. More Details on DWSA

1.1. Finding Alignment Path via Backtracking

Although we only need to compute the total alignment
cost in our experiments, we can also easily obtain the
optimal alignment path by backtracking. After updating
the cumulative cost matrix D, we can obtain the optimal
alignment path via Algorithm 1.

Algorithm 1: Alignment Path Backtracking
input : Cumulative cost matrix D

1 Initiate alignment path P = ?
2 j 2q0 + 1
3 for i q to 1 do

4 if j is odd then

5 j argmin{di,1, · · · , di,j}
6 else

7 j argmin{di,1, · · · , di,j�1}

8 add (i, j) to P

output: Alignment path P

1.2. Backward Propagation

To obtain rODWSA(O,O
0), we first calculate the

derivatives of DWSA Loss L w.r.t. the entries of the cost
matrix �(O,O

0), which can be computed by,

@L

@�i,j
=

@L

@di,j
·
@di,j

@�i,j
=

@L

@di,j
. (1)

Let us denote the derivatives of the loss L w.r.t. �i,j as gi,j ,
then

gi,j =
@L

@�i,j
=

@L

@di,j
. (2)

Recall that the DWSA loss function, L, is obtained by

L = min�{dq,1, dq,2, . . . , dq,2q0+1}. (3)

Algorithm 2: Backward Propagation for DWSA

input : Matching cost � 2 Rq⇥2q0+1; Cumulative cost
D; soft-min parameter � � 0

1 gq,j e
�dq,j/�

P2q0+1
r=1 e�dq,r/�

, j 2 {1, . . . , 2q0 + 1}

2 for i q � 1 to 1 do

3 for j 2q0 + 1 to 1 do

4 if j is odd then

5 gi,j
P

r�j gi+1,re
(�di,j+di+1,r��i+1,r)/�

6 else

7 gi,j
P

r>j gi+1,re
(�di,j+di+1,r��i+1,r)/�

8 Set G = [gi,j]

output:rODWSA(O,O0) =
� @�(O,O0)

@O

�T
G

Calculating the derivative of L w.r.t. dq,j , we have

gq,j =
@L

@dq,j
=

e
�

dq,j
�

P2q0+1
r=1 e

�
dq,r
�

. (4)

Considering the formula of dynamically updating D, for
j 2n� 1,

@di+1,2n�1

@di,j
=

e
�

di,j
�

P2n�1
r=1 e

�
di,r
�

, (5)

� log
@di+1,2n�1

@di,j
= �di,j � � log

2n�1X

r=1

e
�

di,r
�

= �di,j +min
�

{di,1, · · · , di,2n�1}

= �di,j + di+1,2n�1 � �i+1,2n�1.

(6)
So, we obtain

@di+1,2n�1

@di,j
= exp{

�di,j + di+1,2n�1 � �i+1,2n�1

�
}.

(7)

1

ProceL CrossTask
K=7 K=10 K=12 K=15 K=7 K=10 K=12 K=15

Alayrac et al. [1] 3.67 4.90 5.19 5.54 3.39 4.31 4.42 4.46
Kukleva et al. [4] 18.98 16.68 16.46 14.99 15.67 13.87 11.92 10.98

Elhamifar et al. [2] 14.00 12.40 12.80 11.80 16.20 16.20 16.20 16.30
kmeans (visual) 16.57±0.15 15.82±0.25 15.29±0.22 14.67±0.27 19.13±0.09 17.35±0.07 16.24±0.09 15.26±0.11
SOPL (visual) 21.18±0.14 20.17±0.24 20.02±0.22 19.01±0.24 20.20±0.06 18.64±0.10 17.46±0.24 16.04±0.22

SOPL+soft-DTW 20.25±0.12 20.18±0.26 19.02±0.22 18.48±0.18 19.75±0.09 18.27±0.07 17.02±0.12 16.08±0.24
SOPL+DWSA 21.13±0.20 20.67±0.28 20.30±0.23 19.46±0.15 20.50±0.12 19.12±0.14 17.63±0.08 16.55±0.17

Table 1: Average F1 score on ProceL and CrossTask for different procedure lengths, K.

Similarly, for j 2n� 1, we have

@di+1,2n

@di,j
= exp{

�di,j + di+1,2n � �i+1,2n

�
}. (8)

Combining the above two equations, we get

@di+1,r

@di,j
= exp{

�di,j + di+1,r � �i+1,r

�
}, (9)

which holds for j 2d r2e�1 (i.e., r � 2b j2c+1), otherwise
the derivative is 0. As a result, we have

@L

@di,j
=

2q0+1X

k=1

@L

@dq,k

@dq,k

@di,j

=
2q0+1X

k=1

@L

@dq,k
·

2q0+1X

r=2b j
2 c+1

@dq,k

@di+1,r
·
@di+1,r

@di,j

=
2q0+1X

r=2b j
2 c+1

2q0+1X

k=1

@L

@dq,k
·

@dq,k

@di+1,r
·
@di+1,r

@di,j

=
2q0+1X

r=2b j
2 c+1

@L

@di+1,r
·
@di+1,r

@di,j
;

(10)

gi,j =
2q0+1X

r=2b j
2 c+1

gi+1,r ·
@di+1,r

@di,j

=
2q0+1X

r=2b j
2 c+1

gi+1,r · exp{
�di,j + di+1,r � �i+1,r

�
}

=

8
<

:

P
r�j gi+1,r · e

�di,j+di+1,r��i+1,r
� , l is odd

P
r>j gi+1,r · e

�di,j+di+1,r��i+1,r
� , l is even.

(11)
Therefore, we have obtained a backward recursion to
compute the entire gradient matrix G = [gi,j]. The
backward propagation is summarized in Algorithm 2.

Task kmeans SOPL gain OCE Repeat
Freq.

tie tie 10.13 20.12 98.6 5.8 3.8
change battery 15.77 28.71 82.1 10.4 0.2

change tire 18.97 29.27 54.3 14.0 7.2
setup chromecast 20.86 26.67 27.9 16.0 0.9
change toilet seat 13.06 15.28 17.0 16.8 1.1

make coffee 13.13 15.05 14.6 22.7 12.1
jump car 7.65 10.43 36.3 24.4 2.4

make pbj sand. 16.85 17.01 0.9 25.3 24.6
perform cpr 17.85 16.66 -6.7 26.1 34.1

make salmon sand. 28.93 30.53 5.5 29.4 15.3
assemble clarinet 10.04 11.56 15.1 35.1 3.5

repot plant 15.39 19.47 26.5 38.0 34.2

Table 2: The relative gain (%) in F1 score (%) from introducing
time-stamp prototypes on ProceL, along with the ordering
consistency error (OCE, in %, smaller is more consistent) and
frequency of repeated steps (%) of each task.

2. More Details on Experiments

2.1. Effect of the Number of Prototypes

To be consistent with a few prior works that do not use
the actual number of key-steps, we also set the number
of prototypes/clusters K to be a predefined value, and
report the performance with respect to different values
of K 2 {7, 10, 12, 15} in Table 1. Notice that similar
to the results presented in the main paper, our proposed
method significantly improves the performance compared
with unsupervised baselines in all settings across all values
of K.

2.2. Effect of Time-Stamp Prototypes in SOPL

To better investigate the effect of introducing time-stamp
prototypes in Soft Ordered Prototype Learning (SOPL), we
compare the difference between kmeans and SOPL. Table
2 shows the relative gain in F1 score after adding time-
stamp prototypes for each task. We also show the ordering
consistency error and frequency of repeated key-steps for
each task on ProceL (see below for formulation of these
metrics).

We observe that using time-stamp prototypes generally
helps more in tasks with more consistent ordering (e.g.,

2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Iterations

0.4

0.5

0.6

0.7

0
6E

Figure 1: MSE as a function of the number of SOPL iterations, p
for several randomly selected learning epochs.

‘tie tie’ or ‘change battery’), and makes less or negative
improvement for tasks with less consistent ordering (e.g.,
‘make salmon sandwich’) or more repeated steps (e.g.,
‘perform CPR’). That explains why the improvement by
SOPL is smaller on CrossTask, since the videos have higher
average ordering consistency error on CrossTask compared
to ProceL (27.7% v.s. 22.0%) and higher average frequency
of repeated steps (32.2% v.s. 11.6%).

We compute ordering consistency error and frequency of
repeated steps similar to [3, 1].

Order consistency error (OCE), denoted by O, is
defined as 1 minus the average over the consistencies
between distinct pairs of videos. The consistency between
a pair of videos is defined as the ratio of the length of the
longest common subsequence and the minimum number of
annotated key-steps of two videos. This score is between
0 and 1 and lower error means higher order consistency
between pairs of videos,

O , 1�
X

i,j21:N,i 6=j

lij

cij
. (12)

Frequency of repeated steps, denoted by R, is defined as
1 minus the ratio of unique key-steps and total number of
annotated key-steps in videos. This score is between 0 and
1, and higher score implies more repetitions of key-steps
across videos,

R , 1�

PN
n=1 unPN
n=1 gn

. (13)

2.3. Convergence of SOPL

In order to investigate the convergence of SOPL and the
effect of the number of iterations, p, in SOPL, we set the
maximum number of iterations to p = 20 and show the
MSE as a function of the number of iterations, p, for several
training epochs in Figure 1. As the figure shows, the MSE
will typically converge after 3 to 5 iterations. In Table 3, we

ProceL Crosstask
p=1 20.05±0.11 20.46±0.08
p=3 20.72±0.16 20.87±0.09
p=5 21.07±0.25 21.00±0.09
p=7 21.09±0.10 20.96±0.06

Table 3: The average F1 score with respect to different numbers
of iterations, p, in SOPL.

ProceL CrossTask
verb+dobj 20.41±0.21 20.27±0.04

verb-phrase 20.91±0.17 20.93±0.13
verb-phrase+conc. (ours) 21.07±0.25 21.00±0.09

Table 4: Average F1 on ProceL and CrossTask when using
different methods of text processing.

also report the average F1 score on ProceL and CrossTask
when we set p 2 {1, 3, 5, 7}. Notice that, generally, the
difference between different iterations is small when p � 3,
and the best performed choice is p = 7 on ProceL and p =
5 on CrossTask. We set p to be 5 for both datasets in all
experiments.

2.4. Ablation Studies for Narration Processing

To investigate the impact of our text processing method,
we conduct ablation studies on different ways of text
processing. First, we experiment with verb+dobj pairs as
in [1]. Then we study the effect of removing noisy verb-
phrases based on concreteness scores, where we perform
experiments on verb-phrases without removing phrases
with low concreteness score. Table 4 shows the average F1
score on ProceL and CrossTask when using verb+dobj pairs
and using verb-phrases without concreteness strategy. The
F1 scores on verb-phrases are higher than verb+dobj pairs,
because the verb-phrases can keep more necessary context.
The performance without and with concreteness strategy are
similar with the latter having slightly higher performance,
which shows that our extra textual prototypes are able to
model abstract phrases well.

2.5. Effects of Background Ratio

Figure 2 illustrates the effect of background ratio, b on
performance of our method on CrossTask. We show the
average F1, precision and recall with respect to different
values of b. Notice that as b increases, the method
will predict more frames as background, thus increasing
precision and decreasing recall. As a result, F1 first
increases and then goes down, and obtains the optimal value
when b = 0.4. However, notice that for a large range of
b 2 [0, 0.6], the F1 score is stable and only slightly changes.

3

Figure 2: Average performance with respect to different values
of background ratio, b, on CrossTask.

Figure 3: Average F1 with respect to different values of cost for
empty alignment (�e).

2.6. Effect of Empty Alignment Cost

Figure 3 shows the effects of empty cost, �e, in DWSA.
On both datasets, the method performs best when �e = 1,
yet, notice that the performances are close for all values of
�e (for all values, our method outperforms the state of the
art). When �e is small, the sequence alignment algorithm
will align more rows with empty columns, so the model
has less ability to learn informative features through the
correspondence between two modalities. When �e is large,
the algorithm disallows some visual prototypes to stay
unmatched with the linguistic prototypes, thus, degrading
the performance.

2.7. Qualitative Results on Key-Step Localization

We show more qualitative examples on key-step local-
ization for three videos from three tasks in both CrossTask
and ProceL datasets in Figure 4. Notice that, compared
to other methods, our algorithm is able to more accurately
localize key-steps in videos.

2.8. Visualization of Text-Video Alignments

In Figure 5 and 6, we visualize several verb-phrases
and video frames that fall into linguistic and visual clusters

Figure 4: Localization results for three videos from the tasks
‘make a latte’ (top), ‘build simple floating shelves’ (middle), and
‘repot plant’ (bottom).

associated with each other via our DWSA algorithm. This
allows us to visualize the correspondence between aligned
prototypes of the two modalities.

For each pair of aligned linguistic and visual prototypes
by DWSA, we randomly select 12 verb-phrases and 12
video frames, respectively. Due to the large quantity
of background video segments, we limit the selection of
video frames within the 50% video segments closest to
visual prototypes. Notice that the verb-phrases that are
assigned to the same linguistic prototype are highly similar
in semantics. For example, in Figure 5, the verb-phrases
in the first cluster are mostly related to ‘remove screws’,
the ones in the second cluster are mostly related to ‘pull
battery’, and the ones in the third cluster are mostly related
to actions on ‘screen’. In addition, most video frames are
also depicting the actions mentioned in verb-phrases.

References

[1] J. B. Alayrac, P. Bojanowski, N. Agrawal, J. Sivic, I. Laptev,
and S. Lacoste-Julien. Unsupervised learning from narrated
instruction videos. IEEE Conference on Computer Vision and
Pattern Recognition, 2016. 2, 3

[2] E. Elhamifar and D. Huynh. Self-supervised multi-task
procedure learning from instructional videos. European
Conference on Computer Vision, 2020. 2

[3] E. Elhamifar and Z. Naing. Unsupervised procedure learning
via joint dynamic summarization. International Conference
on Computer Vision, 2019. 3

[4] Anna Kukleva, Hilde Kuehne, Fadime Sener, and Jurgen
Gall. Unsupervised learning of action classes with continuous
temporal embedding. IEEE Conference on Computer Vision
and Pattern Recognition, 2019. 2

4

take the first two screws; put the screws;
take out the two screws; remove both screws;
remove these two screws; take out the bottom screws;
remove those screws; grab screws; undo these screws;
take off screw; have two screws; use screwdriver.

pull out the battery from the back; pull up the battery;
remove the battery in the future; reinstall your new battery;
reconnect the connecting cable for the battery;
feel a battery; reconnect the battery connector;
remove the battery from the rear case; pop battery in place;
grab my battery; lift the battery; recycle battery.

get the two screens in the bottom; press down the screen;
line up the screen; reassemble the LCD screen;
get your screen; close up the screen; crack your screen;
lower the screen; reach the home screen;
plug screen; hold your screen in place; clamp the screen.

Figure 5: Randomly selected verb-phrases and video frames that fall into the same cluster, from the task ‘change iPhone battery’.

chop the kimchi; eat kimchi; cook out the kimchi;
add the kimchi after about a minute; use kimchi;
use Korean radish kimchi; mix rice with the radish kimchi;
have some kimchi; use whole cabbage kimchi;
wash kimchi; cook the fried kimchi; heat up the kimchi.

fry rice; love what with my fried rice; break up the rice;
add the rice into the pan; add the rice;
add the cold white rice; turn out rice; give this fried rice;
add the rice with no olive oil; fry rice at my list;
put sesame on the rice; make this for fried rice.

cook some food; check out the meat; cook up this;
cook meat for about 5 minutes; finish this cooking;
make this meal; cook that; cook the next thing;
have what in the refrigerator; turn the meat;
make dinner for your family; make food.

Figure 6: Randomly selected verb-phrases and video frames that fall into the same cluster, from the task ‘make kimchi fried rice’.

5

