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1. Evaluation Metrics

1.1. Prediction Performance

To compute the mAP score, we compute the Average
Precision of each label as

APc ,
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Precision(k, c) · rel(k, c), (1)

where Nc is the number of images containing label c,
Precision(k, c) is the precision for label c when retrieving
k best predictions and rel(k, c) is the relevance indicator
function that is 1 iff the label c is in the ground-truth of
the image at rank k. The mean average precision (mAP) is
defined as

mAP = 1/|C|
∑
c

APc, (2)

where |C| is the number of labels.
To compute the F1 score at top K predictions, K labels

with highest prediction scores are assigned to each image
and are compared with the ground-truth labels. We compute
precision and recall for each label independently and report
the mean precision and mean recall of all labels as

P ,

∑
cN

t
c∑

cN
p
c
, R ,

∑
cN

t
c∑

cNc
, (3)

where N t
c is the number of true positive for label c and Np

c

is the number of positive predictions for label c. F1 score
is the harmonic mean between mean Precision and mean
Recall and is defined as

F1 =
2PR

P +R
. (4)

In the Open Images dataset, due to the large number of
classes, each image has unannotated labels. For the F1
score, we treat missing labels as being absent and for the
mAP, similar to [1], we evaluate the ranking performance
on the labeled data.

1.2. Localization Performance

To provide a quantitative measurement of the localiza-
tion performance via our attention, we follow [2] to measure
whether each label is correctly predicted by paying maximal
attention on the ground-truth regions of the label. First, we
rescale the attention map to the original size of the image.
If the maximal attention region of the attention module cho-
sen to predict a label in an image falls in the ground-truth
bounding box of the label, we consider the prediction as true
positive, otherwise it is false positive. Finally, we rank all
the predictions of each label according to their confidence
and compute the Average Precision to measure whether true
positive predictions are ranked higher than false positive
predictions. Thus, high Average Precision is achieved when
the model correctly identifies and localizes present labels.

Notice that this measurement considers all predictions in
an image and since only a small fraction of labels is present,
most predictions are false positive, resulting in low Average
Precision for all methods as reported in the main paper.

2. More Experimental Results
2.1. Multi-Label Learning

In this section, we evaluate the performance of our
method for the conventional multi-label learning setting,
where all labels have training images, yet the number of
samples could be very small or large for different labels.

Baselines: For multi-label learning, we compare with Lo-
gistic Regression, WSABIE [3] and WARP [4] (linear em-
bedding methods), Fast0Tag [5] (non-linear embedding),
CNN-RNN [6] and One Attention per Label using Bilinear
Attention Network [7].

Setting: For NUS-WIDE, we train and test all methods on
the set of 81 labels which is annotated by human. Moreover,
we follow [6] to remove all test samples without any label in
the 81 label set. For Open Images, we train and test on 7,186
seen labels. We set (λdiv, λrel, λdist) to (1e−2, 1e−3, 1e0)
for NUS-WIDE and (1e−2, 1e−3, 1e−1) for Open Images.

Results: Table 1 shows the F1 score at K ∈ {3, 5} of 81
‘ground-truth’ labels on NUS-WIDE [9], and the F1 score
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Method
NUS-WIDE multi-label learning Open Images multi-label learning

K = 3 K = 5 mAP K = 10 K = 20 mAPP R F1 P R F1 P R F1 P R F1
Logistic [8] 46.1 57.3 51.1 34.2 70.8 46.1 21.6 12.2 14.7 13.3 8.4 20.2 11.8 49.4
WARP [4] 49.1 61.0 54.4 36.6 75.9 49.4 3.1 7.1 8.5 7.7 5.3 12.6 7.4 46.0

WSABIE [3] 48.5 60.4 53.8 36.5 75.6 49.2 3.1 1.5 3.7 2.2 1.5 3.7 2.2 47.2
Fast0Tag [5] 48.6 60.4 53.8 36.0 74.6 48.6 22.4 14.9 17.9 16.2 9.3 22.3 13.1 45.4

CNN-RNN [6] 49.9 61.7 55.2 37.7 78.1 50.8 28.3 8.7 10.5 9.6 5.4 13.1 10.5 41.0
One Attention per Label [7] 51.3 63.7 56.8 38.0 78.8 51.3 32.6 - - - - - - -

One Attention per Cluster (M = 10) 51.1 63.5 56.6 37.6 77.9 50.7 31.7 14.9 17.9 16.3 9.2 22.0 13.0 45.1
LESA (M = 1) 51.4 63.9 57.0 37.9 78.6 51.2 29.6 15.3 18.4 16.7 9.6 23.2 13.6 45.5

LESA (M = 10) 52.3 65.1 58.0 38.6 80.0 52.0 31.5 16.2 19.6 17.8 10.3 24.7 14.5 45.6

Table 1: Performance of Multi-label learning methods on NUS-WIDE and Open Images datasets.

at K ∈ {10, 20} for 7,186 labels on Open Images as well
as mAP scores on both datasets. Notice that our method
performs on par or better than the state of the art in F1
score across all datasets. We achieve significant improve-
ment with respect to Fast0Tag by 4.2% F1 score at 3 on
NUS-WIDE and by 1.6% F1 score at 10 on Open Images.
Notice that since Open Images contains a large number of
labels, 1.6% translates into 11, 497% 1 cumulative improve-
ment over all labels.

For the mAP score, our method gains 9.1% improvement
with respect to Fat0Tag on NUS-WIDE. Our method ob-
tains the best F1 score on the NUS-WIDE, and increases
the F1 score at 3 by 1.2% with respect to One Attention
per Label. However, One Attention per Label achieves the
best mAP score performance on NUS-WIDE. This agrees
with our observation in the main paper that One Attention
per Label performs well when training and testing on seen
classes but not in the zero-shot setting in the main paper.
Moreover, One Attention per Label cannot scale to thou-
sands of labels in Open Images, due to its large memory
requirement. We also observe that the recurrent structure of
CNN-RNN has difficulty of capturing correlation between
thousands of labels in the Open Images compared to 81 la-
bels in NUS-WIDE. Therefore, it has lower F1 scores than
the Logistic baseline.

Notice that all methods except Logistic Regression learn
a joint embedding matrix W 3 whose rank restricts the set
of possible prediction outputs {sci}c∈C . On Open Images,
the number of labels C is much larger than the dimension of
W 3, thus methods based on joint embedding cannot fit data
well for the retrieval task. Without this bottleneck, Logistic
achieves a high mAP score, yet lower F1 score than ours.

2.2. Multi-Label Zero-Shot Learning

In Table 1 of the main paper, on NUS-WIDE, all methods
do better on multi-label zero-shot learning than multi-label
generalized zero-shot learning, while on Open Images, the
trend is the opposite. We observe on Open Images, the set of

1The mean improvement is multiplied by the total number of labels to
get the cumulative improvement.

Methods Training Inference Memory
(hours) (sec/img) (MB)

LESA (M = 1) 2.5 0.002 4150
LESA (M = 10) 2.6 0.002 4395

One Attention per Label 4.7 0.004 18776
CNN-RNN 7.1 0.009 2627

Table 2: Comparison of performance, running time and memory
complexity between methods for MLL on NUS-WIDE.

seen labels has a significantly large number of positive sam-
ples which improve the chance of true positive prediction.
On the other hand, labels in the seen set of NUS-WIDE are
noisy and sparse, thus decrease the performance.

3. Complexity

Table 2 shows the running time and memory complexity
of different methods on the NUS-WIDE dataset. We ob-
serve that our method with M = 10 shared attention mod-
ules has a very similar training and inference time as well
as memory complexity compared to using a single attention,
and has much better training time and memory complexity
compared to One Attention per Label and CNN-RNN. As
expected, One Attention per Label has the largest memory
requirement, impeding it to be used for classification of a
large number of labels. On the other hand, CNN-RNN has
significantly larger training time since its sequential struc-
ture prevents the training to be parallelized.
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