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Abstract

High-dimensional data are ubiquitous in many areas of science and engineering,
such as machine learning, signal and image processing, computer vision, pattern recog-
nition, bioinformatics, etc. Often, high-dimensional data are not distributed uni-
formly in the ambient space; instead they lie in or close to a union of low-dimensional
manifolds. Recovering such low-dimensional structures in the data helps to not only
significantly reduce the computational cost and memory requirements of algorithms
that deal with the data, but also reduce the effect of the high-dimensional noise in
the data and improve the performance of inference and learning tasks.

There are three fundamental tasks related to the multi-manifold data: clustering,
dimensionality reduction, and classification. While the area of machine learning has
seen great advances in these areas, the applicability of current algorithms are limited
due to several challenges. First, in many problems, manifolds are spatially close or
even intersect, while existing methods work only when manifolds are sufficiently sep-
arated. Second, most algorithms require to know the dimensions or the number of

manifolds a priori, while in real-world problems such quantities are often unknown.
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ABSTRACT

Third, most existing algorithms have difficulty in effectively dealing with data nui-
sances, such as noise, outliers, and missing entries, as well as manifolds of different
intrinsic dimensions.

In this thesis, we present new frameworks based on sparse representation tech-
niques for the problems of clustering, dimensionality reduction and classification of
multi-manifold data that effectively address the aforementioned challenges. The key
idea behind the proposed algorithms is what we call the self-expressiveness property
of the data. This property states that in an appropriate dictionary formed from the
given data points in multiple manifolds, a sparse representation of a data point corre-
sponds to selecting other points from the same manifold. Our goal is then to search
for such sparse representations and use them in appropriate frameworks to cluster,
embed, and classify multi-manifold data. We propose sparse optimization programs
to find such desired representations and develop theoretical guarantees for the success
of the proposed algorithms. By extensive experiments on synthetic and real data, we
demonstrate that the proposed algorithms significantly improve the state-of-the-art

results.
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Chapter 1

Introduction

1.1 Multi-manifold data

High-dimensional data are ubiquitous in many areas of science and engineering,
such as machine learning, signal and image processing, computer vision, pattern recog-
nition, bioinformatics, etc. Images consist of billions of pixels, videos can have millions
of frames, text and web documents are associated with tens of thousands of features,
and DNA microarray data represent the expression levels of thousands of genes. This
high-dimensionality of the data not only increases the computational time and mem-
ory requirements of algorithms, but also adversely affects their performance due to
the effect of the noise and insufficient number of samples with respect to the ambient
space dimension, hence, the so called the “curse of dimensionality” [9].

However, high-dimensional data are not often distributed uniformly in the ambient
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space, instead they lie in or close to low-dimensional manifolds. This is mainly due to
the fact that real data are often generated or captured by processes or physical systems
that have only a few degrees of freedom. For instance, images of an object or a face
captured under varying illumination can be characterized by a few degrees of freedom
of the light source, or videos of a static scene captured by a moving camera can be
characterized by a few degrees of freedom corresponding to the motion parameters
of the camera. In fact, recovering such low-dimensional structures in the data helps
to not only significantly reduce the computational cost and memory requirements of
algorithms that deal with the data, but also reduce the effect of the high-dimensional
noise in the data and improve the performance of inference, learning, and recognition
tasks.

In many real-world problems, we are dealing with high-dimensional data across
multiple classes or categories where the data in each class lie in or close to a manifold.
As a result, the collection of data points lie in a union of low-dimensional manifolds.
Images of multiple classes of objects or scenes, videos of different activities, text and
web data of different subjects, and biomedical data corresponding to different diseases
can be modeled as lying in a union of manifolds. Roughly speaking, each manifold can
be characterized by a mapping from a low-dimensional input space (latent space) to a
high-dimensional output space (ambient space), see Figure 1.1. This mapping can be
in general nonlinear leading to nonlinear manifolds, but it can also be linear leading

to flat manifolds or subspaces. In fact, subspaces correspond to an important class of
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Figure 1.1: Left: a manifold is in general a mapping from a low-dimensional latent
space to the high-dimensional ambient space. Right: In many problems, data across
multiple classes lie in a union of manifolds.

manifolds that model well the distribution of the data in many real-world problems.
Feature trajectories of multiple moving objects in a video [102], face images of multiple
subjects captured under varying illumination [6], multiple instances of hand-written
digits with different rotations, translations, and thicknesses [61], and human body
sensor measurements corresponding to different activities [119] can be well modeled
as lying in a union of low-dimensional subspaces of the ambient space.

There are three fundamental tasks related to the multi-manifold data: clustering,
dimensionality reduction (embedding), and classification. While the area of machine
learning has seen great advances in these areas, the applicability of current algorithms
are limited due to several challenges. First, in many problems, manifolds are spatially
close or even intersect, while current methods work only when manifolds are suffi-
ciently separated. Second, most existing methods require to know the dimensions or
the number of manifolds a priori, while in real-world problems such quantities are
often unknown. Third, most existing algorithms have difficulty in effectively dealing

with data nuisances, such as noise, outliers, and missing entries, as well as manifolds
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of different intrinsic dimensions.

The goal of this thesis is to develop theoretically correct efficient algorithms for
clustering, dimensionality reduction, and classification of multi-manifold data that
can effectively address the aforementioned challenges. Next, we describe each of the

three tasks and discuss existing approaches and their limitations.

1.1.1 Clustering

Given a collection of data points lying in multiple manifolds, the goal of clustering
is to separate the data according to their underlying manifolds. In fact, clustering is
one of the most fundamental problems in data analysis that serves as the first step
for many important tasks such as learning, classification, recognition and inference.
For instance, once we separate the data according to the manifolds they lie in, we can
reduce the dimension of the data in each manifold (dimensionality reduction), recover
the underlying mapping of each manifold (manifold learning), find the underlying
manifold of a given query (classification), or perform other tasks that take advantage
of the structural relationships of the data in a single manifold.

Depending on whether data lie in linear or nonlinear manifolds, clustering ap-

proaches are different in general.
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1.1.1.1 Subspace clustering

Clustering of data in multiple subspaces, referred to as subspace clustering, is an
important problem that finds numerous applications in image processing, e.g., image
representation and compression [63], and computer vision, e.g., image segmentation
[120], motion segmentation [25,66], and temporal video segmentation [111]. As data
in a subspace can be distributed arbitrarily and not around a centroid, standard
central clustering methods [34] that take advantage of the spatial proximity of data
in each cluster are not applicable in general to subspace clustering.

In fact, a variety of algorithms have been proposed for clustering of data in mul-
tiple subspaces [109] that are based on algebraic, statistical, or spectral clustering
approaches (see Chapter 3 for a review). However, such methods often cannot ef-
fectively deal with important real-world situations, such as subspaces that intersect
or have different dimensions, data points that are corrupted by noise and outliers or
have missing entries. In addition, most existing algorithms require to know a priori
the dimensions or the number of subspaces.

Spectral clustering-based approaches are among the most successful classes of
subspace clustering algorithms. Such methods try to build a similarity graph whose
nodes correspond to data points and whose edge weights represent similarity values
between data points. The key problem is then to find a good similarity measure
between data points such that points in the same subspace have high similarities and

points in different subspaces have low similarities. Clustering of data into subspaces
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is then obtained by finding groups of nodes (components) in the similarity graph that
have high inter-component and low intra-component similarities.

Local spectral clustering-based approaches [55,118,122,124] use local information
around each point to compute a similarity between pairs of points. However, they have
difficulties dealing with data points near the intersection of two subspaces, because
the neighborhood of a point can contain points from different subspaces. In addition,
they are sensitive to the right choice of the neighborhood size for computing the
local information at each point. On the other hand, global spectral clustering-based
approaches such as [22] try to resolve these issues by building better similarities
between data points using global information. However, they often need to know a
priori the number and the dimensions of the subspaces and typically assume that the
subspaces have the same dimension. More importantly, their complexity of computing

similarities grows exponentially as the dimensions of the subspaces increase.

1.1.1.2 Nonlinear manifold clustering

In general, data may lie in a union of nonlinear manifolds. Since in this case, there
is no global linear relationship among the data points in the same subspace, standard
subspace clustering algorithms are not in general applicable. In fact, manifolds can
be very close to each other and they can have arbitrary dimensions, curvature and
sampling, which make the manifold clustering problem be very challenging.

To cluster data in multiple manifolds, most existing algorithms assume that man-
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Table 1.1: Considering all pairs of subjects in the Extended Yale B face dataset,
the table shows the average percentage of images whose K nearest neighbors contain
images from another subject. Note that for 6.0% of images, the nearest neighbor
comes from another subject.

K| 1 2 3 4 5 6 7 8 9 10
6.0% | 13.4%|22.5% | 30.9% | 38.9% | 46.6% | 53.8% | 59.4% | 64.2% | 68.2%

ifolds are densely sampled and sufficiently separated [2, 55,56, 87]. They build a
similarity graph by connecting each point to its few nearest neighbors. As a result,
ideally, the points in the same manifold get connected to each other while there are no
connections among points in different manifolds. Hence, clustering of data is obtained
by separating the components of the graph.

However, it is not often the case that manifolds are densely sampled or well sepa-
rated. For instance, in a real dataset of face images of multiple subjects, it is often the
case that some or all of the nearest neighbors of a face image of a particular subject
come from face images of other subjects, see Table 1.1. Moreover, choosing the right
number of the nearest neighbors of a point is critical for successfully separating the
data using the obtained similarity graph. However, most existing methods assume
that the right number of nearest neighbors is initially provided to the algorithm.

Thus, their performance greatly depends on a good choice of this quantity.

1.1.2 Dimensionality reduction

Once we separate the data into their underlying manifolds, a subsequent fun-

damental task is to recover a low-dimensional representation for the data in each
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manifold. Such low-dimensional representations can reduce not only the computa-
tional cost and memory requirements of algorithms for processing the data, but also
the effect of noise and corruption in the data, hence improving the performance of
such algorithms.

In general, dimensionality reduction techniques can be divided into two main
categories of linear and nonlinear methods. Linear dimensionality reduction methods
such as Principal Component Analysis (PCA) [65], Probabilistic PCA (PPCA) [101],
Factor Analyzer (FA) [69], and Random Projections (RP) [4], reduce the dimension of
the data using a linear mapping from the ambient space to a lower dimensional latent
space. When the data lie in a subspace, one can use linear dimensionality reduction
techniques to effectively find the low-dimensional representations of the data.

Nonlinear dimensionality reduction (NLDR) techniques, on the other hand, try
to reduce the dimension of the data via nonlinear embedding techniques. A variety
of NLDR algorithms have been proposed, most of which use the following three step
procedure [7,24,91-93,98,114]. In the first step, they build a nearest neighbor graph
by connecting each point to its few nearest neighbors. Second, they learn a set of
weights for the edges of the graph that capture the similarities and dissimilarities
between data points. Third, they embed data points into a lower-dimensional space
such that the similarities and dissimilarities between low-dimensional representations
are well-preserved.

Different NLDR algorithms have different schemes for learning the weights. How-
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ever, they all share the same first step, which is to build the nearest neighbor graph.
As a result, such algorithms often have difficulties in selecting the right neighbor-
hood size that captures well the manifold geometry. This comes from the fact that a
suitable choice of the neighborhood size requires prior knowledge about the intrinsic
dimension of the manifold, which is not typically known in real-world problems. As
a result, the performance of NLDR methods greatly depends on the proper choice of

the neighborhood graph.

1.1.3 Classification

In data classification problems in which each class corresponds to a different man-
ifold, a fundamental task is to classify a given query and determine the manifold,
i.e., the class, it belongs to. Depending on how the manifolds are modeled and how
the data are distributed in each manifold, different classification schemes have been
proposed.

When the manifolds of different classes are well sampled, i.e., there are sufficiently
many training samples from each manifold, Nearest Neighbor (NN) classification al-
gorithms [34] assign a test sample to the class of its nearest neighbor or in general to
the dominating class of its K nearest neighbors. However, in practice, it is not often
the case that there are sufficiently many training samples from each class. Nearest
Subspace (NS) algorithm [62] models the data in a manifold by a low-dimensional

subspace and, instead of assigning a test example to the class of its nearest neigh-



CHAPTER 1. INTRODUCTION

bor, assigns the test sample to the class of its closest subspace. While NS does not
require many samples from each class, it only works well when the manifold of a
class corresponds to a single low-dimensional subspace. In addition, the classification
performance can be sensitive to the choice of the dimension of the subspace that one
fits to the training data in each class.

The Sparse Representation-based Classification (SRC) algorithm [117], on the
other hand, uses directly the training data across all classes at the same time in
order to classify a given query. More precisely, SRC assumes that a test sample
can be represented linearly in terms of all training data across all classes. However,
a sparse representation would correspond to a linear combination of a few training
samples from the right class. Thus, a sparse representation can be used to determine
the class of a given query. While SRC works quite well in practical problems, there
is no theoretical understanding of the modeling assumptions and conditions on the
data and the manifolds under which the algorithm succeeds. Moreover, in practical
problems, there are often structural relationships among the data in each class, which

are not used in the SRC model.

1.2 Thesis contributions

In this thesis, we present new frameworks for the problems of clustering, dimen-

sionality reduction and classification of multi-manifold data. We propose algorithms

10
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based on sparse representation techniques to effectively address these problems. The
key idea behind the proposed algorithms is what we call the self-expressiveness prop-
erty of the data, which is that in an appropriate dictionary formed from the given
data points in multiple manifolds, a sparse representation of a data point corresponds
to selecting other data points from the same manifold. Our goal is then to search for
such sparse representations and use them in appropriate frameworks to cluster, em-
bed, and classify multi-manifold data. We propose sparse optimization programs to
find such desired sparse representation techniques and develop theoretical guarantees

for the success of the proposed algorithms.

1.2.1 Clustering in a union of subspaces

In the first part of the thesis, we propose and study an algorithm based on sparse
representation techniques, called Sparse Subspace Clustering (SSC), to cluster a col-
lection of data points lying in a union of low-dimensional subspaces [40,41,45]. The
underlying idea behind the algorithm is the self-expressiveness property of the data,
which is that each data point in a union of subspaces can be efficiently represented as
a linear or an affine combination of other points. Such a representation is not unique
in general because there are infinitely many ways a data point can be expressed as a
combination of other points. The key observation is that a sparse representation of a
data point ideally corresponds to a combination of a few points from its own subspace.

This motivates solving a global sparse optimization program whose solution is used

11
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in a spectral clustering framework to obtain the clustering of the data. As a result,
we can overcome the problems of local spectral clustering-based algorithms, such as
choosing the right neighborhood size and dealing with points near the intersection of
subspaces, since, for a given data point, the sparse optimization program automati-
cally selects a few points that are not necessarily close to it but belong to the same
subspace.

Since the sparse optimization program is in general NP-hard, we consider a convex
relaxation. We show that, under mild conditions on the arrangement of subspaces
and data distribution, the proposed convex minimization program recovers the desired
solution, guaranteeing the success of the algorithm. Our theoretical analysis extends
the sparse representation theory to the multi-subspace setting where the number of
points in a subspace is arbitrary, possibly much larger than its dimension.

The proposed convex minimization program can be solved efficiently using convex
programming tools [10, 14] and does not require initialization. Our algorithm can
directly deal with data corruptions such as noise, sparse outlying entries, and missing
entries as well as the more general class of affine subspaces by modifying the sparse op-
timization program to incorporate the corruption and the subspace model. Through
experimental results, we show that our algorithm outperforms the state-of-the-art
subspace clustering methods on two real-world problems of motion segmentation and

face clustering.

12



CHAPTER 1. INTRODUCTION

1.2.2 Clustering and embedding in a union of

nonlinear manifolds

In the second part of the thesis, we consider the more general problem of clus-
tering and dimensionality reduction of data lying in a union of nonlinear manifolds.
We propose an algorithm based on sparse representation techniques, called Sparse
Manifold Clustering and Embedding (SMCE), for simultaneous clustering and em-
bedding of data [43]. Unlike conventional methods that first build a neighborhood
graph and then learn a set of weights for it, our method simultaneously builds the
neighborhood graph and learns its weights. This leads to successful results even in
challenging situations where the manifolds are spatially close to each other.

More specifically, we use the geometrically motivated assumption that for each
data point there exists a small neighborhood in which only the points that come
from the same manifold lie approximately in a low-dimensional affine subspace. We
propose a sparse optimization program to select a few neighbors of each data point
that span a low-dimensional affine subspace passing near that point. As a result,
a few nonzero elements of the solution indicate the points that are on the same
manifold. Hence, they can be used for clustering. In addition, the weights associated
with the chosen neighbors indicate their similarities to the given data point, which
can be used for dimensionality reduction. Clustering and embedding of the data into

lower dimensions follows by taking the eigenvectors of the matrix of weights and its

13



CHAPTER 1. INTRODUCTION

submatrices, which are sparse, and hence can be stored and be operated on efficiently.

Thanks to the sparse representation framework employed by SMCE, we do not
need to specify the number of nearest neighbors a priori. In fact, the optimization
program selects the neighbors of each point automatically, where the number of neigh-
bors of a data point depends on the local intrinsic dimensionality of the manifold at
that point. Finally, SMCE has only one free parameter that, for a large range of val-
ues, results in a stable clustering and embedding, as we will show in the experimental
results. To the best of our knowledge, SMCE is the only algorithm proposed to date
that allows robust automatic selection of neighbors and simultaneous clustering and

dimensionality reduction in a unified manner.

1.2.3 Classification in a union of subspaces

In the last part of the thesis, we consider the classification of multi-manifold data,
where the training data in each class lie in a manifold characterized by a union of
low-dimensional subspaces. We show that instead of looking for the sparsest repre-
sentation of a test example in the dictionary of all the training data, a better criterion
for classification is to look for a representation of the test example that involves the
minimum number of blocks from the dictionary [42]. As a result, we study the prob-
lem of block-sparse recovery and consider two classes of block-sparse optimization
programs to address the problem. We study conditions under which each class of the

convex programs can recover the desired solution [42,44].

14
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To evaluate the classification performance of the two classes of convex programs,
we consider synthetic experiments as well as the problem of automatic face recog-
nition. By extensive experiments, we show that the methods based on block-sparse
representation improve the state-of-the-art face recognition results for classifying both
uncorrupted and corrupted data. More specifically, we show that the proposed convex
programs improve face recognition results by 10% when the number of training data
in each class is as small as the dimension of the face subspace. In addition, we show

that the algorithms can efficiently handle corruptions and occlusions.

1.3 Thesis outline

The rest of the thesis is outlined as follows. In Chapter 2, we review the sparse
representation theory for recovering sparse and group-sparse representations of sig-
nals/vectors in a given dictionary. We also review some of the most important mani-
fold clustering and embedding techniques. In Chapter 3, we present our work for clus-
tering of data in a union of subspaces based on sparse representation techniques. We
study the theoretical guarantees of the proposed method and evaluate it on synthetic
data as well as the real-world problems of motion segmentation and face clustering. In
Chapter 4, we generalize the result to clustering and dimensionality reduction of data
in a union of nonlinear manifolds. We present an algorithm that can deal well with

spatially close manifolds as well as manifolds with non-uniform sampling and holes.
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We demonstrate the effectiveness of the proposed algorithm on several synthetic and
real examples. In Chapter 5, we present our work for classification of multi-manifold
data where the manifold of each class is modeled as a union of low-dimensional sub-
spaces. We study two classes of convex optimization programs whose solutions are
used in order to classify a given query. We investigate the theoretical guarantees of
the convex programs and evaluate them on synthetic data as well as the real-world
problem of face recognition. Finally, we summarize the conclusions of this work in

Chapter 6.

16



Chapter 2

Background Material

Throughout this thesis, we denote vectors by boldface lowercase letters, such as a,
and denote matrices by boldface uppercase letters, such as A. Moreover, throughout
the thesis, we assume that vectors and matrices consist of real valued elements. a €
R™ indicates a column vector that consists of m real-valued elements, and A €
R™ ™ indicates a matrix with m rows and n columns that consists of real-valued
elements. The transposition operator is denoted by [-]T. Specifically, AT € R™™ is
the transpose of A € R™*" where the element at each row ¢ and each column j of
A" is equal to the element at the row j and the column i of A.

We denote by 1,, € R™ a vector whose elements are all equal to one and denote
by I,, the identity matrix in R™*™ i.e., a diagonal matrix whose diagonal entries are
all equal to one. We drop the subscript and use 1 and I whenever the dimensions

are clear from the context.

17



CHAPTER 2. BACKGROUND MATERIAL

2.1 Vector and matrix norms

-
Consider a vector a = [al am] € R™, which consists of m real valued

elements, a,. The {;-norm of a, for ¢ > 0, is defined as

lall, = Z i)/, (2.1)

ls-norm is defined by taking a limit as ¢ — oo. It can be shown that /,,-norm is

equal to the maximum absolute value of the elements of a, i.e.,
laflc = max o] (2.2)

For the specific case of ¢ = 0, the {y-norm of a, denoted by ||alls’, is defined as the

number of nonzero elements of a, i.e.,
n
lallo =) 1(a;| > 0), (2.3)
i=1
where I(-) denotes the indicator function whose value is equal to one when its argu-
ment is true and equal to zero otherwise. The {y-norm can also be considered as the
limit of the ¢,-norm of a when ¢ approaches zero.
Given a matrix A € R™*", the {,-norm of A, for ¢ > 0, is defined as the ¢;-norm
of a vector that consists of all the elements of A, i.e.,

1Ally = ZZIG 1), (2:4)

i=1 j=1

Note that ||a||o is not in fact a real norm, since it does not satisfy the properties of a norm
function. However, it is commonly referred to as a norm in the literature.

18
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where a;; denotes the element at the row ¢ and the column j of A. For example, ||A||;
is the sum of the absolute values of the elements of A. || A||2, known as the Frobenius
norm and denoted also by || Al , is the square root of the sum of the squared elements
of A.

For p,q > 0, the mixed ¢,/¢,-norm of A = {a an] € R™*™ is defined as

1

1Al = laslip) . (2:5)
i=1

For example, || Al corresponds to the maximum fs-norm of the columns of A.

2.2 Sparse representation theory

In this section, we review the sparse representation theory as well as some of the

main theoretical results, which we will make connection to later in this thesis.

2.2.1 Recovery of sparse signals

Sparse signal recovery has drawn increasing attention in many areas such as sig-
nal and image processing, computer vision, machine learning, and bioinformatics (see
e.g., [20,35,86,116] and the references therein). The key assumption behind sparse
signal recovery is that an observed signal y € R” can be written as a linear combi-
nation of a few atoms of a given dictionary B € RP*¥. More formally, consider an

underdetermined system of linear equations of the form y = Be, where y lies in the
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Figure 2.1: In an underdetermined dictionary B € RP*¥ there are infinitely many
representations ¢ for a given y. Sparse representation refers to a ¢ that has only a
few nonzero elements.

range-space of B that has more columns than rows (N > D), hence allowing infinitely
many solutions for y (see Figure 2.1). Sparsity of the desired solution arises in many
problems and can be used to restrict the set of possible solutions. In principle, the
problem of finding the sparsest representation of a given signal can be cast as the

following optimization program

Py, : minlcllp s.t. y= Be. (2.6)

We say that a vector ¢ is k-sparse if it has at most k& nonzero elements. While
finding the sparse representation of a given signal using P, is in general NP-hard [1],
the pioneering work of Donoho [33] and Candes [21] showed that, under appropriate

conditions, this problem can be solved efficiently as

Py, : min|c|; s.t. y= Be. (2.7)

1.
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Since then, there has been an outburst of research articles investigating conditions

under which the two optimization programs, P, and F,, are equivalent.

Nullspace property. The work of [30,58] derives necessary and sufficient conditions
for the recovery of sparse signals. More specifically, Let A; denote a set of k different
indices from {1,...,N} and A; denote the remaining N — k indices. Let Bj, €
RP*%k and B A, € RP*N=k he submatrices of B whose columns are selected from B
according to Ay and Az, respectively. The nullspace property states that P, and Py,
are equivalent and recover the k-sparse representation of any given signal if and only
if

Vey, # 0,Ve, # 0 such that By,cp = Byc; = |[lexlli < lleglh- (2.8)
In other words, for every nonzero vector x that lives in the range-space of both By,
and B Ags the ¢;-norm of the representation of x in B,, must be strictly smaller than
the {;-norm of any representation of x in Bj_.

While the null-space property provides necessary and sufficient conditions for the
equivalence of P, and P, it is not possible to check the above condition for every Ay
and for every x in the intersection of the ranges-spaces of By, and Bj_. Moreover,
the condition above does not explicitly characterize the relationships among the atoms
of the dictionary under which P, and P, are equivalent. This has motivated inves-
tigating a series of sufficient conditions based on the notions of mutual/cumulative
coherence [31,104] and the restricted isometry property [17,21], which we describe

next. Throughout the section, we assume that the columns of B have unit Euclidean
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nori.

Mutual/Cumulative coherence. The mutual coherence of a dictionary B is
defined as

= max b by, (2.9)

where b; denotes the i-th column of B of unit Euclidean norm. [104] and [31] show
that if the sufficient condition

2k —p<1 (2.10)

holds, then the optimization programs F, and P, are equivalent and recover the
k-sparse representation of a given signal. While y can be easily computed, it does not
characterize a dictionary very well since it measures the most extreme correlations in
the dictionary.

To better characterize a dictionary, cumulative coherence measures the maximum
total coherence between a fixed atom and a collection of k other atoms. Specifically,

the cumulative coherence associated with a positive integer k [104] is defined as

A T
£ b b; 2.11
G rrﬂxri{é%Z! i bjl, (2.11)
JEAL
where Ay denotes a set of k different indices from {1,..., N}. Note that for k = 1, we
have (; = p. Although cumulative coherence is, in general, more difficult to compute

than mutual coherence, it provides sharper results for the equivalence of P, and F,.

In particular, [104] shows that if

Gk + Ce—1 < 1, (2.12)

22



CHAPTER 2. BACKGROUND MATERIAL

then the optimization programs Py, and Py, are equivalent and recover the k-sparse
representation of a given signal. Using the definitions, one can verify that (, < ku
for all integers £ > 1. As a result, (2.12) provides a weaker condition than (2.10) for

sparse recovery of signals.

Restricted isometry property. An alternative sufficient condition for the equiv-
alence between P, and P, is based on the so-called restricted isometry property
(RIP) [17,21]. For a positive integer k, the restricted isometry constant of a dictio-

nary B is defined as the smallest constant d; for which
(1= d)llellz < [Bell3 < (1 +da1)ell3 (2.13)

holds for all k-sparse vectors ¢. [17] shows that if 65, < v/2 — 1, then P, and Py, are
equivalent. The bound in this result has been further improved and [48] shows that

if 0o < 0.4652, then P, and P, are equivalent.

2.2.2 Recovery of block-sparse signals

Recently, there has been growing interest in recovering sparse representations
of signals in a union of a large number of subspaces, under the assumption that
the signals live in the direct sum of only a few subspaces. Such a representation
whose nonzero elements appear in a few blocks is called a block-sparse representation.
Block sparsity arises in various applications such as reconstructing multi-band signals

(80, 81], measuring gene expression levels [86], face/digit/speech recognition [42,52,
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Figure 2.2: Top: a block-sparse vector is not necessarily sparse. In this example,
2 nonzero blocks out of 100 blocks correspond to 200 nonzero elements out of 298
elements. Bottom: a sparse vector is not necessarily block-sparse. In this example,
all 100 blocks are nonzero each having one nonzero element. However, this gives rise
to only 50 nonzero elements out of 5,000 elements.

53, 117], clustering of data on multiple subspaces [40, 41, 45], finding exemplars in
datasets [39], multiple measurement vector recovery [23,26,70,108], etc.
The recovery of block-sparse signals involves solving a system of linear equations

of the form

y=Bc= [3[1] B[n]] c, (2.14)
where B € RP*™ consists of n blocks B[i] € RP*™ and m = .1 , m;. The main
difference with respect to classical sparse recovery is that the desired solution of (2.14)
corresponds to a few nonzero blocks rather than a few nonzero elements of B. We
say that a vector ¢’ = cl]” - ¢n]T| s k-block-sparse, if at most k blocks
cli] € R™ are different from zero. Note that, in general, a block-sparse vector is not

necessarily sparse and vice versa, as shown in Figure 2.2.

The problem of finding a representation of a signal y that uses the minimum
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number of blocks of B can be cast as the following optimization program

Pryiy : min Y _1(Jlefilll) st y= Be, (2.15)
1=1

where ¢ > 0 and I(-) is the indicator function, which is zero when its argument is
zero and is one otherwise. In fact, the objective function in (2.15) counts the number
of nonzero blocks of a solution. However, solving (2.15) is in general an NP-hard
problem [1] as it requires searching exhaustively over all choices of a few blocks of B
and checking whether they span the observed signal. The /; relaxation of P, /e, has

the following form

Pojey minZHc[z’]Hq s.t. y= Be. (2.16)
i=1

For ¢ > 1, the optimization program P, s, is convex and can be solved efficiently

using convex programming tools [14].

Remark 1 For ¢ = 1, the convex program P, s, is the same as Py, in (2.7) used
for sparse recovery. In other words, while the {1 optimization program, under some
conditions, can recover a sparse representation of a signal, it can also recover a block-

sparse representation, under appropriate conditions, as we will discuss in the thesis.

The work of [36,37,96] study conditions under which for the special case of ¢ = 2,
Py, /e, and Py, are equivalent. These conditions are based on generalizations of
the null-space property, mutual coherence and restricted isometry property, as we

describe next.
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Block-nullspace property. The block-nullspace property provides necessary and
sufficient conditions for the equivalence of the two optimization programs I,/ and
Pu, ¢, [96]. More specifically, Let A, denote a set of k different indices from {1,...,n}
and A; denote the remaining n — k indices. Let B,, and B A be submatrices of
B whose blocks are selected from B according to A and Az, respectively. The
block-nullspace property states that P, and P,/ are equivalent and recover the

k-block-sparse representation of any given signal if and only if

n—k

k

Ve # 0,Vep # 0 such that By, = By o = Y lerfillla < lleglilla

=1 =1

Z ’ (2.17)
In other words, for every nonzero vector x that lies in the range-space of both By,
and B Ags the mixed f5/¢;-norm of the representation of x in B, must be strictly
smaller than the mixed {5 /¢;-norm of any representation of x in B Ag-

In practice, it is not possible to check the condition above for every A, and for
every X in the intersection of the range-spaces of B,, and Bx_. Moreover, the
condition above does not explicitly characterize the relationships among the atoms
and the blocks of the dictionary under which P, /,, and P, /, are equivalent. This has

motivated investigating sufficient conditions based on generalizations of the mutual

coherence and restricted isometry property in the conventional sparse recovery.

Block-coherence. The work of [36] assumes that the blocks have linearly inde-

pendent columns and are of the same length d, i.e., for each i, rank(B[i]) = m; = d.
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Under these assumptions, [36] defines the block-coherence of a dictionary B as
s = max oy (Bi] B[j]), (2.18)

where o;(-) denotes the largest singular value of the given matrix. Also, the subco-
herence of B is defined as v £ max; 1; where p; denotes the mutual coherence for the

i-th block. [36] shows that if
(2k — Dup <1 —(d— 1)y, (2.19)

then Py, e, and P,/ are equivalent and recover the k-block-sparse representation of

a given signal. Note that when d = 1, (2.19) reduces to (2.10).

Block-RIP. [37] assumes that the blocks have linearly independent columns, al-
though their lengths need not be equal. Under this assumption, [37] defines the block

restricted isometry constant of B as the smallest constant dpj such that
(1=dpw)llelz < |1 Bellz < (1+dp)llel? (2.20)

holds for every k-block-sparse vector e¢. Analogous to the conventional sparse recovery
results, [37) shows that if dp o, < V2 — 1, then Py, and Py, are equivalent.

The work of [96] proposes an alternative analysis framework for block-sparse recov-
ery using P, /¢, in the special case of Gaussian dictionaries. By analyzing the nullspace
of the dictionary, it shows that if the blocks have linearly independent columns, per-
fect recovery is achieved with high probability as the length of the signal, D, grows
to infinity.
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An alternative approach to recover the block-sparse representation of a given signal

is to solve the optimization program

P} s, min Y _I(||Blilefi]lly) s.t. y= Be, (2.21)

i=1
for ¢ > 0. Notice that the solution to this problem coincides with that of I s,
for blocks with linearly independent columns since ||Bl[i]c[i]||, > 0 if and only if
leli]ll; > 0. Nevertheless, P, , is an NP-hard problem. In the case of ¢ > 1, the

following ¢, relaxation
P, min Y _||Blilefi]|l, s.t. y=Bc, (2.22)
=1

is a convex program and can be solved efficiently. The work of [50] studies conditions
under which, for the special case of ¢ = 2, P, /6y and P, /1, Are equivalent. The
conditions are based on the notion of mutual subspace incoherence, as described

next.

Mutual subspace coherence. The work of [50] introduces the notion of mutual

subspace coherence of B, which is defined as

Ix"z| (2.23)
= max max ————— '
s = 0T xesies; x|zl

where S; = span(BJi]). Under the assumption that the blocks have linearly indepen-
dent columns and the subspaces spanned by each block are disjoint, [50] shows that

P, 6 and P, /e, AT€ equivalent if

(2k —1ps < 1. (2.24)
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As mentioned above, the state-of-the-art block-sparse recovery methods [11, 36,
37,50,96] consider dictionaries whose blocks consist of linearly independent vectors
which we refer to as non-redundant blocks. However, in signal/image processing,
machine learning, and computer vision problems such as face recognition [42, 117]
and motion segmentation [40,88], blocks of a dictionary consist of data points and
often the number of data points in each block exceeds the dimension of the underlying
subspace. For example, in automatic face recognition, the number of training images
in each block of the dictionary is often more than the dimension of the face subspace,
known to be 9 under a fixed pose and varying illumination [6]. In fact, having more
data in each block helps to better capture the underlying distribution of the data in
each subspace, and hence increases the performance of tasks such as classification.
However, to the best of our knowledge, existing theoretical results have not addressed
recovery in dictionaries whose blocks have linearly dependent atoms, which we refer to
as redundant blocks. Moreover, theoretical analysis for the equivalence between P,/
and P, /4, as well as the equivalence between Péq /6y and Pe,q Jto has been restricted to
only ¢ = 2. Nevertheless, empirical studies in some applications [126], have shown
better block-sparse recovery performance for ¢ # 2. Therefore, there is a need for

analyzing the performance of each class of convex programs for arbitrary ¢ > 1.

Remark 2 Another line of research that considers the problem of block-sparse recov-
ery is the work of [3,64,85]. However, the modeling assumption on the dictionary is

different from what we have reviewed so far and what we are interested in this thesis.
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Specifically, [3,64,85] consider the regqularized least-squares problem of
.1 2
min o |ly — Bell; + Af(e), (2.25)

where Q(c) is a block-sparsity inducing norm on the coefficient vector ¢. However,
they make assumptions about the rows of the matriz B, while [36, 37] and the work
in this thesis make assumptions about the columns of B. In fact, the assumptions in
[8,64,85] almost never hold in the setting considered in this thesis. More precisely, the
assumption A2 in [3] or the result of Proposition 1 and Theorem 6 in [6]] require the
empirical covariance matriz formed by the rows of B to be full-rank. Similarly, [85]
assumes that the rows of B are drawn in an i.i.d. manner from a zero mean Gaussian
distributions with a positive definite covariance matrixz. However, such assumptions
are easily violated when the columns of B are drawn from a union of subspaces.
For example, when the columns of B are drawn from a one-dimensional line, the
covariance matrixz formed by the rows of B is always rank deficient (is of rank one).
As a result, neither the work of [3,64] nor our work is a special case of the other and
the obtained conditions in our work cannot be compared with the conditions in [3, 64]
and vice versa.

The work of [121] also considers the optimization program in (2.25) where the
blocks of B consist of orthonormal columns. However, in our work, we consider the
constraint optimization program in (2.16) instead of the unconstraint optimization in
(2.25) and we study the more general case where the blocks of B can consist of linearly
dependent columns.
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Figure 2.3: To build a neighborhood graph, one connects each node to its K nearest
neighbors or to the nodes that are inside an e-ball centered at node.

2.3 Manifold clustering and embedding

In this section, we review some of the most important algorithms for clustering
and dimensionality reduction of data in manifolds. Given N data points {y, € RP}¥,
that lie in a union of n manifolds {M,}}_,, the problem of manifold clustering refers
to the problem of separating the data into their underlying manifolds. In other
words, we would like to find a partition {A,}}; for the set {1,2,..., N} such that
data points indexed by A, belong to the same manifold M,. Once we cluster the
data, the dimensionality reduction (embedding) problem aims at finding compact
representations {x; € R%},c,, for the data in each manifold, where d; < D denotes
the embedding dimension of the data in cluster /.

The majority of manifold clustering and embedding algorithms relies on building
a neighborhood graph whose nodes represent the data points and whose edge weights

encode information that can be used for clustering and embedding, see Figure 2.3.
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Such algorithms often follow the following three step procedure:

1. Build a neighborhood graph with N nodes representing the N data points.
Connect each point to its K nearest neighbors or to points that are inside an

e-ball centered at that point.

2. Learn a set of weights {w;;} describing the similarity between a node 7 and any

node 7, using the neighborhood graph.

3. Find clustering and low-dimensional representations for the data using the

learned weights.

Most algorithms assume that a good value of K or € is given, hence a good
neighborhood graph is available. The main difference among algorithms is in their

procedures for learning the weights.

2.3.1 Laplacian eigenmaps and spectral clustering

The Laplacian eigenmaps (LEM) algorithm [7] is motivated by the geometric idea
that data points that are close in the high-dimensional space should remain close
to each other in the low-dimensional embedding. As a result, LEM learns weights
between a point and its neighbors and tries to preserve these weights in the low-
dimensional representation of the data points. LEM proposes two approaches to

choose the weights for the edges of the neighborhood graph:
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e [Simple-minded] set w;; = 1 if nodes ¢ and j are connected by an edge in the
neighborhood graph, otherwise set w;; = 0.

lyi—v;13 _ :
o [Heat kernel] given a parameter t > 0, set w;; = e~ ¢ = if nodes i and J are

connected by an edge in the neighborhood graph, otherwise set w;; = 0.

Once the weights are learned, the last step is to find low-dimensional representa-
tions {x; € R}, for the data such that x; and x; are close if y,; and y; are close,
i.e., if nodes 7 and j are connected in the neighborhood graph. Such low-dimensional
representations are obtained by finding the bottom eigenvectors of the normalized
Laplacian matrix of the graph. More specifically, denoting the weight matrix as

W = |w;;] € RV LEM forms the normalized Laplacian matrix of the graph as
L=1I-D'wW, (2.26)

where D = diag(dy,...,dy) is a diagonal matrix whose i-th element is equal to the
sum of the weights of the edges connected to the node ¢, ie., d; = Zjvzl w;;j. The
Laplacian matrix is symmetric positive semidefinite [7]. Collecting the d eigenvectors
of L corresponding to its second to the (d + 1)-th smallest eigenvalues in a matrix
V € RV*4 the d-dimensional representation of the N data points are then given by
the rows of V.

When the data lie in n manifolds, under the assumption that the points in dif-

ferent manifolds are well-separated from each other, the graph will have n connected

components, each component corresponding to a manifold. In such a case, one can
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use the normalized Laplacian matrix of the graph, defined in (4.11), and find the
components of the graph by applying the Kmeans algorithm [34] to the rows of a
matrix V' € RV*" which is composed of the n eigenvectors of L corresponding to its
smallest eigenvalues. Once the data are separated into their underlying manifolds, in
order to find a low-dimensional representation of the data in each manifold, one has

to apply the LEM algorithm separately to the data points in each cluster.

2.3.2 Locally linear embedding and clustering

The Locally Linear Embedding (LLE) algorithm [91] uses the geometric idea that
each point and its nearest neighbors lie in or close to a locally linear patch of the
manifold. Thus, each data point, y,, can be approximately reconstructed using the
affine combination of its nearest neighbors, {yj }ien;, where N; represents the indices
of the neighbors of y;, suggesting to solve

min
{wij}jen;

Y, — Z Wiy ;

JEN;

2
st > wy =1 (2.27)
2

JEN:
It is shown in [91] that the obtained weights are invariant with respect to rotations
and global translation of the data. Hence, the leaned weights {w;;} reflect intrinsic
geometric properties of the data.

LLE then tries to reconstruct a neighborhood preserving mapping such that the
low-dimensional representations of data points preserve the geometric relationships of

the data in the high-dimensional space. More precisely, in the low-dimensional space,
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one expects that x; can be efficiently reconstructed from {x;};en; using the learned

weights. This suggests looking for x; that minimize

: (2.28)

2

JEN;

using the learned weights. Collecting x; as the columns of a matrix X € RV,

and building the weight matrix W = [w;;], the LLE algorithm finds the embedding

vectors by solving the minimization program
1
min | X — XW'Z st X1=0, NXXT =1 (2.29)

The constraint X1 = Zf\il x; = 0 removes the translational degree of freedom of the
embedding vectors and centers them at the origin, while and the constraint %X X' =
% Zfil x;X; removes the arbitrary rotational and scaling degrees of freedom of the
embedding vectors by requiring them to have unit covariance.

It turns out that the solution of the optimization program in (2.29) is given by

the bottom eigenvectors of the following matrix
M=(T-W)'(I-W). (2.30)

More precisely, collecting the d eigenvectors of M corresponding to its second to the
(d + 1)-th smallest eigenvalues in a matrix V' € R¥*?| the d-dimensional representa-
tion of the N data points are given by the rows of V.

When data lie in n > 2 manifolds that are sufficiently separated such that the

points from different manifolds are not connected to each other in the neighborhood
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graph, the dimension of the nullspace of M is at least n [87]. The work of [87]
uses the bottom eigenvectors of M to find the components of the graph, i.e., the
manifolds. However, the drawback of this approach is that there is no guarantee
that the dimension of the nullspace can be in general greater than the umber of
components of the graph, hence not all vectors in the nullspace of M are informative
about the memberships of the data to the manifolds. [55] tries to resolve this issue in
the case of flat manifolds by analyzing the variance of the vectors in the nullspace of

M, however, the presented result is not theoretically correct.
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Sparse Subspace Clustering

In this section, we consider the problem of clustering a collection of data points
that lie in a union of subspaces. We propose an algorithm, called Sparse Subspace
Clustering (SSC), to address this problem [40,41,45]. The key idea is that, among
infinitely many possible representations of a data point in terms of other points, a
sparse representation corresponds to selecting a few points from the same subspace.
This motivates solving a sparse optimization program whose solution is used in a
spectral clustering framework to infer the clustering of data into subspaces.

Since solving the sparse optimization program is in general NP-hard, we consider
a convex relaxation and show that, under appropriate conditions on the arrangement
of the subspaces and the distribution of data, the proposed minimization program
succeeds in recovering the desired sparse representations. The proposed algorithm can

be solved efficiently and can handle data points near the intersections of subspaces.
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Figure 3.1: Motion segmentation: given feature points on multiple rigidly moving
objects tracked in multiple frames of a video (top), the goal is to separate the feature

trajectories according to the moving objects (bottom).
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Figure 3.2: Face clustering: given face images of multiple subjects (top), the goal is
to find images that belong to the same subject (bottom).

Another key advantage of the proposed algorithm with respect to the state of the
art (see Section 3.1 for a brief review) is that it can deal with data nuisances, such
as noise, sparse outlying entries, and missing entries, directly by incorporating the
model of the data into the sparse optimization program. Moreover, it does not need
to know the dimensions of the subspaces a priori. We demonstrate the effectiveness
of the proposed algorithm through experiments on synthetic data as well as the two
real-world problems of motion segmentation (Fig. 3.1) and face clustering (Fig. 3.2).

Before presenting the proposed framework, we review the existing methods for
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subspace clustering.

3.1 A review of subspace clustering

algorithms

Existing subspace clustering algorithms can be divided into three main categories:

iterative/algebraic, statistical, and spectral clustering-based methods.

3.1.1 Iterative/algebraic methods

Iterative approaches, such as K-subspaces [15,106] and median K-flats [123] al-
ternate between assigning points to subspaces and fitting a subspace to each cluster.
The main drawbacks of such approaches are that they generally require to know the
number and dimensions of subspaces, and that they are sensitive to initialization.
Factorization-based approaches such as [25,51,66] find an initial segmentation by
thresholding the entries of a similarity matrix built from the factorization of the data
matrix. These methods are provably correct when the subspaces are independent,
but fail when this assumption is violated. In addition, they are sensitive to noise and
outliers in the data.

Algebraic approaches such as Generalized Principal Component Analysis (GPCA)

[78,111], fit the data with a polynomial whose gradient at a point gives the normal
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vector to the subspace containing that point. While GPCA can deal with subspaces of
different dimensions, it is sensitive to noise and outliers, and its complexity increases

exponentially in terms of the number and the dimensions of the subspaces.

3.1.2 Statistical methods

[terative statistical approaches, such as Mixtures of Probabilistic PCA (MP-
PCA) [100], Multi-Stage Learning (MSL) [97], or [59], assume that the distribution
of the data inside each subspace is Gaussian and alternate between data clustering
and subspace estimation by applying the Expectation Maximization (EM) algorithm.
The main drawbacks of these methods are that they generally need to know the num-
ber and dimensions of the subspaces, and that they are sensitive to initialization.
Robust statistical approaches, such as Random Sample Consensus (RANSAC) [47],
fit a subspace of dimension d to randomly chosen subsets of d points until the number
of inliers is large enough. The inliers are then removed, and the process is repeated
to find a second subspace, and so on. RANSAC can deal with noise and outliers,
and does not need to know the number of subspaces. However, the dimensions of the
subspaces must be known and equal. In addition, the complexity of the algorithm
increases exponentially in the dimension of the subspaces.

Information-theoretic statistical approaches, such as Agglomerative Lossy Com-
pression (ALC) [89], look for the segmentation of the data that minimizes the coding

length needed to fit the points with a mixture of degenerate Gaussians up to a given
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distortion. As this minimization problem is NP-hard, a suboptimal solution is found
by first assuming that each point forms its own group, and then iteratively merging
pairs of groups to reduce the coding length. ALC can handle noise and outliers in
the data. While, in principle, it does not need to know the number and dimensions
of the subspaces, the number of subspaces found by the algorithms is dependent on
the choice of a distortion parameter. In addition, there is no theoretical proof for the

optimality of the agglomerative algorithm.

3.1.3 Spectral clustering-based methods

Local spectral clustering-based approaches such as Local Subspace Affinity (LSA)
[118], Locally Linear Manifold Clustering (LLMC) [55], Spectral Local Best-fit Flats
(SLBF) [124], and [122] use local information around each point to build a similarity
between pairs of points. The segmentation of the data is then obtained by applying
spectral clustering [84,113] to the similarity matrix. These methods have difficulties
dealing with points near the intersection of two subspaces, because the neighborhood
of a point can contain points from different subspaces. In addition, they are sensitive
to the right choice of the neighborhood size to compute the local information at each
point.

Global spectral clustering-based approaches try to resolve these issues by building
better similarities between data points using global information. Spectral Curvature

Clustering (SCC) [22] uses multi-way similarities that capture the curvature of a col-
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lection of points within an affine subspace. SCC can deal with noisy data but requires
to know the number and dimensions of subspaces and assumes that subspaces have
the same dimension. In addition, the complexity of building the multi-way similar-
ity grows exponentially with the dimensions of the subspaces, hence, in practice, a
sampling strategy is employed to reduce the computational cost. Using advances in
sparse [21,33,99] and low-rank [18,19,90] recovery algorithms, Sparse Subspace Clus-
tering (SSC) [40,41,94], Low-Rank Recovery (LRR) [75-77], and Low-Rank Subspace
Clustering (LRSC) [46] algorithms pose the clustering problem as finding a sparse or
low-rank representation of the data in the dictionary of the data itself. The solution
of the corresponding global optimization algorithm is then used to build a similarity
graph from which the segmentation of the data is obtained. The advantages of these
methods with respect to most state-of-the-art algorithms are that they can handle
noise and outliers in data, and that they do not need to know the dimensions and, in

principle, the number of subspaces a priori.

3.2 Sparse subspace clustering algorithm

In this section, we introduce the sparse subspace clustering (SSC) algorithm for
clustering a collection of multi-subspace data using sparse representation techniques.
We motivate and formulate the algorithm for data points that perfectly lie in a union

of linear subspaces. In the next section, we generalize the algorithm to deal with data
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nuisances such as noise, sparse outlying entries, and missing entries as well as the
more general class of affine subspaces.

Let {S,}}_, be an arrangement of n linear subspaces of R” of dimensions {d,}}_;.
Consider a given collection of N noise-free data points {y,}Y, that lie in the union

of the n subspaces. Denote the matrix containing all the data points as

Y £ {yl yN} - [Yl Yn] r, (3.1)

where Y, € RP*Ne is the matrix of the N, > d, points that lie in Sy and ' € RV*V is
an unknown permutation matrix. We assume that we do not know a priori the bases
of the subspaces nor do we know which data points belong to which subspace. The
subspace clustering problem refers to the problem of finding the number of subspaces,
their dimensions, a basis for each subspace, and the segmentation of the data from
Y.

To address the subspace clustering problem, we propose an algorithm that consists
of two steps. In the first step, for each data point, we find a few other points that
belong to the same subspace. To do so, we propose a global sparse optimization
program whose solution encodes information about the memberships of data points
to the underlying subspace of each point. In the second step, we use this information

in a spectral clustering framework to infer the clustering of the data.
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3.2.1 Sparse optimization program

Our algorithm takes advantage of what we refer to as the self-expressiveness prop-
erty of the data, i.e., each data point in a union of subspaces can be efficiently recon-
structed by a combination of other points in the dataset. More precisely, y, € Sy can

be written as

yi=Yc, c;=0, (3.2)

where ¢; = [cﬂ Cio CiNlT and the constraint c¢;; = 0 eliminates the trivial
solution of writing a point as a linear combination of itself. In other words, the
matrix of data points Y is a self-expressive dictionary with respect to which each
point can be written as a linear combination of other points.

Notice that the representation of y, in the dictionary Y is not unique in general.
This comes from the fact that the number of data points in a subspace is assume be
to be greater than its dimension, i.e., N, > dy. As a result, each Y,, and consequently
Y . has a non-trivial nullspace giving rise to infinitely many representations of each
data point.The key observation in our proposed algorithm is that among all solutions
of (3.2), there exists a sparse representation, ¢;, whose nonzero elements correspond
to data points from the same subspace as that of y,;. We refer to such a representation
as a subspace-sparse representation.

More specifically, a data point y, that lies in the d,-dimensional subspace &; can be

written as a linear combination of d, other points in general directions from S,. As

a result, ideally, a sparse representation of a data point finds points from the same
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Figure 3.3: Three subspaces in R? with 10 data points in each subspace, ordered such
that the fist and the last 10 points belong to S; and Ss, respectively. The solution of
the ¢,-minimization program in (3.3) for y, lying in & for ¢ = 1,2, 0o is shown. Note
that as the value of ¢ decreases, the sparsity of the solution increases. For ¢ = 1, the
solution corresponds to choosing two other points lying in ;.

subspace where the number of the nonzero elements corresponds to the dimensionality
of the underlying subspace.

For a system of equations such as (3.2) with infinitely many solutions, one can
restrict the set of solutions by minimizing an objective function such as the ¢,-norm
of the solution! as

min HCZHQ s. t. Y, = YvCi7 Ciy — 0. (33)

Different choices of ¢ have different effects in the obtained solution. Typically, by

decreasing the value of ¢ from infinity toward zero, the sparsity of the solution in-

'Recall that the ¢,-norm of ¢; € RY is defined as ||c;||, £ (Z;v:1 |cij|q)%.
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creases, as shown in Figure 3.3. The extreme case of ¢ = 0 corresponds to the general
NP-hard problem [1] of finding the sparsest representation of the given point, as the
lo-norm counts the number of nonzero elements of the solution. Since we are inter-
ested in efficiently finding a non-trivial sparse representation of y, in the dictionary

Y . we consider minimizing the tightest convex relaxation of the fy-norm, i.e.,
min ||¢||; s.t. Yy, =Ye¢;, ¢; =0, (3.4)

which can be solved efficiently using convex programming tools [13,14, 68| and is
known to prefer sparse solutions [21,33,99]. We can also rewrite the sparse optimiza-

tion program (3.4) for all data points in the matrix form as
min [|C]|; s.t. Y =YC, diag(C) =0, (3.5)

where C € RY*V is the matrix of the sparse coefficients whose i-th column corre-

CN:| , and diag(C) €

sponds to the sparse representation of y;, i.e., C £ |:C1 co ...
RY is the vector of the diagonal elements of C.
In Section 3.5, we study conditions under which the solution of (3.5) corresponds

to a subspace-sparse representation of each data point. Next, assuming that C' is

subspace-sparse, we use C' to infer the clustering of the data.

3.2.2 Clustering using sparse coefficients

After solving the proposed optimization program in (3.5), we obtain a sparse rep-
resentation for each data point whose nonzero elements ideally correspond to points
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from the same subspace. The next step of the algorithm is to infer the segmentation
of the data into different subspaces using the sparse coefficients.

To address this problem, we build a weighted graph G = (V,&, W), where V
denotes the set of N nodes of the graph, which corresponds to the N data points,
and £ C V x V denotes the set of the edges between the nodes. W € R¥V ig a
symmetric non-negative similarity matrix representing the weights of the edges, i.e.,
node 7 is connected to node j by an edge whose weight is equal to w;;. An ideal
similarity matrix W, hence an ideal similarity graph G, is one in which nodes that
correspond to points from the same subspace are connected to each other and there
are no edges between nodes that correspond to points in different subspaces.

Note that the sparse optimization program ideally recovers to a subspace-sparse
representation of each point, i.e., a representation whose nonzero elements correspond
to points from the same subspace of the given data point. This provides an immediate
choice of the similarity matrix as W = |C| + |C|". In other words, each node i
connects itself to a node j by and edge whose weight is equal to |¢;;| + |cj;|. The
reason for the symmetrization is that, in general, a data point y, € Sy can write
itself as a linear combination of some points including y; € Sy. However, y; may
not necessarily choose y; in its sparse representation. By this particular choice of the
weight, we make sure that nodes ¢ and j get connected to each other if either y, or
y; is in the sparse representation of the other.

The similarity graph built in this way has ideally n connected components corre-
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sponding to the n subspaces, i.e.,

W=|: -.. : |L, (3.6)

where W, is the similarity matrix of data points in Sy. Clustering of data into sub-
spaces follows then by applying the spectral clustering of [84] to G. More specifically,
we first compute the degree matrix of the graph as D = diag(Zj.V:l Wij, .-, Zjvzl wy;)-
We then form the symmetric normalized Laplacian matrix of the graph as L =
I — D7'Y2W D~2and find the n eigenvectors of L associated to its smallest eigen-
values. Denoting the i-th bottom eigenvector as wv;, we form the matrix V =
lvl Un} € RY¥*" normalize the rows of V' to have unit Euclidean norms, and
finally obtain the clustering of the data into n subspaces by applying the Kmeans

algorithm [34] to V.

Remark 3 (Normalization of sparse coefficients) An optional step that often
improves the spectral clustering result is to normalize the sparse coefficients as ¢; <+
¢i/|cilloo prior to building the similarity graph. This helps to better deal with differ-
ent norms of data points. More specifically, if a data point with a large Euclidean
norm selects a few points with small Fuclidean norms, then the values of the nonzero
coefficients will generally be large. On the other hand, if a data point with a small
FEuclidean norm selects a few points with large Euclidean norms, then the values of
the nonzero coefficients will generally be small. Since spectral clustering puts more
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Algorithm 1 : Sparse Subspace Clustering (SSC)

Input: A set of points {y,;}~, lying in a union of n linear subspaces {S;}1 ;.

1: Solve the sparse optimization program:

C* = argming |C|; s.t. Y =YC, diag(C)=0.

*

2: Normalize the columns of C* as ¢ « 1=

3: Form a similarity graph with N nodes representing the data points. Set the

weights on the edges between the nodes by W = |C*| + |C*|T.

4: Apply the spectral clustering algorithm of [84] to the similarity graph with weights

W.

Output: Segmentation of the data: Y1,Y,,....Y,.

emphasis on keeping the stronger connections in the graph, by the normalization step

we make sure that the largest edge weights for all the nodes are of the same scale.

In summary, the SSC algorithm for clustering of data points that perfectly lie
in a union of linear subspaces is shown in Algorithm 1. Note that an advantage of
spectral clustering, which will be shown in the experimental results, is that it provides
robustness with respect to a few errors in the sparse representations of data points. In
other words, as long as edges between points in different subspaces are weak, spectral

clustering can find the correct segmentation of the data.

Remark 4 In principle, SSC' does not need to know the number of subspaces. More
specifically, under the conditions of the theoretical results in Section 3.5, in the simi-
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larity graph there will be no connections between points in different subspaces. Thus,
one can determine the number of subspaces by finding the number of connected compo-
nents of the graph G, which is given by n = dim(ker(L)), as shown in [113]. However,
when there are connections between points in different subspaces, other model selection

techniques should be employed (see e.g., [16]).

3.3 Practical extensions

In real-world problems, data are often corrupted by noise and sparse outlying en-
tries due to measurement/process noise and ad-hoc data collection techniques, hence,
do not lie perfectly in a union of subspaces. For instance, in the motion segmenta-
tion problem, because of the malfunctioning of the tracker, feature trajectories can
be corrupted by noise or can have entries with large errors [89]. Similarly, in clus-
tering of human faces, images can be corrupted by errors due to specularities, cast
shadows, and occlusions [117]. On the other hand, data points may have missing
entries, e.g., when the tracker loses tracks of some feature points in a video due to
occlusions [110]. Finally, data may lie in a more general class of a union of affine
subspaces, which includes linear subspaces as a special case.

In this section, we generalize the SSC algorithm, which we introduced in the
previous section for clustering of data lying perfectly in a union of linear subspaces,

to deal with the aforementioned challenges. Unlike state-of-the-art methods, which
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require to run a separate algorithm first to correct the errors in the data [89,110],
we deal with these problems in a unified framework by incorporating a model for the
corruption into the sparse optimization program. Thus, the sparse coefficients again
encode information about the membership of the data to the subspaces, which are

used in a spectral clustering framework, as before.

3.3.1 Noise and sparse outlying entries

In this section, we consider clustering of data points that are contaminated with

sparse outlying entries and noise. Let
Y=y tetz (3.7)

be the i-th data point that is obtained by corrupting an error-free point y?, which
perfectly lies in a subspace, with a vector of sparse outlying entries €? € R” that has
only a few large nonzero elements, i.e., ||€?||o < k for some integer k, and with a noise
2? € RP whose norm is bounded as ||2?||y < ¢ for some ¢ > 0. Since error-free data
points perfectly lie in a union of subspaces, using the self-expressiveness property, we
can reconstruct y? € S in terms of other error-free points as

J#i
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Rewriting y? using (3.7) in terms of the corrupted point y,, the sparse outlying entries
vector €}, and the noise vector 2! and substituting it into (3.8), we obtain
Y, = Z Cijy; + € + 2, (3.9)
J#i

where the vectors e; € R” and z; € R” are defined as

€; £ 6? - Zj;éz‘ Cijeg‘)y (310)
zZ; é Z? — 2]7&1 cz-jz?. (311)

Notice that (3.9) has still a sparse solution ¢;, because y? € S, can be expressed
as a linear combination of {9}, with at most d, nonzero entries, i.e., ||¢ilo < dy.
Moreover, e; is also sparse, because ||€{|o < k and ||c;ljo < max,d,, hence using
(3.10), |les|lo < k(14+max, dy), which we assume to be much smaller than N. Similarly,
z; is a vector of noise since it is linear combination of at most 1+ max, d, noise vectors
in (3.11).

Collecting e; and z; as columns of matrices E and Z, respectively, we can rewrite

(3.9) in the matrix form as
Y=YC+E+Z, diag(C)=0. (3.12)

Our objective is then to find a solution (C, E, Z) for (3.12), where C' corresponds
to a sparse coefficient matrix, E corresponds to a matrix of sparse outlying entries,

and Z is a noise matrix. To do so, we propose to solve the following optimization
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program

auin Gl + AElL + 121
(3.13)
s.t. Y=YC+FE+ Z, diag(C) =0,

where the ¢;-norm promotes sparsity of the columns of C' and E while the Frobenius
norm promotes having small entries in the columns of Z. The two parameters A\, >
0 and A, > 0 balance the three terms in the objective function. Note that the
optimization program in (3.13) is convex with respect to the optimization variables
(C,E,Z), hence, can be solved using convex programming tools (see Section 3.4 for
implementation details).

When data are corrupted only by noise, we can eliminate E from the optimization
program in (3.13). On the other hand, when the data are corrupted only by sparse
outlying entries, we can eliminate Z in (3.13). In practice, however, E can also deal

with small errors due to noise. The following proposition suggests setting A, = . /.

and A\, = a, /e, where a,, . > 1 and
pr- = minmax [y y;|,  pe 2 minmax [y (3.14)
(A i g
The proof of the following proposition is provided in the appendix of this chapter.
Proposition 1 Consider the optimization program (3.13). Without the term Z, if
Ae < 1/pe, then there exists at least one data point y, for which in the optimal solution
we have (¢p,e0) = (0,y,). Also, without the term E, if A\, < 1/u,, then there ezists

at least one data point y, for which (¢g, z¢) = (0,y,).
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After solving the proposed optimization programs (see Section 3.4 for details), we
use C' to build a similarity graph and infer the clustering of the data using spectral
clustering. Thus, by incorporating the data corruption model into the sparse opti-
mization program, we can deal with clustering of corrupted data, as before, without

explicitly running a separate algorithm to correct the errors in the data [89,110].

3.3.2 Missing entries

We consider now the clustering of incomplete data, where some of the entries
of a subset of data points are missing. Note that when only a small fraction of
entries of each data point is missing, clustering of incomplete data can be cast as
clustering of data with sparse outlying entries. More precisely, one can fill in the
missing entries of each data point with random values, hence obtain data points with
sparse outlying entries. Then clustering of data follows by solving (3.13) and applying
spectral clustering to the graph built using the obtained sparse coefficients. However,
the drawback of this approach is that it disregards the fact that we know the locations
of the missing entries in the data matrix.

It is possible, in some cases, to cast the clustering of data with missing entries as
clustering of complete data. To see this, consider a collection of data points {y,}¥,
in RP. Let J; C {1,...,D} denote indices of the known entries of y; and define
J & ﬂf\il J;. Thus, for every index in J, all data points have known entries. When

the size of J, denoted by |.J], is not small relative to the ambient space dimension,
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D, we can project the data, hence, the original subspaces, into a subspace spanned
by the columns of the identity matrix indexed by J and apply the SSC algorithm to
the obtained complete data. In other words, we can only keep the rows of Y indexed

XN “and solve the sparse

by J, obtain a new data matrix of complete data Y € RIY
optimization program (3.13). We can then infer the clustering of the data by applying
spectral clustering to the graph built using the sparse coefficient matrix.

Note that the approach described above is based on the assumption that J is

nonempty. Addressing the problem of subspace clustering with missing entries when

J is empty or has a small size is the subject of the future research.

3.3.3 Affine subspaces

In some real-world problems, data lie in a union of affine rather than linear sub-
spaces. For instance, the motion segmentation problem involves clustering of data
that lie in a union of 3-dimensional affine subspaces [102,110]. However, most sub-
space clustering algorithms deal with this problem as if the data lie in a union of
4-dimensional linear subspaces. This comes from the fact that a d,-dimensional affine
subspace S; can be considered as a subset of a (d; + 1)-dimensional linear subspace
that includes S, and the origin. However, this has the drawback of increasing the
dimension of the possible intersection of subspaces, which in some cases can result
in indistinguishability of subspaces from each other. For example, two different lines

r = —1 and x = +1 in the z-y plane form the same 2-dimensional linear subspace
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after including the origin, hence become indistinguishable.
To directly deal with affine subspaces, we use the fact that any data point y, in
an affine subspace S, of dimension d, can be written as an affine combination of d,+ 1

other points from S,. In other words, a sparse solution of
Yy, =Yc;, 1'c¢i=1, c¢; =0, (3.15)

corresponds to d,+1 other points that belong to S,. Thus, to cluster data points lying
close to a union of affine subspaces and contaminated by noise and sparse outlying

entries as in (3.9), we propose to solve the sparse optimization program

: Az
min [|Clh + Al Ell + 127
(3.16)
st. Y=YC+E+Z, 1'C=1", diag(C) =0.
Notice that, in comparison to (3.13) for the case of linear subspaces, the optimization
program in (3.16) includes additional linear equality constraints, namely 1'C = 1",
Notice also that (3.16) can deal with linear subspaces as well since a linear subspace

is also an affine subspace. In the next section, we address the implementation of the

proposed optimization programs (3.13) and (3.16).
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3.4 Solving the sparse optimization

programs

Note that the convex programs, introduced in the previous sections, can be solved
using generic convex solvers such as CVX2. However, since we need to solve for O(PN)
number of variables with P € {N, N + D} depending on the optimization program,
generic solvers will have high computational costs as they do not scale well with the
dimension, D, and the number of data points, V.

In this section, we study efficient implementations of the proposed sparse optimiza-
tions using an Alternating Direction Method of Multipliers (ADMM) method [13,49].

We fist consider the most general optimization program

A
i Ml ENL+ 202113
min ICl1 + el B2 + 5 1Z ||

© (3.17)

st. Y=YC+E+Z, C'1=1, diag(C)=0,
and present an ADMM algorithm to solve it. We then derive implementations of
other practical sparse optimizations, considered in the experiments in Section 3.8,
using the presented algorithm.

First, note that using the equality constraint in (3.17), we can eliminate Z from

2CVX is a Matlab-based software for convex programming and can be downloaded from
http://cvxr.com.
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the optimization program and equivalently solve

. Az
min [|C|l; + A ElhL + Z Y = YC - E|%
(©.B) 2 (3.18)

s.t. CT1=1, diag(C)=0.

The overall procedure of the ADMM algorithm is to introduce appropriate auxiliary
variables into the optimization program, augment the constraints into the objective
function, and iteratively minimize the Lagrangian with respect to the primal variables
and maximize it with respect to the Lagrange multipliers. With an abuse of notation,
throughout this section, we denote by diag(C') both a vector whose elements are the
diagonal entries of C' and a diagonal matrix whose diagonal elements are the diagonal
entries of C.

To start, we introduce an auxiliary matrix A € R¥*" and consider the optimiza-

tion program

. A,
min  [|C|i + A\ E|: + Z|Y — YA - E|}
(C.B.4) 2 (3.19)

s.t. AT1=1, A=C — diag(C).
whose solution for (C, E) coincides with the solution of (3.18). As we will see shortly,
introducing A helps to obtain efficient updates on the optimization variables. Next,
using a parameter p > 0, we add to the objective function of (3.19) two penalty terms

corresponding to the constraints A'1 = 1 and A = C — diag(C) and consider the
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following optimization program

A p
i C A E ZHlY - YA-E|2+5)1AT1 — 12
Zuin (Cl+ A Bl + I+ 5 I3

+£llA - (C - ding(O))]} (3.20)
s.t. A'1=1, A=C —diag(C).

Note that adding the penalty terms to (3.19) does not change its optimal solution,
i.e., both (3.19) and (3.20) have the same solutions, since for any feasible solution of
(3.20) that satisfies the constraints, the penalty terms vanishes. However, adding the
penalty terms makes the objective function strictly convex in terms of the optimiza-

tion variables (C', E, A), which allows using the ADMM approach.
Introducing a vector § € RY and a matrix A € RV*Y of Lagrange multipliers for
the two equality constraints in (3.20), we can write the Lagrangian function of (3.20)

as

Az
L(C.AB,6.A)= [Cli+ AIE] + Z|Y - YA - B} + £]aT1 -1

+ 214~ (C - diag(C))[} + 6T (AT1 1) + tr(AT(A - C +diag(C))), (3:21)

where tr(-) denotes the trace operator of a given matrix. The ADMM approach
is an iterative procedure that proceeds as follows. Denote by (C(k),E(k),A(k)) the
optimization variables at iteration k, and by (6(k), A(k)) the Lagrange multipliers at

iteration k. These variables are updated as:

e Obtain A®*Y by minimizing £ with respect to A, while (C*), E® §k*) A K)
are fixed. Note that computing the derivative of £ with respect to A and setting
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it to zero, we obtain

MY Y +pI+p111ARD = A Y (Y —EW)4+p(11T+CH)—16WT AW

(3.22)
In other words, A**) is obtained by solving an N x N system of linear equa-
tions. When N is not very large, one can use matrix inversion to obtain A+
from (3.22). For large values of N, more efficient approaches such as the con-

jugate gradient method [14] should be employed to solve for AR+,

e Obtain C**Y by minimizing £ with respect to C, while (A(k), E® §F) A(k))

are fixed. Note that the update on C also has a closed-form solution given by
C*) = J — diag(J), where J £ T:(A*D 1 AW /p), (3.23)

where 7,(+) is the shrinkage-thresholding operator acting on each element of the

given matrix, and is defined as

Ty(v) = (v = n)+ sgn(v). (3.24)

The operator ()4 returns its argument if it is non-negative and returns zero

otherwise.

e Obtain E**Y by minimizing £ with respect to E, while (C*+D, A®+1 5k AR)

are fixed. The update on E can also be computed in closed-form as

E®) — T, (Y A —y), (3.25)

Az
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e Having (C’(kﬂ), A®D BERD fived, perform a gradient ascent update with the

step size of p on the Lagrange multipliers as

sEHD = §®) 4 HAKTY 1), (3.26)

These three steps are repeated until convergence is achieved or the number of itera-
tions exceeds a maximum iteration number. Convergence is achieved when we have
JAMT1-1]| < e, AW -CW| < ¢, AW -A®V |, < cand [EW-E* V|, <
€, where € denotes the error tolerance for the primal and dual residuals. In practice,
the choice of € € {107*, 1073} works well in real experiments. In summary, Algorithm
2 shows the updates for the ADMM implementation of the optimization program
(3.17).

In some applications, we may need to solve a smaller version of the optimization
program (3.17). For example, in the motion segmentation problem, which we discuss
in details in the experiments, data are only corrupted by noise and there are no sparse
outlying entries in the data. Hence, we do not need to have E in the optimization

program and we will need to solve

win [Clh + 1122 .
s.t. Y=YC+Z, C'1=1, diag(C)=0.

In that case, the ADMM updates can be obtained from the previous derivations by

simply eliminating the term E and its updating step in Algorithm 2. Also, in the face
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Algorithm 2 : Solving (3.17) via an ADMM Algorithm
Initialization: Set maxIter = 10* k = 0, and Terminate < False. Initialize

Cc® AQ EO® §0 and A to zero.
1: while (Terminate == False) do

2: update A®Y by solving the following system of linear equations
ALY Y +pI+p111)AFD = A Y (Y —EW) 4+ p(11T +CH) —16WT — A®),

3 update C"V as Y = J — diag(J), where J £ T3 (A®) + AW /p),
4: update E*HY a5 BRHD — ’T%(Y — Y A%,

5: update ) as §*FHD = ¢ 4 p(ARFDTY 1),

6: update AFED g6 AGTD — AKR) P (A(k+l) _ C(k“)),

7: k< k+1,

if (HA(]“)TI — 1|0 < €and ||A(k) — C(k)Hoo < € and HA(k) — A(k_l)HoO <€

®

and |[E® — E®Y| < € or (k > maxIter) then
9: Terminate < True
10: end if

11: end while

Output: Optimal sparse coefficient matrix C* = C'®.

clustering problem, which we will discuss in details in the experiments, faces lie in a
linear subspace and there is no need for the affine constraint of C'1 = 1. Moreover,

since the data are corrupted by sparse outlying entries, we need to have the term
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FE in the optimization program, which in practice also deals with noise in the data.

Thus, we will need to solve

min [ Cll + A Ell:
’ (3.29)

s.t. Y=YC+ E, diag(C)=0.
Using derivations similar to the case of solving (3.17) we can obtain the updates for

solving the optimization program (3.29), summarized in Algorithm 3.

3.5 Subspace-sparse recovery theory

The underlying assumptions for the success of the SSC algorithm are that 1)
the proposed optimization program recovers a subspace-sparse representation of each
data point, i.e., a representation whose nonzero elements correspond to the subspace
of the given point, and 2) the subspace-sparse representations are such that all the
points in the same subspace form a connected component of the similarity graph. We
defer the issue of connectedness of the points within each subspace to Section 3.6 and
investigate, in this section, conditions under which, for data points that lie in a union
of linear subspaces, the sparse optimization program in (3.4) recovers subspace-sparse
representations of data points. We investigate recovery conditions for two classes of

subspace arrangements: independent and disjoint subspace models [41].

Definition 1 A collection of subspaces {S;}?_; is said to be independent if dim(®}_,S;)
=Y, dim(S;), where & denotes the direct sum operator.
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Algorithm 3 : Solving (3.29) via an ADMM Algorithm

Initialization: Set maxIter = 10* k = 0, and Terminate < False.

CcO A0 EO ASO), and Ago) to zero.

1: while (Terminate == False) do

2:

®

10:

update A®Y by solving the following system of linear equations

Initialize

(YTY +pDA™D =Y T(Y — EW + AP /p) + pC — A,

update C*tD as C*) = J — diag(J), where J 2 T1 (A®) + AP /p),

update E®Y as EFTD = T, (Y — Y AR + A, /p),

P
update AP as AKFD — 500 4 (v —y AKFD _ gl
update Agkﬂ) as Agkﬂ) = Agﬂ +p (A(k+1) _ C(k+1))7

k+k+1,

if (JJA® —CW||, <eand |[A® — A* V|| <eand |[EW — E¢* V|| <e

or (k > maxlter) then

Terminate < True

end if

11: end while

Output: Optimal sparse coefficient matrix C* = C'®.

As an example, the three 1-dimensional subspaces shown in Figure 3.4 (left) are

independent since they span the 3-dimensional space and the summation of their

dimensions is also 3. On the other hand, the subspaces shown in Figure 3.4 (right)

64



CHAPTER 3. SPARSE SUBSPACE CLUSTERING
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Figure 3.4: Left: the three 1-dimensional subspaces are independent as they span

the 3-dimensional space and the summation of their dimensions is also 3. Right: the
three 1-dimensional are disjoint as any two subspaces intersect at the origin.

are not independent since they span a 2-dimensional space while the summation of

their dimensions is 3.

Definition 2 A collection of subspaces {S;}7; is said to be disjoint if every pair of

subspaces intersect only at the origin. In other words, for every pair of subspaces we

As an example, both subspace arrangements shown in Figure 3.4 are disjoint since
each pair of subspaces intersect at the origin. As a result, based on the above defini-
tions, the notion of disjointness is weaker than independence because an independent
subspace model is always disjoint while the converse is not necessarily true.

An important notion that characterizes the relationship of two disjoint subspaces

is the smallest principal angle, defined as follows.

Definition 3 The smallest principal angle between two subspaces S; and S;, denoted
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by 0;;, is defined as

T

cos(;;) = (3.30)

max T T
v,€85,v;€8; ||vi|2]|v;]|2

Note that two disjoint subspaces intersect at the origin, hence their smallest principal

angle is greater than zero and cos(#) € [0,1).

3.5.1 Independent subspace model

In this section, we consider data points that lie in a union of independent sub-
spaces, which is the underlying model of many subspace clustering algorithms. We
show that the ¢;-minimization program in (3.4) and more generally the £,-minimization
in (3.3) for ¢ < oo always recover subspace-sparse representations of data points.

More specifically, we show the following result.

Theorem 1 Consider a collection of data points drawn from n independent sub-
spaces {S;}7, of dimensions {d;}! ;. Let Y, denote N; data points in S;, where
rank(Y;) = d;, and let Y _; denote data points in all subspaces except S;. Then, for

every §; and every nonzero y in §;, the {,-minimization program

c c c
= argmin s.t. y=1Y; Y_J , (3.31)

q

for ¢ < oo, recovers a subspace-sparse representation, i.e., ¢* # 0 and ¢* = 0.
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Proof. For the sake of contradiction assume that ¢* # 0. It follows from (3.31)
that
y—-Y.c'=Y _,c. (3.32)
Note that the left hand side of equation (3.32) corresponds to a point in the sub-
space S;, while the right hand side of (3.32) corresponds to a point in the subspace
®;-S;. By the independence assumption, the two subspaces S; and @;..;S; are also
independent hence disjoint and intersect only at the origin. Thus, from (3.32) we
must have Y _;c* = 0 and we obtain y = Y ,;c*. In other words, [C*T OT} ' is a
feasible solution of the optimization problem (3.31). Finally, from the assumption

that ¢* # 0, we have

< , (3.33)
q q

-
which contradicts the optimality of [C*T ct } . Thus, we must have ¢* # 0 and

c* = 0, obtaining the desired result. n

Note that the subspace-sparse recovery holds without any assumption on the
distribution of the data points in each subspace other than rank(Y;) = d;. This
comes at the price of having a more restrictive model for the subspace arrangements,
i.e., an independent subspace model. Next, we will show that for the more general
class of disjoint subspaces, under appropriate conditions on the relative configuration
of the subspaces as well as the distribution of the data in each subspace, the /;-
minimization in (3.4) recovers subspace-sparse representations of the data points.
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3.5.2 Disjoint subspace model

We consider now the more general class of disjoint subspaces and investigate con-
ditions under which the optimization program in (3.4) recovers a subspace-sparse
representation of each data point. To that end, we consider a vector x in the inter-
section of §; with @;.S; and let the optimal solution of the ¢;-minimization when

we restrict the dictionary to data points from S; be
a; = argmin, |la|; s.t. x=Y;a. (3.34)

We also let the optimal solution of the /;-minimization when we restrict the dictionary

to points from all subspaces except S; be?
a_; = argmin, |laly s.t. x=Y_;a. (3.35)

We show that if for every nonzero x in the intersection of S; with @©;..;S;, the ¢;-norm
of the solution of (3.34) is strictly smaller than the ¢;-norm of the solution of (3.35),
ie.,

Vx e SN (®jxuS)),x#0 = |a;|: < |la_i, (3.36)
then the SSC algorithm recovers subspace-sparse representations of all the data points

in S;. More precisely, we show the following result.

Theorem 2 Consider a collection of data points drawn from n disjoint subspaces

{S;}, of dimensions {d;}? ;. Let Y; denote N; data points in S;, where rank(Y’;) =

3Notice that a; and a_; depend on x, Y, and Y _;. Since this dependence is clear from the
context, we drop the arguments in a;(x,Y;) and a_;(x,Y _;).
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d;, and let Y _; denote data points in all subspaces except S;. The ¢;-minimization

c’ c c
= argmin st y=1[Y; Y_ , (3.37)

C C_ C_
1

recovers a subspace-sparse representation of every nonzero y in S;, i.e., ¢* # 0 and

¢’ =0, if and only if (3.36) holds.

Proof. (<=) We prove the result using contradiction. Assume ¢* # 0 and define

x2y-Y,cr=Y_c. (3.38)

Since y lies in §; and Y;c* is a linear combination of points in §;, from the first
equality in (3.38) we have that x is a vector in S;. Let a; be the solution of (3.34)

for x. We have

x=y—-Y,c"=Y,a, = y=Y,(c+a,). (3.39)

On the other hand, since Y _;c* is a linear combination of points in all subspaces
except S;, from the second equality in (3.38) we have that x is a vector in @;4S;.

Let a_; be the solution of (3.35) for x. We have

X = Y_Z‘C*_ =Y_,a_;, = Yy = YiC* +Y_a_;. (340)

Note that the left hand side of (3.40) together with the fact that a_; is the optimal
solution of (3.35) imply that

la—illy <l ]lx- (3.41)
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c*+a; c
From (3.39) and (3.40) we have that and are feasible solutions of

0 a_;
the original optimization program in (3.37). Thus, we have
c"+a,; c’
<lle"ll + llasll < lle"ll + llailly < : (3.42)
0 *

1 1

(e)

where the first inequality follows from the triangle inequality, the second strict in-

equality follows from the sufficient condition in (3.36), and the last inequality follows
T

from (3.41). This contradicts the optimality of [C*T C*T} for the original optimiza-

tion program in (3.37), hence proving the desired result.

(«<=) We prove the result using contradiction. Assume the condition in (3.36) does
not hold, i.e., there exists a nonzero x in the intersection of S; and @;.;S; for which
we have [|a_;||1 < ||la;i]];. As a result, for y = x, a solution of the ¢;-minimization

program (3.37) corresponds to selecting points from all subspaces except S;, which

contradicts the subspace-sparse recovery assumption. n

While the necessary and sufficient condition in (3.36) guarantees a successful
subspace-sparse recovery via the ¢;-minimization program, it does not explicitly show
the relationship between the subspace arrangements and the data distribution for the
success of the ¢;-minimization program. To establish such a relationship, we show
that ||a;||1 < B;, where 3; depends on the singular values of the data points in S,
and f_; < |la_;||;, where 5_; depends on the subspace angles between S; and other
subspaces. Then, the sufficient condition 3; < (_; establishes the relationship be-
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tween the subspace angles and the data distribution under which the ¢;-minimization

recovers subspace sparse representations of the data points in &;, since it implies
lailh < B; < B-i < [la—i]s, (3.43)
i.e., the condition of Theorem 2 holds.

Remark 5 For independent subspaces, the intersection of a subspace with the direct
sum of other subspaces is the origin, hence, the condition in (3.36) always holds.
As a result, from Theorem 2, the {i-minimization always recovers subspace-sparse

representations of data points in independent subspaces.

Theorem 3 Consider a collection of data points drawn from n disjoint subspaces
{S;}, of dimensions {d;}?_,. Let W, be the set of all full-rank submatrices Y; €

RP*di of Y, where rank(Y;) = d;. If the condition

max 04,(Y;) > /d; || Y _i| 0.2 maxcos(6;;) (3.44)

holds, then for every nonzero y in S;, the ¢;-minimization in (3.37) recovers a subspace-

sparse solution, i.e., ¢* # 0 and ¢* = 0.

Proof. We prove the result in two steps. In step 1, we show that ||a;||; < £;. In
step 2, we show that f_; < ||a_;||;. Then, the sufficient condition ; < 5_; establishes

the result of the theorem, since it implies (3.43), i.e., the condition of Theorem 2 holds.

4Recall that |Y _;||c.2 denotes the maximum fy-norm of the columns of Y _;.
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Step 1: upper bound on the ¢;-norm of (3.34). Let W; be the set of all submatrices

Y, € RP*% of Y that are full column rank. We can write the vector x € S;N(®;4S;)
Y)Y, x. (3.45)

Using vector and matrix norm properties, we have

lalls < Vil = ValI(Y, Y)Y, x|l

d.
T NFTE )T ol = Y5 . (3.46)
0di<Yi)

where adi(f/i) denotes the d;-th largest singular value of Y;. Thus, for the solution

of the optimization problem in (3.34), we have

Ix[l2 £ B:, (3.47)

Jauls < min @l < min
Y., eW,; Y.,eW, O_di 1)

which established the upper bound on the ¢/;-norm of the solution of the optimization
program in (3.34).
Step 2: lower bound on the ¢;-norm of (3.35) For the solution of (3.35) we have

x =Y _;a_;. If we multiply both sides of this equation from left by x", we get
"x=x"Y_a_;. (3.48)

|3 =

Applying the Holder’s inequality (|u'v| < ||ul|so||v]]1) to the above equation, we
obtain

I3 < 1Y Lixlloolla—il]s. (3.49)
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By recalling the definition of the smallest principal angle between two subspaces, we

can write

|3 < max cos(03) |[¥ —illoo.2 [Ixll2 la—ill:. (3.50)

where 6,; is the first principal angle between S; and S;. We can rewrite (3.50) as

& 1|2
o < lla-: 3.51
B max;; cos(60;;) ||Y Zillcc2 — a1 (3.51)

which establishes the lower bound on the ¢; norm of the solution of the optimization

program in (3.35). =

Loosely speaking, the sufficient condition in Theorem 3 states that if the smallest
principal angle between each §; and any other subspace is above a certain value
that depends on the data distribution in S;, then the subspace-sparse recovery holds.
Notice that this bound can be rather high when the norms of data points are oddly
distributed, e.g., when the maximum norm of data points in S; is much smaller than
the maximum norm of data points in all other subspaces. Since the segmentation
of data does not change when data points are scaled, we can apply SSC to linear
subspaces after normalizing data points to have unit Euclidean norms. In this case,

the sufficient condition in (3.44) reduces to

max oq,(Y;) > Vd; max cos(6;;). (3.52)
yE=)

Y.,eW,;
Remark 6 The condition in (3.36) is closely related to the nullspace property in the

sparse recovery literature [27, 70, 96, 108]. The key difference, however, is that we
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only require the inequality in (3.36) to hold for the optimal solutions of (3.34) and
(3.35) instead of any feasible solution. Thus, while the inequality can be violated
for many feasible solutions, it can still hold for the optimal solutions, guaranteeing
successful subspace-sparse recovery from Theorem 2. Thus, our result can be thought
of as a generalization of the nullspace property to the multi-subspace setting where the

number of points in each subspace is arbitrary.

3.5.3 (Geometric interpretation

In this section, we provide a geometric interpretation of the subspace-sparse recov-
ery conditions in (3.36) and (3.44). To do so, it is necessary to recall the relationship

between the ¢;-norm of the optimal solution of
min ||al|; s.t. x= Ba, (3.53)

and the symmetrized convex polytope of the columns of B [32]. More precisely, if we
denote the columns of B by b; and define the symmetrized convex hull of the columns
of B by

P £ conv(dby, by, - ), (3.54)

then the ¢;-norm of the optimal solution of (3.53) corresponds to the smallest o« > 0
such that the scaled polytope aP reaches x [32]. Let us denote the symmetrized
convex polytopes of Y; and Y _; by P; and P_;, respectively. Then the condition in

(3.36) has the following geometric interpretation: subspace-sparse recovery in S; holds
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Figure 3.5: Left: for any nonzero x in the intersection of §; and Ss & S3, the polytope
a’P; reaches x for a smaller oo than a/P_1, hence, subspace-sparse recovery holds. Mid-
dle: when the subspace angle decreases, the polytope aP_; reaches x for a smaller «
than aP;. Right: when the distribution of the data in S; becomes nearly degenerate,
in this case close to a line, the polytope a’P_; reaches x for a smaller o than aP;. In
both cases, in the middle and right, the subspace-sparse recovery does not hold for
points at the intersecion.

if and only if for any nonzero x in the intersection of S; and ©;4S;, a'P; reaches x
for a smaller o than oP_;.

As shown in the left plot of Figure 3.5, for x in the intersection of &; and S, @ Ss,
the polytope aP; reaches x for a smaller o than aP_;, hence the subspace-sparse
recovery condition holds. On the other hand, when the principal angles between &;
and other subspaces decrease, as shown in the middle plot of Figure 3.5, the subspace-
sparse recovery condition does not hold since the polytope a’P_; reaches x sooner than
a’P; does. Also, as shown in the right plot of Figure 3.5, when the distribution of the
data in &7 becomes nearly degenerate, in this case close to a 1-dimensional subspace
orthogonal to the direction of x, then the subspace-sparse recovery condition does
not hold since a’P_; reaches x sooner than aP;. Note that the sufficient condition in
(3.44) translates the relationship between the polytopes, mentioned above, explicitly

in terms of relationship between the subspace angles and the singular values of the
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data.

3.6 Graph connectivity

In the previous section, we studied conditions under which the proposed ¢;-
minimization program recovers subspace-sparse representations of data points in a
union of subspaces. As a result, in the similarity graph, the points that lie in differ-
ent subspaces do not get connected to each other. On the other hand, our extensive
experimental results on synthetic and real data show that data points in the same
subspace always form a connected component of the graph, hence, for n subspaces the
similarity graph has n connected components. [83] has theoretically verified the con-
nectivity of points in the same subspace for 2 and 3 dimensional subspaces. However,
it has shown that, for subspaces of dimensions greater than or equal to 4, under odd
distribution of the data, it is possible that points in the same subspace form multiple
components of the graph.

In this section, we consider a regularization term in the sparse optimization pro-
gram that promotes connectivity of points in each subspace.” We use the idea that
if data points in each subspace choose a few common points from the same subspace

in their sparse representations, then they form a single component of the similarity

5 Another approach to deal with the connectivity issue is to analyze the subspaces corresponding
to the components of the graph and merge the components whose associated subspaces have a small
distance from each other, i.e., have a small principal angle. However, the result can be sensitive to
the choice of the dimension of the subspaces to fit to each component as well as the threshold value
on the principal angles to merge the subspaces.
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graph. Thus, we add to the sparse optimization program the regularization term
N
ICllro = D 1(l']l2 > 0), (3.55)
i=1
where I(+) denotes the indicator function and ¢’ denotes the i-th row of C. Hence,
minimizing (3.55) corresponds to minimizing the number of nonzero rows of C' [39,
64,105], i.e., choosing a few common data points in the sparse representation of each
point (see [38,39] for closely related applications of row-sparsity for the problem of

finding exemplars in datasets). Since a minimization problem that involves (3.55) is

in general NP-hard, we consider its convex relaxation as

N
IClra 2l (3.56)
=1

Thus, to increase the connectivity of data points from the same subspace in the

similarity graph, we propose to solve
min ||C||s + A ||C|.1 s.t. Y =YC, diag(C) =0, (3.57)

where A, > 0 sets the trade-off between the sparsity of the solution and the connec-
tivity of the graph. Figure 3.6 shows how adding this regularization term promotes
selecting common points in sparse representations. The following example gives a rea-
son for using the row-sparsity term as a regularizer but not as an objective function

instead of the ¢;-norm.

Example 1 Consider the three 1-dimensional subspaces in R?, shown in Figure 3.7,
where data points have unit Euclidean norms and the angle between Sy and Sy as
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Figure 3.6: Coefficient matrix obtained from the solution of (3.57) for data points in
two subspaces. Left: A\, = 0. Right: A\, = 10. Increasing A, results in concentration
of the nonzero elements in a few rows of the coefficient matrix, hence choosing a few
common data points.

well as 81 and Ss is equal to 6. Note that in this example, the sufficient condition in
(3.44) holds for all values of 0 € (0,%). As a result, the solution of (3.57) with A, =0
recovers a subspace-sparse representation for each data point, which in this example
s uniquely given by Cy shown in Figure 3.7. Hence, the similarity graph has exactly
3 connected components corresponding to the data points in each subspace. Another
feasible solution of (3.57) is given by Csq, shown in Figure 3.7, where the points in
S1 choose points from Sy and Ss in their representations. Hence, the similarity graph

has only one connected component. Note that for a large range of subspace angles

0 € (0,1%) we have

1Callr1 = /16 +2/ cos2(0) < ||C]],. = 6. (3.58)

As a result, for large values of A, i.e., when only the second term of the objective
function in (3.57) is minimized, we cannot recover subspace-sparse representations of
data points. This suggests using the row-sparsity reqularizer with a small value of \,.
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Figure 3.7: Left: three 1-dimensional subspaces in R? with normalized data points.
Middle: C; corresponds to the solution of (3.57) for A\, = 0. The similarity graph
of C has three components corresponding to the three subspaces. Right: C5 corre-
sponds to the solution of (3.57) for A\, — +o0 and 0 € (0, A{—g). The similarity graph
of C5 has only one connected component.

3.7 Experiments with synthetic data

In this section, we consider synthetic data and verify the effect of the subspace
angles and the data distribution on the success of SSC. Moreover, we evaluate the
performance of SSC for dealing with different numbers and classes of subspaces with

different dimensions.

3.7.1 Subspace angle and data distribution effect

In Section 3.5, we showed that the success of the ¢;-minimization for subspace-
sparse recovery depends on the principal angles between subspaces and the distri-
bution of data in each subspace. In this section, we verify this relationship through
experiments on synthetic data.

We consider three disjoint subspaces {S;}3_; of the same dimension d embedded
in the D-dimensional ambient space. To make the problem hard enough so that every

data point in a subspace can also be reconstructed as a linear combination of points in
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other subspaces, we generate subspace bases {U; € RP?*4}3_| such that each subspace
lies in the direct sum of the other two subspaces, i.e., rank( {Ul U, U3:|) =2d. In
addition, we generate the subspaces such that the smallest principal angles 6,5 and
o3 are equal to 6. Thus, we can verify the effect of the smallest principal angle in
the subspace-sparse recovery by changing the value of 6.

To investigate the effect of the data distribution in subspace-sparse recovery, we
generate the same number of data points, Ny, in each subspace at random and change
the value of N,. Typically, as the number of data points in a subspace increases, the
probability of the data being close to a degenerate subspace decreases.’

After generating three d-dimensional subspaces associated to (6, N,), we solve the
¢;-minimization program in (3.4) for each data point and measure two different errors.
First, denoting the sparse representation of y; € Si, by ¢/ £ {CZTI c), Cg} , with ¢;;
corresponding to points in §;, we measure the subspace-sparse recovery error by

3N,

ssterror = —— » (1 — lleirllx

) € [0,1], (3.59)
3Ny = leillx

where each term inside the summation indicates the fraction of the ¢;-norm of ¢; that
comes from points in other subspaces. The error being zero corresponds to y, choosing
points only in its own subspace, while the error being equal to one corresponds to
y, choosing points from other subspaces. Second, after building the similarity graph

using the sparse coefficients and applying spectral clustering, we measure the subspace

6To remove the effect of different scalings of data points, i.e., to consider only the effect of the
principal angle and number of points, we normalize the data points.
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Figure 3.8: Subspace-sparse recovery error (left) and subspace clustering error (right)
for three disjoint subspaces. Increasing the number of points or smallest principal
angle decreases the errors.

clustering error by

# of misclassified points
total # of points

subspace clustering error = (3.60)

In our experiments, we set the dimension of the ambient space to D = 50. We
change the smallest principal angle between subspaces as 6 € [6,60] degrees and
change the number of points in each subspace as N, € [d+1, 32d]. For each pair (6, N,)
we compute the average of the errors in (3.59) and (3.60) over 100 trials (randomly
generated subspaces and data points). The results for d = 4 are shown in Figure 3.8.
Note that when either 6 or N, is small, both the subspace-sparse recovery error and
the clustering error are large, as predicted by our theoretical analysis. On the other
hand, when 6 or N, increases, the errors decrease, and for (¢, N,) sufficiently large
we obtain zero errors. The results also verify that the success of the clustering relies
on the success of the /;-minimization in recovering subspace-sparse representations
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of data points. Note that for small 6 as we increase IV, the subspace-sparse recovery
error is large and slightly decreases, while the clustering error increases. This is due
to the fact that increasing the number of points, the number of undesirable edges
between different subspaces in the similarity graph increases, making the spectral
clustering more difficult. Note also that, for the values of (6, N,;) where the subspace-
sparse recovery error is zero, i.e., points in different subspaces are not connected to
each other in the similarity graph, the clustering error is also zero. This implies that,
in such cases, the similarity graph has exactly three connected components, i.e., data

points in the same subspace form a single component of the graph.

3.7.2 Effect of different numbers, dimensions, and

models of subspaces

In this section, we investigate the effect of the two classes of independent and
disjoint subspace models as well as the effect of the number and the dimensions of
subspaces on different subspace clustering methods. We compare SSC with the best
state-of-the-art subspace clustering algorithms: LSA [118], SCC [22], LRR [76], and
LRSC [46].

For the state-of-the-art algorithms, we use the codes provided by their authors.
Note that the LRR algorithm according to [76], similar to SSC, applies spectral clus-

tering to a similarity graph built directly from the solution of its proposed optimiza-
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tion program. However, the code of the algorithm applies a heuristic post-processing
step, similar to [71], to the low-rank solution prior to building the similarity graph,
as also discussed in [75]. Thus, to compare the effectiveness of sparse versus low-
rank objective function and to investigate the effect of the post-processing step of
LRR, we report the results for both cases of without (LRR) and with (LRR-H) the
post-processing step.

As LSA and SCC need to know the number of subspaces a priori and also esti-
mating the number of subspaces from the eigenspectrum of the graph Laplacian in
the noisy setting is often unreliable, in order to have a fair comparison, we provide
the number of subspaces as an input to all the algorithms.

We generate random bases for independent and disjoint subspaces and randomly
generate data points in each subspaces. We consider subspaces with the same di-
mensions and with different dimensions and also change the number of subspaces.
We denote by d = (dy,--- ,d,) the collection of n subspaces, where subspace i has
dimension d;. We consider noise-free data as well as noisy data, where we add to
each noise-free data point, ¢, in a subspace, a noise vector, z;, orthogonal to the
direction of the subspace such that ||z;|lz < o]|y?||s for a fixed ¢ > 0. For each
fixed (dy, -+ ,d,), a fixed subspace and a noise model (noise-free or noisy model), we
generate n random subspaces in R” and 10 d; random data points in each subspace

S;. We apply different subspace clustering methods and compute the average and

median clustering errors for each algorithm over 100 random trials.
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Table 3.1: Clustering error (%) of different algorithms on synthetic noise-free data for
different dimensions and number of subspaces as well as different subspace models.

’ Algorithms ‘ LSA ‘ SCC ‘ LRR ‘ LRR-H ‘ LRSC ‘ SSC ‘
independent subspaces
d=(3,3,3)
Mean 2.23 | 0.00 | 0.00 0.00 0.00 | 0.00
Median 2.22 | 0.00 | 0.00 0.00 0.00 | 0.00
d=(2,3,5)
Mean 2.17 | 0.81 | 0.10 0.00 0.00 | 0.00
Median 2.00 | 1.00 | 0.00 0.00 0.00 | 0.00
d=(4,4,4,4,4)
Mean 0.63 | 0.00 | 0.00 0.00 0.00 | 0.00
Median 0.50 | 0.00 | 0.00 0.00 0.00 | 0.00
d=1(1,2,3,4,5)
Mean 5.57 | 3.78 | 0.83 0.00 0.17 | 0.00
Median 2.00 | 2.00 | 0.67 | 0.00 0.00 | 0.00
disjoint subspaces
d=(3,3,3)
Mean 9.77 1 0.00 | 15.09 | 7.38 | 11.41 | 0.97
Median 8.89 | 0.00 | 13.33 | 5.56 8.89 | 0.00
d=1(2,3,5)
Mean 5.98 | 0.88 | 7.13 1.21 4.64 |0.11
Median 6.00 | 1.00 | 4.50 0.00 4.00 | 0.00
d=(4,4,4,4,4)
Mean 18.98 | 0.00 | 42.73 | 32.03 | 39.46 | 2.46
Median | 18.50 | 0.00 | 43.00 | 32.50 | 40.50 | 2.00
d=1(1,2,3,4,5)
Mean 5.23 | 6.97 | 27.15| 5.84 | 23.49 | 0.95
Median 4.67 | 4.33 | 28.33 | 4.67 | 24.33 | 0.00

Tables 3.1 and 3.2 show the clustering errors for the noise-free and noisy data
points, respectively, for ¢ = 0.1 and D = 30. From the results, we make the following

conclusions:

— The performance of LRR and LRSC depend on the subspace model. For inde-

pendent subspaces, they obtain very small clustering errors, which is expected since
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Table 3.2: Clustering error (%) of different algorithms on synthetic noisy data for
different dimensions and number of subspaces as well as different subspace models.

’ Algorithms ‘ LSA ‘ SCC ‘ LRR ‘ LRR-H ‘ LRSC ‘ SSC ‘
independent subspaces
d=(3,3,3)
Mean 2.48 | 0.00 | 0.00 0.04 0.00 | 0.00
Median 2.22 | 0.00 | 0.00 0.00 0.00 | 0.00
d=(2,3,5)
Mean 1.76 | 0.21 | 0.36 0.00 0.03 | 0.02
Median 1.00 | 0.00 | 0.00 0.00 0.00 | 0.00
d=(4,4,4,4,4)
Mean 0.70 | 0.00 | 0.00 0.00 0.00 | 0.00
Median 0.50 | 0.00 | 0.00 0.00 0.00 | 0.00
d=(1,2,3,4,5)
Mean 0.85 | 27.86 | 1.45 0.02 0.67 | 0.02
Median 0.67 |29.00 | 0.67 | 0.00 0.00 | 0.00
disjoint subspaces
d=(3,3,3)
Mean 9.92 | 0.00 | 13.79 | 7.76 9.70 |0.81
Median 8.89 | 0.00 | 12.22 | 5.56 7.78 10.00
d=(2,3,5)
Mean 6.69 | 0.28 | 6.15 1.34 3.92 |0.12
Median 5.00 | 0.00 | 4.00 0.00 2.00 | 0.00
d=(3,3,3,3,3)
Mean 19.25| 0.00 | 42.50 | 31.68 | 38.15 | 5.71
Median | 19.50 | 0.00 | 43.25| 31.50 | 38.50 | 3.00
d=(1,2,3,4,5)
Mean 5.51 [30.85]24.35| 5.57 | 21.93 | 3.19
Median 5.31 | 33.67 | 24.67 | 4.00 | 22.00 | 0.67

these algorithms have theoretical guarantees for independent subspaces. On the other
hand, for disjoint subspaces, LRR and LRSC, which work under the low-rank coef-
ficient matrix criterion, obtain large clustering errors, suggesting that they cannot

work well beyond the independent subspace model.

— For independent subspaces, SSC obtains very small clustering errors, which is ex-
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pected since SSC always works under the independent subspace model as we showed
in the theoretical analysis. For disjoint subspaces, the clustering errors of SSC slightly
increase but still are small. This is expected, since for disjoint subspaces, SSC works
under some conditions on the subspace angles and the data distribution, which can

be violated for some data points or subspaces.

— The clustering performance of SCC does not depend on the subspace models, i.e.,
being independent or disjoint. However, it depends on whether subspaces have the
same or different dimensions. More specifically, SCC obtains very low clustering errors
when the subspaces have the same or very close dimensions for both independent and
disjoint subspaces. On the other hand, the clustering error of SCC is large when
the subspaces have very different dimensions. This comes from the fact that SCC
uses the maximum dimension, d,.., of the subspaces to compute the affinity among
dmax + 2 data points. As a result, it is possible that points in different subspaces of
small dimensions obtain a large affinity, i.e., be considered by the algorithm to be

from the same subspace.

— Unlike other algorithms that obtain nearly zero clustering errors for independent
subspaces, LSA obtains larger clustering errors for both independent and disjoint
subspaces. This comes from the fact that LSA computes the affinity between pairs of
points by first fitting a local subspace to each data point and its nearest neighbors.
Since the neighborhood of a data point may contain points from different subspaces,

the locally fitted subspace may not be close to the true underlying subspace at the
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Figure 3.9: Average clustering errors of different subspace clustering algorithms as
a function of the noise level, o, for independent subspace model (left) and disjoint
subspace model (right).

point, hence degrading the performance of the algorithm. Moreover, for disjoint
subspaces, the probability of having points on other subspaces that are close to the
given point increases, hence, increasing the clustering error of LSA.

Figure 3.9 shows the average clustering errors of different algorithms as a function
of the noise level, o, for independent and disjoint subspace models for d = (3,3,3). As
the results show, all algorithms except LSA obtain very low clustering errors for small
and moderate amount of noise for independent subspaces (the performance of SCC
degrades as the for the noise level above o = 0.25). On the other hand, for disjoint
subspaces, only SSC and SCC obtain low clustering errors for small and moderate

amount of noise, while other algorithms obtain large errors for all levels of noise.

87



CHAPTER 3. SPARSE SUBSPACE CLUSTERING

3.7.3 Dealing with incomplete data

We investigate now the performances of different subspace clustering algorithms
in the case of missing entries in the data. We generate n = 5 subspaces of dimensions
d; =i in RP for i € {1,2,...,5}, and generate 10d; random data points in each
subspace S;. We randomly select p percentage of the D entries of the data points as
the missing entries. We then apply subspace clustering algorithms to the data matrix
after removing the rows corresponding to the missing entries, as described in Section
3.3.2, and compute the average clustering errors for each algorithm over 100 random
trials.

Figure 3.10 shows the clustering results of different algorithms for independent
and disjoint subspaces, for D = 30. Notice that for both models, SSC obtains very
low clustering errors when at most 70% of the entries are missing. For independent
subspace model, all methods except SCC obtain low clustering errors when at most
50% of the entries are missing. On the other hand, for disjoint subspaces, the clus-
tering errors of all algorithms except SSC increase, as we also saw in the previous

section for the case of noisy data.

3.7.4 Dealing with sparse outlying entires

Finally, we evaluate the performance of the SSC algorithm for dealing with sparse

outlying entries in the data. We investigate the effect of the subspace model, per-
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Figure 3.10: Average clustering errors of different subspace clustering algorithms as a
function of the percentage of the missing entries in the data, for independent subspace
model (left) and disjoint subspace model (right).

centage of the corrupted data points, percentage of the corrupted entries in the data
points and the magnitude of the corruption terms. We generate n = 3 subspaces
of dimensions d; = 2, dy = 3 and d3 = 5 in R!% and randomly generate 10d; data
points in each subspace §;. We randomly select p; percentage of the N = Z?Zl 10d;
data points as the candidate data points to be corrupted by sparse errors. For each
candidate corrupted data point, we randomly select p, percentage of its entries and
add a random Guassian error of variance o to each selected entry. We change p; and
p2 in {10,20,...,90} and o € {0.1,0.3}.

Figure 3.11 shows the average clustering errors of SSC for independent and disjoint
subspace models over 100 random trials. Notice that, in all cases, SSC obtains very
low clustering error when either the percentage of the corrupted data or the percentage

of the corrupted entries are not large. When both the percentages of the corrupted
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data and corrupted entries increase the clustering error increases, as expected. As
the plots show, when the magnitude of the error, o, increases, the clustering error
increases. More specifically, the maximum clustering error increases from 2.5% to
17.7% for independent subspaces and from 4.6% to 23.3% for disjoint subspaces.
Moreover, as expected, for a fixed o, the clustering error for the case of disjoint

subspace model is higher than the error for the case of independent subspace model.

3.8 Experiments with real