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Abstract

In this paper, we consider the problem of energy disag-
gregation, i.e., decomposing a whole home electricity
signal into its component appliances. We propose a new
supervised algorithm, which in the learning stage, au-
tomatically extracts signature consumption patterns of
each device by modeling the device as a mixture of
dynamical systems. In order to extract signature con-
sumption patterns of a device corresponding to its dif-
ferent modes of operation, we define appropriate dis-
similarities between energy snippets of the device and
use them in a subset selection scheme, which we gen-
eralize to deal with time-series data. We then form a
dictionary that consists of extracted power signatures
across all devices. We cast the disaggregation problem
as an optimization over a representation in the learned
dictionary and incorporate several novel priors such as
device-sparsity, knowledge about devices that do or do
not work together as well as temporal consistency of the
disaggregated solution. Real experiments on a publicly
available energy dataset demonstrate that our proposed
algorithm achieves promising results for energy disag-
gregation.

Introduction
Energy disaggregation, also referred to as non-intrusive
load monitoring (Hart 1992), is the task of separating the
whole energy signal of a residential, commercial, or in-
dustrial building into the energy signals of individual ap-
pliances. Disaggregated electricity consumptions not only
provide feedback to consumers in order to improve their
consumption behavior, but also help to detect malfunction-
ing of electrical devices, design energy incentives, fore-
cast demands and more (Froehlich et al. 2011). In partic-
ular, studies have shown that presenting such an energy
breakdown to consumers can lead to energy-saving behav-
ior that improves user efficiency by about 15% (Darby 2006;
Neenan and Robinson 2009).
Prior Work: Studies on energy disaggregation date back
to about thirty years ago. However, recent energy and sus-
tainability challenges facing the society have created re-
newed interest in this problem, see (Ziefman and Roth 2011;
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Froehlich et al. 2011) for a comprehensive review. The liter-
ature on energy disaggregation can be divided into two cat-
egories. The first group of algorithms focuses on classifying
electrical events rather than the disaggregation task. Earlier
work in this category model each device as a finite state ma-
chine and look for sharp edges in real and reactive power
signals (Hart 1992). Subsequently, they cluster devices ac-
cording to consumption changes. However, the drawback of
these approaches is that for many devices with low power
consumption, clusters corresponding to different devices
are indistinguishable. To better distinguish devices, later
work incorporate transient and harmonic information using
very high-frequency sampling (Laughman and Leeb 2003;
Gupta, Reynolds, and Patel 2010; Berges et al. 2010). How-
ever, sampling at high-frequency requires expensive hard-
ware and installation of monitoring devices in a building.

The second group of algorithms directly addresses the dis-
aggregation problem by decomposing the aggregate electric-
ity signal into its component appliances over time (Kim et al.
2011; Kolter, Batra, and Ng 2010; Kolter and Jaakkola 2012;
Wytock and Kolter 2014). Different approaches in this cate-
gory can be divided into supervised and unsupervised disag-
gregation algorithms. The supervised sparse coding-based
method in (Kolter, Batra, and Ng 2010) uses a training
dataset of electricity signals from different devices across
several homes. It models the entire signal of each device
over a long period of time, such as a week, as a sparse linear
combination of the atoms of an unknown dictionary. Both
the sparse coefficients and the dictionary for each device are
learned using a discriminative approach. However, the draw-
back of the algorithm is that it requires to have access to a
large training dataset to capture all possible times that the
same device may operate. The work of (Kim et al. 2011)
uses a Factorial Hidden Markov Model (FHMM) (Ghahra-
mani and Jordan 1997) with block Gibbs sampling to de-
compose the whole electricity signal into signals of individ-
ual devices. Building upon the FHMM framework, (Kolter
and Jaakkola 2012) uses an approximate algorithm based on
convex programming, which also takes into account unmod-
eled devices. FHMM can work in the supervised or unsu-
pervised setting, depending on whether a training dataset
for individual devices is used. However, the learning often
involves EM (Dempster, Laird, and Rubin 1977), which de-
pends on initialization and can get stuck in local optima.



Paper Contributions: In this paper, we propose a new su-
pervised algorithm for the energy disaggregation problem.
Given a training dataset of electricity consumptions from
different devices, we automatically extract signature con-
sumption patterns for each device using a convex program-
ming scheme. To do so, we model the energy consumption
of each device using a mixture of dynamical models corre-
sponding to different operation modes of the device. We then
find signature consumption patterns by defining an appropri-
ate dissimilarity between pairs of energy snippets and select-
ing representative snippets, which we refer to a powerlets.
To do so, we propose a subset selection framework by gen-
eralizing the state of the art to the case of dealing with time-
series data. Unlike EM-based methods (Kim et al. 2011;
Kolter and Jaakkola 2012), whose performance depends
on initialization and degrades by increasing the number of
states, our framework relies on convex programming which
is free of local optima issues. We use the extracted signature
consumptions in order to build a dictionary that we refer to
as the powerlets dictionary for the device. Unlike (Kolter,
Batra, and Ng 2010) we do not require large amounts of
training data and as few as a single home would be suffi-
cient to build the dictionary. Our method also does not suffer
from different consumption shifts in the signal. Moreover,
the elements of our learned dictionaries correspond to snip-
pets from actual energy signals instead of arbitrary vectors
that are learned using sparse dictionary learning or EM. We
collect powerlets of different devices into a dictionary that
we use in order to disaggregate a whole energy signal. To
perform disaggregation, we propose an optimization algo-
rithm that searches for a representation of the aggregate sig-
nal in the learned dictionary by incorporating several types
of priors on the solution such as device-sparsity, knowledge
about devices that do or do not work together, and temporal
consistency of the disaggregation. Finally, our real experi-
ments on a publicly available dataset show that our frame-
work achieves promising results for energy disaggregation.

Energy Disaggregation Framework
In this section, we discuss our proposed energy disaggre-
gation framework for determining the component appliance
consumption from an aggregated electricity signal. In the
next two sections, we describe in details each of the two
stages of our framework in more details.

We assume that there are L electrical devices in a build-
ing, where xi(t) denotes the energy signal of device i at time
t 2 {1, 2, . . . , T}. Let x̄(t) denote the aggregate energy sig-
nal, recorded by a smart meter, at time t. Thus, we can write

x̄(t) =
LX

i=1

xi(t). (1)

Given only the whole power consumption {x̄(t)}Tt=1, the
goal of energy disaggregation is to recover the power sig-
nal of each of the appliances, i.e., to estimate {xi(t)}Tt=1 for
i 2 {1, . . . , L}.

In this paper, we take a supervised approach for energy
disaggregation, where we assume that a training dataset of

energy signals from different devices is available. We pro-
pose an energy disaggregation framework that consists of
two steps. First, we learn a dictionary of power consumption
signatures from different devices using the training dataset.
Then, we decode the aggregate energy signal in the learned
dictionary using an optimization scheme, which incorpo-
rates different types of priors on the estimated device con-
sumptions.

To address the disaggregation problem, we take energy
consumption windows of length w  T (typically w << T )
and denote the consumption of device i and the aggregate
consumption in the interval [t, t+w� 1] by w-dimensional
vectors yi(t) and ȳ(t), respectively. Our goal is to build a
dictionary B 2 Rw⇥N such that a solution of

ȳ(t) = Bc(t), (2)

with the right prior on c(t), reveals the disaggregation of the
whole energy signal. We form the dictionary B as

B = [B1 B2 · · · BL] 2 Rw⇥N
, (3)

where Bi 2 Rw⇥Ni denotes the subdictionary associated
with the device i. Ideally, Bi should efficiently represent
signals yi(t) generated by device i.

In order to learn Bi, we use the fact that each device has
several electricity consumption dynamics corresponding to
different operation modes, as shown in Figure 1. Thus, our
goal is to efficiently extract these consumption signatures
in order to build a dictionary for each device. To do so, we
model the energy signal of each device i using a mixture of
dynamical systems, where each dynamical model captures
an operation mode of the device. We define appropriate dis-
similarities between energy snippets of each device i and
use them in a subset selection scheme, which we generalize
to deal with time-series data, to find the energy signatures.
We use these signatures, which we refer to as powerlets, to
form the dictionary Bi, which we refer to as the powerlets
dictionary for device i.

Once we learn powerlets for all devices and form the dic-
tionary B, we use the solution of (2) in order to decode a
new aggregate energy signal. Notice that the solution of (2)
is generally not unique since there are many combinations
of powerlets that result in the same aggregate signal. Thus,
we need to impose appropriate priors and constraints on the
solution c(t). Moreover, since a new aggregate signal may
contain noise and unmodeled energy components, we search
for an approximate solution for (2) instead of an exact solu-
tion. As a result, we propose to solve the optimization pro-
gram

min
{c(t)}T

t=1

� ⇢(c(1), . . . , c(T )) +
TX

t=1

`(ȳ(t)�Bc(t))

s. t. 1>ci(t)  1, ci(t) 2 {0, 1}Ni
, 8t, i.

(4)

The function ⇢(·) incorporates several types of priors on
the solution, such as device-sparsity, knowledge about de-
vices that work simultaneous or sequentially and temporal
smoothness. The function `(·) incorporates the appropriate
loss function for representing the whole electricity signal in
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Figure 1: Energy consumption signals of different devices typi-
cally consist of distinct consumption patterns corresponding to dif-
ferent modes of the operation of the device. Left: energy signal of
a fridge. Right: energy signal of a dishwasher. Horizontal and ver-
tical axes correspond to time and power consumption, respectively.

the dictionary B. Finally, the constraints ensure that, at each
time instant, for operating devices we select one powerlet
from the subdictionary associated with that device and for
devices that are not working we select no powerlets.

Learning Powerlets Dictionary
In this section, we consider the problem of learning a dic-
tionary that captures consumption dynamics of different de-
vices. We use a training dataset of energy signals {xi(t)}Ti

t=1
for each device i = 1, . . . , L to learn a dictionary Bi 2
Rw⇥Ni that captures distinct consumption patterns of the
device i. To do so, we model the electricity signal of each
device i using a mixture of dynamical systems, where each
dynamical system represents a different operation mode of
the device. For each device i at each time instant t, we ex-
tract energy snippets of length w, defined as

yi(t) , [xi(t) xi(t+ 1) · · · xi(t+ w � 1)]
>2Rw

. (5)

Given the collection of vectors {yi(t)}
Ti�w+1
t=1 , our goal is to

find a compact dictionary Bi 2 Rw⇥Ni , with Ni ⌧ Ti, that
efficiently represents the energy vectors from the device. To
do so, we use a subset selection scheme to find representa-
tive vectors from {yi(t)}. Given the fact that {yi(t)}

Ti�w+1
t=1

correspond to sequential vectors, we generalize the subset
selection algorithm in (Elhamifar, Sapiro, and Sastry 2014;
Elhamifar, Sapiro, and Vidal 2012), which deals with static
data, to time-series data.
Remark 0.1 While it is possible to use dictionary learn-
ing algorithms such as (Aharon, Elad, and Bruckstein 2006;
Mairal et al. 2008), it is advantageous to learn the dictio-
nary by finding representatives of {yi(t)}

Ti�w+1
t=1 instead

of potentially arbitrary vectors in Rw. This comes from the
fact that each device often exhibits several distinct consump-
tion patterns, as shown in Figure 1. In addition, while state-
of-the-art dictionary learning solve the non-convex problem
of simultaneously finding the dictionary and the represen-
tation, hence are prone to local minima, our method which
selects representatives of a dataset is convex and free of lo-
cal minima issues.

Sparse Subset Selection For Sequential Data
In this section, we review the Dissimilarity-based Sparse
subset Selection (DS3) algorithm (Elhamifar, Sapiro, and

Sastry 2014; Elhamifar, Sapiro, and Vidal 2012) for finding
representatives of a dataset and extend the algorithm to deal
with sequential observations.

Assume that we are given nonnegative dissimilarities
{dij}i,j=1,...,N between pairs of N data points, where dij

denotes how well the data point i represents the data point j.
The smaller the value of dij is, the better i represents j. The
dissimilarity matrix D 2 RN⇥N is then formed by collect-
ing dij’s as its entries.

Given D, the goal is to find a few data points that well
represent the dataset. To do so, (Elhamifar, Sapiro, and Sas-
try 2014; Elhamifar, Sapiro, and Vidal 2012) propose a con-
vex optimization framework by introducing a matrix Z 2
RN⇥N whose each entry zij 2 [0, 1] indicates the probabil-
ity that point i becomes a representative of point j. In order
to select a few representatives that well encode the collec-
tion of data points, the following minimization program is
proposed

min � kZk1,1 + tr(D>Z) s. t. Z � 0, 1>Z = 1>
,

(6)
where kZk1,1 , PN

i=1 kZi⇤k1 is the convex surrogate
for counting the number of nonzero rows of Z, with Zi⇤
denoting the i-th row of Z. Also, tr(D>Z), with tr(·) de-
noting the trace operator, is the encoding cost of data points
via representatives. The constraints of the optimization pro-
gram ensure that each column of Z is a probability vector.
The regularization parameter � > 0 puts a trade-off between
the encoding cost and the number of representatives, where
a smaller value of � results in obtaining more representatives
and vice versa. One can find representatives from indices of
nonzero rows of the solution of (6).

Notice that for problems such as energy disaggregation
where the observations have a sequential nature, the formu-
lation in (6) does not take into account such structure of the
data. More specifically, one should notice that consecutive
observations j and j + 1 should ideally have similar repre-
sentatives except when a switch in the device dynamics oc-
curs. Thus, denoting the j-th column of Z by Z⇤j , we would
like to minimize the cost

P
j I(kZ⇤j �Z⇤j+1k2), where

I(·) denotes the indicator function, which is zero when its
argument is zero and is one otherwise. In other words, we
would like to obtain similar representatives for consecutive
data points except at instances where a switch in the dynam-
ics happens. Thus, to obtain representatives of sequential ob-
servations, we propose to solve the convex program

min � kZk1,1 + �

0
X

j

kZ⇤j �Z⇤j+1k2 + tr(D>Z)

s. t. Z � 0, 1>Z = 1>
,

(7)

where �

0
> 0 and we use the standard convex relaxation forP

j I(kZ⇤j �Z⇤j+1k2) by dropping the indicator function.

Extracting Powerlets
To capture electricity consumption signatures, we model
each device i using a mixture of dynamical systems, with



each dynamical model representing a distinct consumption
pattern. More specifically, for each vector yi(t), we learn an
ARX model with the parameter �i(t) as

xi(t
0) = �i(t)

>

ri(t0)
1

�
+ "(t0), t

0 2 [t, t+ w � 1], (8)

where �i(t) 2 Rm+1 denotes the parameter of an m-th or-
der ARX model and ri(t0), called the regressor, is defined as

ri(t
0) , [xi(t0 � 1) · · · xi(t0 �m)]

>2Rm
. (9)

The parameters �i(t) are then learned using the least-
squares approach. We define a dissimilarity between a pair
of vectors yi(t1) and yi(t2) such that vectors that come
from the same dynamical model are close and vectors from
different models are far. To compute how well yi(t1) repre-
sents yi(t2), we use the model �i(t1) learned from yi(t1)
and compute

d(yi(t1),yi(t2)) ,
1

w

t2+w�1X

t0=t2

(xi(t
0)� �i(t1)

>

ri(t0)
1

�
)2.

(10)
We then form the dissimilarity matrix for device i, which
we denote by Di, and solve the optimization program in
(7) to find representative consumption signatures, which we
refer to as powerlets of device i. We then form the powerlets
dictionary Bi 2 Rw⇥Ni , where Ni denotes the number of
representative vectors for device i.

Aggregate Energy Decoding
In this section, we consider the problem of energy disaggre-
gation in the powerlets dictionary learned from all devices.
We consider the aggregate signal {x̄(t)}Tt=1 and define

ȳ(t) , [x̄(t) x̄(t) · · · x̄(t+ w � 1)]
> 2 Rw

. (11)

Thus, the vector ȳ(t) contains the aggregate energy con-
sumption of the building in the interval [t, t + w � 1]. In
order to disaggregate the energy signal, we search for a rep-
resentation of ȳ(t) in the powerlets dictionary B as

ȳ(t) = Bc(t), (12)

where c(t) , [c1(t) · · · cL(t)]
> 2 RN and ci(t) 2 RNi

denotes the coefficient subvector associated with Bi.
Notice that (12) often admits many solutions for a given

ȳ(t), since different combinations of powerlets can lead to
the same aggregate signal. Thus, we need to incorporate con-
straints and priors on the solution that capture realistic as-
sumptions on the way the aggregate energy signal is gener-
ated. To do so, we first incorporate the constraint that since
powerlets correspond to actual power consumption signa-
tures, we should select at most one powerlet from each de-
vice. Thus, we impose the constraint

1>ci(t)  1, ci(t) 2 {0, 1}Ni
, (13)

where 1 denotes a vector of all ones of appropriate dimen-
sion. Next, we impose priors on the structure of the coeffi-
cient vector c(t).

Device-Sparsity Prior
It is often the case that different combinations of powerlets
from different groups of devices lead to the same aggre-
gate signal. For instance, a combination of lighting, fridge,
dishwasher and heating as well as a combination of more
than twenty different devices, which mostly consume small
amounts of power, may construct the same aggregate energy
signal at a particular time instant. Thus, it is natural to im-
pose a device-sparsity constraint on the solution c(t), pre-
ferring representations that use smaller number of operating
devices. This can be achieved by minimizing

⇢1(c(t)) ,
LX

i=1

I(kci(t)k2), (14)

which counts the number of devices that participate in the
reconstruction of the aggregate signal. Given the constraints
in (13), we can rewrite (14) as

⇢1(c(t)) =
LX

i=1

(1>ci(t))
2 = c(t)>11>c(t), (15)

since 1>ci(t) = 1 when kci(t)k2 is nonzero and 1>ci(t) =
0 otherwise.

Co-occurrence Prior
It is often the case that some devices in a building work to-
gether around the same time, e.g., kitchen appliances, while
some devices often do not work at the same time. In this sec-
tion, we show that our framework can efficiently incorporate
such priors. We discuss only two cases and the reader would
notice that derivations for other cases would be similar.
Case A: device i is on/off if and only if device j is on/off. In
this case, we should have 1>ci(t) = 1>cj(t). As a result,
we would like to minimize the objective function

⇢2a(c(t)),
1

2

X

(i,j)2A
(e>i c(t)� e>j c(t))

2

=
1

2
c(t)>(

X

(i,j)2A
(ei � ej)(ei � ej))

>c(t),
(16)

where ei 2 RN denotes a vector whose entries correspond-
ing to powerlets from device i are one and the rest of its
entries are zero. The set A indicates the set of all pairs of
devices that work simultaneously.
Case B: if device i is on, then device j is off. In this case,
we do not want the two devices to be working at the same
time. We can cast this as minimizing the objective function

⇢2b(c(t)) ,
X

(i,j)2B
(e>i c(t))(e

>
j c(t))

=
1

2
c(t)>(

X

(i,j)2B
e>i ej + e>j ei)c(t),

(17)

where B denotes the set of all pairs of devices that belong to
this case.



Temporal Smoothness Prior
Given the fact that for each device i, |1>ci(t)�1>ci(t+1)|
is zero except at times when it turns on or off and the fact
that such switching does happen at a small number of time
instants compared to the entire time period, we would like
to minimize the objective function

⇢3({c(t)}Tt=1) =
LX

i=1

T�1X

t=1

|1>ci(t)� 1>ci(t+ 1)|. (18)

Notice that the above cost function allows to change the ac-
tive powerlet within a dictionary of each device without pay-
ing penalty, only counting if the device gets on or off.

Disaggregation Optimization
Considering all the constraints and priors studied so far, we
propose to solve the optimization program

min� ⇢({c(t)}Tt=1) +
TX

t=1

`(ȳ(t)�Bc(t))

s. t. 1>ci(t)  1, ci(t) 2 {0, 1}Ni
, 8t, i.

(19)

where the composite prior on the coefficients is defined by

⇢({c(t)}Tt=1) ,
TX

t=1

⇢1(c(t) + ⌘

TX

t=1

(⇢2a(c(t)) + ⇢2b(c(t)))

+ ⌘

0
⇢3({c(t)}Tt=1),

(20)

where ⌘, ⌘

0
> 0 are regularization parameters and `(·) de-

notes the loss function. Typically, we choose `(·) = k · k1,
which provides robustness to robustness to errors, transients
and unmodeled dynamics. Once we solve the optimization
program (19) and obtain c⇤(t), we estimate the energy con-
sumption of each device at time t by ŷi(t) = Bic⇤i (t).

Experiments
In this section, we evaluate our proposed energy disaggrega-
tion framework on the real-world REDD dataset (Kolter and
Johnson 2011), a large publicly available dataset for electric-
ity disaggregation. The dataset consists of power consump-
tion signals from six different houses, where for each house,
the whole electricity consumption as well as electricity con-
sumptions of about twenty different devices are recorded.
The signals from each house are collected over a period of
two weeks with a high frequency sampling rate of 15kHz.
We exclude House 5 data from our experiments, since, for
the majority of devices, it contains very few or no events
in the entire recording period. We refer to our method as
Powerlet-based Energy Disaggregation (PED) algorithm.

Experimental Settings
Since our framework can work with both high-frequency
and low-frequency signals and given the fact that low-
frequency sampling is more practical, less costly and more
challenging, we use the low-frequency sampling rate of 1Hz.
To learn the dictionary of powerlets for each device in a
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Figure 2: Effect of the regularization parameter � on the disag-
gregation accuracy of our proposed algorithm for houses in the
REDD dataset.

house, we use the first week of recorded electricity signals
for training and use the rest of data for testing. We choose a
window size of w = 15. It is important to note that a small
window size results in lower performance, due to overem-
phasizing transients when building the dictionary, while a
large window size results in having different dynamics or
operation modes of a device within a given window, hence
obtaining lower performance. With a sampling rate of 1Hz,
typically, w 2 [10, 50] corresponds to temporal windows
that capture transients and contain electricity from a single
operation mode. We model each device as a mixture of dy-
namical systems of the form (8), where we set the model or-
der to be m = 3 (the experimental results are robust to other
choices of m around this value). We use our subset selec-
tion scheme in (7) to extract about 20 powerlets for each de-
vice. Thus, we obtain a compact dictionary B in our method,
which typically consists of a few hundred powerlets. In or-
der to perform disaggregation using the optimization pro-
gram (19), we set � = 30 and ⌘ = ⌘

0 = 1 and use the prior
that kitchen appliances typically work together (without this
prior we obtain between 3% and 5% lower performance).
To implement (19), we use the standard integer program-
ming solver of MOSEK. With w = 15 and 400 powerlets
and without the temporal smoothness prior, it takes about 12
seconds to perform disaggregation on a temporal window of
15 seconds. As a result, our method can perform disaggre-
gation in real-time. However, it is important to mention that
we can make use of the standard convex relaxation by using
the constraint cij 2 [0, 1]Ni instead of binary constraints on
ci elements and solve the resulting problem using faster al-
gorithms such as ADMM or Proximal methods. However,
since the integer programming formulation is our desired
formulation that, given the compact size of our dictionar-
ies, can be solved efficiently, we choose not to use convex
relaxations in this paper. We leave investigating convex re-
laxations of our desegregation optimization for future work.

Once we solve the disaggregation optimization for the
test aggregate electricity signal in a house, we compute
the disaggregation accuracy, similar to (Kolter and Johnson
2011), by

disaggregation acc = 1�
P

t2W
PM

i=1 kŷi(t)� yi(t)k1
2
P

t2W kȳ(t)k1
,

(21)
where W , {1, w + 1, 2w + 1, . . .} and the 2 factor in the



Table 1: Energy disaggregation accuracies (%) of different algorithm over the six different houses in the REDD dataset.
House 1 House 2 House 3 House 4 House 6 Total

Simple Mean 41.4% 39.0% 46.7% 52.7% 33.7% 42.7%

FHMM 71.5% 59.6% 59.6% 69.0% 62.9% 64.5%

PED (proposed) 81.6% 79.0% 61.8% 58.5% 79.1% 72.0%
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Figure 3: Actual and estimated electricity consumption of refrig-
erator (top) and washer-dryer (bottom) for House 1 using our pro-
posed framework.

denominator comes from the that that the absolute value re-
sults in “double counting” errors. We compare our method
with the FHMM algorithm (in its supervised setting) (Kolter
and Johnson 2011) and a Simple Mean prediction algorithm,
which estimates the total consumption percentage of each
device and predicts that the whole electricity signal breaks
down according to this percentage at all times.

Experimental Results
Figure 2 shows the disaggregation results of our algorithm
for different houses as a function of the regularization pa-
rameter � in the proposed optimization program (19). No-
tice that for a large range of the regularization parameter,
� 2 [5, 100], our algorithm performs well. However, for
large values of �, the performance can decrease, as the ac-
curacy results for House 4 shows. This comes from the fact
that by putting higher emphasis on the device-sparsity, i.e.,
having a smaller number of operating devices in the disag-
gregation results, the optimization prefers to set the contri-
bution of devices with small consumption to zero.

Table 1 shows the disaggregation results for all the six
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Figure 4: Pie charts showing actual energy consumption (left) and
predicted energy consumption by our framework (right) for differ-
ent devices in House 3 during one week.

houses in the REDD dataset, with � = 30 in our method.
Notice that our algorithm performs significantly better than
FHMM and the naive Simple Mean on the dataset, achiev-
ing about 7.5% higher accuracy overall. This comes from
the fact that we have modeled and separated the two steps of
learning a dictionary and performing disaggregation, focus-
ing separately on a convex method for learning the desired
dictionary of powerlets and on the desired disaggregation
formulation. On the other hand, FHMM learns a dictionary
using EM, which is prone to local optima, and uses approx-
imate inference for disaggregation.

Figure 3 shows the actual and estimated energy consump-
tion, obtained by our method, for two devices in the House
1. Notice that our method perfectly captures transients and
different steady states in each device, thanks to our effective
approach for building the powerlets dictionary, and achieves
a close prediction to the actual energy consumption. Finally,
Figure 4 shows the Pie charts corresponding to the actual
and the predicted energy consumption by our algorithm for
the House 3 over one week. Notice that the predicted con-
sumption of our method is close to the actual consumption,
achieving 81.8% accuracy. In fact, this accuracy is much
higher than the one reported in Table 1 for House 3. This
comes from the fact that while predicted consumption can
be different from actual consumption at each time instant,
e.g., due to prediction lag, if we aggregate the predictions
over a longer time period, such errors decrease and we often
obtain much higher accuracy.

Conclusions
In this paper, we proposed a new algorithm for energy dis-
aggregation which consists of the two steps of learning a
dictionary of power consumption signatures and a disaggre-
gation optimization. To address the first step, we modeled
each device as a mixture of dynamical systems, computed
dissimilarities between energy snippets of each device us-
ing the learned models, and generalized state-of-the-art con-
vex subset selection schemes to deal with sequential data



in order to find signature power consumptions for each de-
vice. Collecting powerlets from all devices in a dictionary,
we proposed an optimization program for disaggregating a
whole energy signal by incorporating several priors such as
device-sparsity, knowledge about devices that do or do not
work together, and temporal smoothness. Finally, by exper-
iments on a real energy dataset, we showed that our frame-
work provides promising results for energy disaggregation.

Investigating convex relaxations of our proposed integer
program for desegregation and their efficient implementa-
tion are the subject of our ongoing research. In addition,
investigating conditions on the powerlets, under which our
proposed optimization recovers the true disaggregation of a
given aggregate signal, is the subject of our current theoret-
ical analysis.
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