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1. Comparisons of TASL with Prior Works
In this section, we report the results of NNV [9], D3TW

[1], CDFL [7], TASL(3) and TASL(10,3) with the perfor-
mance of the best run and average over three runs as Best
and Average, respectively. Since D3TW has not release its
code, we were unable to implement it, thus report its avail-
able Best results on Breakfast from [7]. Per our knowl-
edge, D3TW does not release the results for the five met-
rics we use on Hollywood and CrossTask. Meanwhile, we
also compare with the state-of-the-art unsupervised sub-
space clustering methods: KSUB [4], SSC [3], LRR [8] and
DSC [5].

As the current unsupervised subspace clustering base-
lines cannot leverage transcripts, we provide a modifica-
tion to adapt them to the weakly-supervised setting. For
KSUB, SSC and LRR, 1) we run the methods on each train-
ing video separately to obtain initial unsupervised segmen-
tations (clustering) by setting the number of clusters equal
to the length of a video’s transcript T = {a1, . . . , an}.
Notice that the segmentations do not necessarily conform
to transcripts, due to their unsupervised nature. 2) For
each video, we match the discovered clusters with the tran-
script. We consider the timestamp of a cluster as the av-
erage timestamps of its frames. Then the cluster with the
i-th smallest timestamp is matched with ai. For example,
if cluster 1 contains frames {3, 5, 6} and cluster 2 contains
frames {1, 2, 4}, cluster 1 is matched with a2 and cluster
2 is matched with a1. 3) With the matching of frames to
actions obtained, we can learn an action subspaces for the
video using the frames in the correspondent clusters. Then
constrained Viterbi decoding can be performed to obtain a
transcript-consistent segmentation by solving

min
{li},

∑
li=N

n∑
i=1

Li+li∑
t=Li+1

d(t, i), (1)

where d(t, i) is the distance between frame t and the sub-
space of ai and Li ,

∑i−1
j=1 lj is the total length of actions

before ai. 4) So far, we obtained transcript-consistent seg-
mentations using per-video action subspaces. We aggregate
the frames assigned to an action across all videos to learn a
universal action subspace. With these universal subspaces,
we perform the proposed alignment algorithm, by setting
the objective function of (1) as the constrained Viterbi de-
coding’s cost, to obtain segmentations of test videos for ac-
tion segmentation and action alignment tasks.

Given that DSC is a deep subspace clustering method,
we train the DSC network on all training videos and use it
to obtain the initial unsupervised segmentations, which are
subsequently used in steps 2–4 as explained above. Given
that KSUB, DSC, SSC, LRR are either deterministic or ob-
tain consistent results across different runs, so we did not
report the average and best performance for them.

Notice that in Eq (4) in the main paper, the loss func-
tion terms related to the invalid alignments, ynt,a(log(σt,a)+
log(ψt,a)), are unbounded from below and can reach neg-
ative infinity. We solve this issue in a similar fashion as
in [7]: we discard easy negative alignments whose proba-
bilities, {σt,a}, are close to zero. Therefore, the remaining
terms are lower bounded.

Table 1 and 2 summarize the results. Notice that the per-
formance of subspace clustering baselines are much lower
than those of weakly-supervised methods. Although they
has high MoF on Hollywood and CrossTask, this is sim-
ply because they oversegment majority of frames into back-
ground while more than 50% of the frames in these two
datasets are background. As a result, their IoU-bg/IoD-bg
are very low. The overall low performance of the subspace
clustering baselines comes from the fact that they do not
have a principled way of learning from transcripts. More-
over, they cannot model lengths and frequencies of actions,
thus are unable to incorporate the constraint loss Lreg. No-
tice that DSC, which has the ability to perform feature learn-
ing, does better than other subspace clustering baselines.

TASL achieves state-of-the-art performance on all
datasets for both action segmentation and action alignment



tasks. On Breakfast, TASL(3) and TASL(10, 3) both have
improved CDFL on Best and Average results. It shows
TASL is effective in learning actions and more robust to
different initializations. On Hollywood, TASL(10, 3) has
the best overall performance, while TASL(3) has compara-
ble results on IoD and IoD-bg. It is partially due to Hol-
lywood bearing more differences in action complexity, as
it includes actions like fight person, drive car as well as
sit down, sit up. On CrossTask, TASL(3) is able to out-
perform CDFL by large margins. TASL(10, 3) has high
Mof but lower other scores as it has a large subspace di-
mension and tends to overpredict the most frequent action,
background. Comparing TASL(3) and TASL(10, 3) shows
by a proper subspace dimension, our method can correctly
capture the action complexity while avoiding overpredict-
ing background.

2. Window Size for Generating Candidate
Alignments

Our proposed alignment algorithm generates multiple
valid alignments by shifting action boundaries. We set a
window size, δ, to decide the range of shift similar to [7].
For example, for an initial action boundary at frame t, the
shifted boundaries will be in [t − δ/2, t + δ/2]. We set
δ = 10 for Breakfast, 6 for Hollywood and 4 for CrossTask.

3. Centers vs Subspaces
Since our TASL framework allows choosing different

subspace dimensions, one choice is to use a 0-dimensional
subspace, hence, multiple centroids (the learned frame fea-
ture of each action must be close to a point). This would
be equivalent to transcript-aware K-means, which thus can
be considered as a special case of our framework. However,
we found that zero-dimensional subspaces often give lower
performance due to inadequate capacity and representation
power to model each action. In Table 3 and 4 we report the
performance of zero-dimensional subspaces on the Holly-
wood dataset. It can be observed that TASL(0) obtains a
lower performance than TASL(10, 3), as the small subspace
dimension limits its learning capacity. Thus, it is prone to
overfitting and over-predicting the ‘background’ class and
often has a high MoF but low IoU/IoD.

4. Effect of ‘Background’ Subspace Dimension
Table 5 shows the effect of different subspace dimen-

sion for the background class on Breakfast for the action
segmentation task. The first two rows show the previ-
ous results of CDFL and TASL(3) on Breakfast. Then we
change TASL(3) to model background with different sub-
space dimension, with dbg ∈ {1, 5, 10} andQbg being iden-
tity, and keep those of other actions intact. Notice that
TASL(3), with dbg = 3, achieves the best performance

Breakfast Mof IoU
IoU
-bg IoD

IoD
-bg

KSUB[4] 8.0 0.8 0.5 3.0 2.7
SSC[3] 17.2 11.7 6.9 16.8 13.2
LRR[8] 16.5 11.1 6.2 16.2 12.3
DSC[5] 11.8 12.0 6.7 19.6 15.3

Best
NNV [9] 42.9 32.2 29.1 32.1 31.8

D3TW [1] 45.7 - - - -
CDFL [7] 50.8 35.7 33.6 46.8 45.7
TASL(3) 49.9 36.6 34.3 47.7 46.4

TASL(10,3) 49.7 36.5 34.0 47.6 45.9
Average

NNV [9] 40.2 31.2 27.7 41.4 38.9
CDFL [7] 47.2 34.1 31.3 44.9 43.7
TASL(3) 47.8 35.2 32.6 46.1 44.5

TASL(10,3) 47.9 35.1 32.7 46.0 44.1

Hollywood Mof IoU
IoU
-bg IoD

IoD
-bg

KSUB[4] 47.6 4.5 1.4 7.6 4.2
SSC[3] 50.2 19.2 0.7 23.3 1.3
LRR[8] 49.5 19.0 0.8 23.6 1.7
DSC[5] 47.4 18.9 0.9 23.7 1.8

Best
NNV [9] 44.4 23.2 13.1 34.5 17.8
CDFL [7] 40.7 22.2 15.1 36.1 19.0
TASL(3) 45.6 23.6 13.8 35.4 18.7

TASL(10,3) 46.6 25.2 15.3 37.7 21.3
Average

NNV [9] 43.1 22.2 11.8 33.7 16.2
CDFL [7] 39.9 21.6 14.1 35.3 18.0
TASL(3) 43.7 23.3 13.6 35.7 18.3

TASL(10,3) 43.7 23.4 13.6 35.7 18.3

CrossTask Mof IoU
IoU
-bg IoD

IoD
-bg

KSUB[4] 49.3 10.7 0.0 14.7 0.0
SSC[3] 65.3 12.7 0.1 14.3 0.2
LRR[8] 66.6 13.1 0.1 14.4 0.2
DSC[5] 64.0 12.6 0.2 14.6 0.6

Best
NNV [9] 27.0 11.0 8.5 24.4 10.1
CDFL [7] 32.5 11.8 7.7 24.0 9.6
TASL(3) 42.7 14.9 9.2 25.5 11.3

TASL(10,3) 52.6 12.3 3.6 19.6 4.7
Average

NNV [9] 26.5 10.7 7.9 24.0 9.4
CDFL [7] 31.9 11.5 7.5 23.8 9.3
TASL(3) 40.7 14.5 8.9 25.1 11.0

TASL(10,3) 49.2 12.2 2.8 18.5 3.7

Table 1: Action Segmentation Accuracies on Three Datasets.

while a larger or smaller background dimension decreases
the performance, showing dbg = 3 is the most proper back-
ground dimension on Breakfast.

5. Complexity of the Alignment Algorithm

In Section 3.2 of the paper, we introduced our alignment
algorithm, which involves two steps: 1) finding the opti-



Breakfast Mof IoU
IoU
-bg IoD

IoD
-bg

KSUB[4] 13.8 12.5 10.9 26.3 27.2
SSC[3] 28.5 17.0 15.5 35.4 39.2
LRR[8] 24.7 15.1 13.6 30.3 33.2
DSC[5] 19.2 15.3 13.3 33.8 37.2

Best
NNV [9] 59.5 47.0 47.7 61.7 65.0

D3TW [1] 57.0 - - 56.3 -
CDFL [7] 67.6 50.5 51.3 65.1 69.5
TASL(3) 65.8 51.0 51.9 65.5 69.1

TASL(10,3) 65.6 50.6 51.4 65.4 68.8
Average

NNV [9] 55.9 45.2 45.6 60.1 63.4
CDFL [7] 62.1 47.8 48.4 63.1 67.1
TASL(3) 64.1 49.9 50.7 64.7 68.2

TASL(10,3) 63.4 49.6 50.2 64.6 67.7

Hollywood Mof IoU
IoU
-bg IoD

IoD
-bg

KSUB[4] 57.0 26.5 8.4 40.6 27.8
SSC[3] 60.0 27.5 10.1 41.9 29.9
LRR[8] 59.4 27.0 9.5 40.7 27.7
DSC[5] 57.3 27.1 9.3 41.6 29.3

Best
NNV [9] 61.5 35.9 26.4 51.3 41.5
CDFL [7] 60.2 36.9 31.5 51.1 40.9
TASL(3) 63.0 37.6 29.4 52.3 42.0

TASL(10,3) 63.7 38.3 30.7 53.2 43.0
Average

NNV [9] 59.8 35.0 25.4 49.9 39.6
CDFL [7] 59.5 36.5 30.7 51.7 40.2
TASL(3) 61.6 36.8 28.3 51.5 41.1

TASL(10,3) 62.2 37.7 30.0 52.4 41.7

CrossTask Mof IoU
IoU
-bg IoD

IoD
-bg

KSUB[4] 64.7 14.9 3.1 20.8 8.7
SSC[3] 63.9 14.6 3.0 20.4 8.2
LRR[8] 64.1 14.7 3.2 20.5 8.4
DSC[5] 63.8 14.8 3.3 20.7 8.6

Best
NNV [9] 34.6 15.3 11.4 27.5 14.0
CDFL [7] 46.7 17.2 11.5 28.0 14.5
TASL(3) 57.1 19.1 11.7 28.9 15.8

TASL(10,3) 60.0 18.4 8.7 27.0 14.1
Average

NNV [9] 34.3 15.1 11.3 27.1 13.4
CDFL [7] 43.4 17.0 11.3 27.6 14.3
TASL(3) 54.6 18.8 11.5 28.2 15.2

TASL(10,3) 58.9 17.9 8.0 26.1 13.5

Table 2: Action Alignment Accuracies on Three Datasets.

mal alignment using constrained Viterbi decoding; 2) gen-
erating positive and negative soft alignments Y p,Y n from
multiple valid and invalid alignments. Since we employ the
constrained Viterbi decoding, similar to [9, 7], the complex-
ity for step 1 isO(N2n) for a video withN frames and with
n actions in the transcript.

Hollywood Mof IoU IoU-bg IoD IoD-bg
Best

TASL(0) 46.7 24.1 13.1 35.5 17.9
TASL(10, 3) 46.6 25.2 15.3 37.7 21.3

Average
TASL(0) 45.8 23.0 12.0 34.8 17.0
TASL(10, 3) 43.7 23.4 13.6 35.7 18.3

Table 3: The performance of 0-dimensional subspace for
action segmentation on Hollywood.

Hollywood Mof IoU IoU-bg IoD IoD-bg
Best

TASL(0) 63.5 37.9 28.7 53.2 42.5
TASL(10, 3) 63.7 38.3 30.7 53.2 43.0

Average
TASL(0) 62.8 37.2 28.2 52.0 41.0
TASL(10, 3) 62.2 37.7 30.0 52.4 41.7

Table 4: The performance of 0-dimensional subspace for
action alignment on Hollywood.

Breakfast Mof IoU IoU-bg IoD IoD-bg
CDFL [7] 47.2 34.1 31.3 44.9 43.7
TASL(3) 47.8 35.2 32.6 46.1 44.5
dbg = 1 45.5 32.9 29.9 43.8 42.4
dbg = 5 44.5 32.7 30.0 43.6 42.6
dbg = 10 44.3 31.7 28.6 42.5 41.1

Table 5: Effect of ‘Background’ subspace dimension for
TASL(3) on Breakfast for action segmentation.

Next, we discuss the complexity of step 2 of our align-
ment method, which would be similar to the complexity of
CDFL [7]. Recall that, as defined in Eq.9 of the main paper,
Y p is the weighted average of multiple valid alignments:

Y p ,
∑
k

αkR
p
k, αk ,

exp(s(Rp
k))∑

j exp(s(Rp
j ))

, (2)

where s(Rp
k) , 〈Rp

k,∆〉 is the log likelihood of the k-th
valid alignment. Y n is defined similarly based on the in-
valid alignments. As we generate exponentially many valid
and invalid alignments following [7], iteratively calculat-
ing αk for each alignment is prohibitive. We develop an
efficient approach to directly compute Y n and Y n. First,
we compute a smooth maximum of the log likelihood of all
valid alignments via the log-sum-exp trick:

rp , log

[∑
k

exp(s(Rp
k))

]
, (3)

where rp can be computed in O(A2δn) using the method in



[7]. A is the total number of actions and δ is the window
size mentioned in Section 2. Then Y p can be obtained by
computing the derivative of rp w.r.t ∆. Specifically,

∂rp

∂∆
=

∑
k

∂rp

∂s(Rp
k)

∂s(Rp
k)

∂∆
(4)

=
∑
k

exp(s(Rp
k))∑

j exp(s(Rp
j ))

Rp
k. (5)

Similarly, Y n can be obtained from the derivative of rn ,
log[

∑
k exp(s(Rn

k ))]. The derivative can be efficiently
computed using Pytorch autograd module. Yet, explicitly
writing out Y p,Y n gives us a more flexible control over the
network optimization, as we can compute Y p,Y n based on
σt,a, as in Eq.5 of the paper, and use them to optimize both
σt,a and ψt,a. One can also upscale or downscale Y p,Y p

to give higher weights to the important actions and lower
weights to the unimportant ones. On Breakfast, on average,
it takes 0.4s to obtain the optimal alignment, 0.1s to com-
pute rp, 7.2s for rn then 0.4s to obtain Y p,Y n by comput-
ing derivatives. In terms of inference, it on average takes
0.93s for NNV, 1.02s for CDFL and 1.04s for TASL to gen-
erate the segmentation for a test video for action segmenta-
tion task.

6. Hierarchical Segmentation Framework
In this section, we provide more details of our hierarchi-

cal segmentation method for the action segmentation task,
proposed in Section 3.3 of the paper, which consists of three
steps: 1) Use the facility location subset selection algorithm
[6] to choose C representative transcripts from all training
transcripts and assign each training transcript to one of the
representative. 2) Use the constrained Viterbi decoding to
align a test video with the C representative transcripts and
find the best matching representative. 3) Align the video
with the transcripts assigned to the optimal representative
transcript to recover for the final alignment.

The facility location subset selection aims to find a set
of at most C representative training transcripts that have the
smallest distances to all training transcripts, thus, can best
represent all training transcripts, i.e., it solves

max
Λ⊂V,|Λ|≤C

f(Λ) where f(Λ) ,
V∑
i=1

max
j∈Λ

d(Ti, Tj). (6)

Here, V = {1, . . . , V } stores the indices of all V train-
ing transcripts and Λ will contain indices of representative
transcripts while f(Λ) measures the sum of distances of
every training transcript to its closest representative tran-
script. d(Ti, Tj) = 2 × edit(T1, T2)/(|T1| + |T2|) is the
pairwise distance between Ti, Tj that equals to the Leven-
shtein distance between the two transcripts normalized by

background ActionSitUp ActionKiss
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TASL
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Figure 1: Results of NNV, CDFL, TASL(10, 3) against
ground-truth, on two Hollywood videos for action segmen-
tation (top) and alignment (bottom).
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Figure 2: Results of NNV, CDFL, TASL(3) against ground-
truth, on two CrossTask videos for action segmentation
(top) and alignment (bottom).

their lengths. Please note we remove ‘background’ class
from transcripts when computing their pairwise distances,
as two transcripts can share the exact same key actions but
with backgrounds at very different locations.

Direct optimization of f(Λ) over all subsets of size at
most C is an NP-problem. An approximate method to solve
this problem is a greedy algorithm that starts by initializing
Λ as an empty set and, overC iterations, incrementally adds
to Λ the index of a transcript that improves f(Λ) the most.
Algorithm 1 shows the steps of the greedy algorithm. After
Λ is discovered, each training transcript will be assigned to
its closest representative transcript, hence, we obtain clus-
tering of transcripts as well.

With the representative transcripts and their groups of
similar training transcripts, we first perform the constrained
Viterbi decoding between a test video and the representative
transcripts to find the one that gives the optimal alignment
Rp

k with minimum s(Rp
k). This representative best matches

with the video, thus its group of transcripts is most likely to
contain the correct transcript of the test video. In the last
step, we align the video with each training transcript in the
representative transcript’s group and return the optimal Rp

k

with minimum s(Rp
k).

The performance of our method is robust to the num-
ber of representative transcripts, C. In Table 6, we tested
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Figure 3: Positive alignment, Y p, generated by TASL(3)
before and after training, against the ground-truth (colored
lines), on a Breakfast video.

C = {5, 10, 20, 50, 100} and reported the average MoF
for action segmentation task on Breakfast. It can be ob-
served that the change in performance is within 1% MoF,
with C = 20 giving the best trade-off between performance
and running time.

Algorithm 1: Greedy Algorithm

Initialize Λ = ∅;
for j = 1, . . . , C do

for i ∈ V\∆ do
Compute δf (i|Λ) , f(Λ ∪ {i})− f(Λ);

end
Compute i∗ = argmaxi∈V\Λδf (i|Λ);
Update Λ← Λ ∪ {i∗};

end

7. IoU and IoD Variations
As we mentioned in Section 4.1 of the paper, some works

have used different ways of calculating IoU/IoD, leading to
different performance ranges. In this section, we explain
differences between ours (and existing works) and [2].

Given a test video with T frames, let Y ∈ {1, . . . , |A|}T
denote the ground-truth (GT) framewise label of the video,
where A is the set of unique actions in Y . Meanwhile, Y
can also be encoded as a list of action segments, SY . Each
segment is a tuple of three values: the action of the seg-
ment, its start timestamp and its end timestamp. Similarly,
P and SP will denote the predicted framewise label and
action segments of the video.

Algorithm 2 and 3 show the pseudo-python code of [2]’s
method and ours. Specifically, [2] compares the overlap
between each GT and predicted segments. Yet, when a
GT segment overlaps with multiple predicted segments, it
only considers the predicted segment that gives the highest
IoU/IoD and ignores others, thus often obtains an inflated
score. Fig 4 shows a failure case for IoD using the metric
of [2]: The overlap between the blue (orange) GT segment
with respect to only the first (second) predicted blue seg-
ment, ignoring the second (first) one. Thus, one would ob-

C 5 10 20 50 100
MoF 39.8 39.7 40.7 40.9 40.8

Table 6: Effect of the number of representative transcripts,
C, on Breakfast for action segmentation.

Action1 Action2

Compare CompareIgnored

GT

Pred

Figure 4: A failure case where using [2] leads to obtaining
an IoD of 1. The first row is the ground-truth (GT) segmen-
tation and the second row is predicted segmentation.

tain the falsely IoD of 1 despite an incorrect solution. To
mitigate the issue, our method does not find matching be-
tween segments but directly compares the overlap between
the GT and predicted frames of an action from all segments,
i.e. the overlap between all GT and predicted blue/orange
frames in Fig. 4. Consequently, our method obtains the IoD
of 0.77.

For fairness, we include the Average IoU/IoD scores
from both ours and [2]’s method in Table 7. Due to the is-
sue described above, [2]’s IoU/IoD are easier metrics and, in
general, give inflated scores, especially for IoD. For exam-
ple, it increases IoD by 6-10% on all datasets and doubles
the IoD-bg on the CrossTask dataset.

Note on CDFL Results. In Table 1 and 2 of the main
paper, the Best results on Hollywood of our implemented
CDFL slightly differs from those reported in its paper. Since
we used the released code from the authors, we hypothe-
size the difference could be due to train/test splits and to
IoU/IoD calculation, which are not included in the code.
In terms of train/test splits, We randomly generated four
train/test splits, each with 90% videos as training data and
10% as test data, similar to the splits on Breakfast to make
the experiments consistent across datasets. The exact ratio
between the training/test videos used by the CDFL paper is
unknown. Yet, it is important to note that we use exactly the
same hyper-parameters for NVV/CDFL/TASL in all exper-
iments and do not specifically tune the hyperparameters for
TASL.

8. Qualitative Results
Figure 1 shows more results of NNV, CDFL and TASL

against the ground-truth (GT) on Hollywood for action seg-
mentation and action alignment tasks. Figure 2 shows sim-
ilar results on CrossTask. On both datasets, TASL is able
to better predict the action locations than NNV and CDFL.
Specifically, in the action segmentation task, TASL discov-
ers a transcript more similar to the correct one.



Algorithm 2: IoU/IoD from [2]

Data: SY , SP : ground-truth and predicted
segments of a test video

Initialize V as a list of zeros, with length equal to
|SY |;

for i, (a, tstart, tend) in enumerate(SY ) do
for â, t̂start, t̂end in SP do

if a 6= â then continue;
if compute IoU then

v ← min(tend,t̂end)−max(tstart,t̂start)

max(tend,t̂end)−min(tstart,t̂start)
;

else if compute IoD then
v ← min(tend,t̂end)−max(tstart,t̂start)

t̂end−t̂start ;
end

end
V [i]← max(V [i], v);

end
return mean(V )

Algorithm 3: IoU/IoD of our implementation

Data: Y, P ∈ RT : the ground-truth and predicted
framewise label for a test video of length T .

Data: A: list of actions in the video.
Initialize V as a list of zeros, with length equal to
|A|;

for i, a in enumerate(A) do
if compute IoU then

V [i]←
∑

t 1(Yt=a and Pt=a)∑
t 1(Yt=a or Pt=a) ;

else if compute IoD then
V [i]←

∑
t 1(Yt=a and Pt=a)∑

t 1(Pt=a) ;

end
end
return mean(V )

Figure 3 shows the positive alignment Y p generated by
TASL(3) before and after training on a video in Breakfast.
The colored line represents the ground-truth. Before train-
ing, the alignments are roughly uniform, thus, Y p does
not match the ground-truth. After multiple learning iter-
ations, TASL produces more accurate Y p, which in turn
improves its training. In the end, Y p correctly aligns with
the ground-truth. More importantly, in the plots of ‘Before
Training’, light-blue blocks around the action boundaries
show soft gradual transitions between adjacent actions, as
Y p combines alignments with slight shifts in action bound-
aries. This prevents TASL from overfitting to a poor initial
alignment. While [2] uses also soft boundaries, theirs are
handcrafted and fixed, while ours are controlled by s(R)
generated by the network. As our network becomes confi-

IoU IoU-bg IoD IoD-bg
Breakfast

TASL(3) 35.2 32.6 46.1 44.5
TASL(3)† 36.1 32.1 55.5 40.9

Hollywood
TASL(10,3) 23.4 13.6 35.7 18.3
TASL(10,3)† 26.3 12.5 43.2 23.0

CrossTask
TASL(3) 14.5 8.9 25.1 11.0
TASL(3)† 21.3 9.1 35.1 26.1

(a) Action Segmentation

IoU IoU-bg IoD IoD-bg
Breakfast

TASL(3) 49.9 50.7 64.7 68.2
TASL(3)† 49.4 50.6 70.2 64.3

Hollywood
TASL(10,3) 37.7 30.0 52.4 41.7
TASL(10,3)† 38.0 29.9 60.1 47.7

CrossTask
TASL(3) 18.8 11.5 28.2 15.2
TASL(3)† 23.2 12.3 37.3 31.1

(b) Action Alignment

Table 7: IoU/IoD from different calculation methods. For
each dataset, the first row shows the scores from our
method. The second row marked with † is from [2]’s
method.

dent during training, the light-blue blocks disappear.
Figures 5, 6, 7 show, respectively, the largest, mid-

dle, smallest principal angles between subspaces learned by
TASL(3) on all Breakfast actions. It can be observed that
the largest angles between any two subspaces are almost
all 90%, ensuring the subspaces are mutually orthogonal
thus the learned features following the subspace structure
will be discriminative. From the middle to smallest angles,
we could gradually observe dark red blocks on the plots,
each representing a group of semantically-relevant actions
with small subspace angles between them. For example,
the upper-right block, starting from take plate to put pan-
cake2plate, are all actions from recipe make pancake. Sur-
rounding this block are other fry-related actions but not nec-
essarily from the make pancake recipe.
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Figure 5: The largest principal angles between subspaces learned by TASL(3) on all Breakfast actions.
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Figure 6: The middle principal angles between subspaces learned by TASL(3) on all Breakfast actions.
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Figure 7: The smallest principal angles between subspaces learned by TASL(3) on all Breakfast actions.


