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Abstract
We address the problem of high-rank matrix completion
with side information. In contrast to existing work dealing
with side information, which assume that the data matrix is
low-rank, we consider the more general scenario where the
columns of the data matrix are drawn from a union of low-
dimensional subspaces, which can lead to a high rank matrix.
Our goal is to complete the matrix while taking advantage
of the side information. To do so, we use the self-expressive
property of the data, searching for a sparse representation
of each column of matrix as a combination of a few other
columns. More specifically, we propose a factorization of
the data matrix as the product of side information matrices
with an unknown interaction matrix, under which each col-
umn of the data matrix can be reconstructed using a sparse
combination of other columns. As our proposed optimiza-
tion, searching for missing entries and sparse coefficients, is
non-convex and NP-hard, we propose a lifting framework,
where we couple sparse coefficients and missing values and
define an equivalent optimization that is amenable to con-
vex relaxation. We also propose a fast implementation of our
convex framework using a Linearized Alternating Direction
Method. By extensive experiments on both synthetic and real
data, and, in particular, by studying the problem of multi-label
learning, we demonstrate that our method outperforms exist-
ing techniques in both low-rank and high-rank data regimes.

Introduction
Matrix completion, which is the problem of estimating miss-
ing entries of an incomplete matrix, is a fundamental task
in machine learning with numerous applications, including,
collaborative filtering for recommender systems (Rennie and
Srebro 2005; Sindhwani et al. 2010), multi-label learning
(Natarajan and Dhillon 2014; Xu, Jin, and Zhou 2013; Ar-
gyriou, Evgeniou, and Pontil 2008), semi-supervised clus-
tering (Chiang et al. 2014) and global positioning (Singer
and Cucuringu 2010; Singer 2008; Biswas et al. 2006).
Existing algorithms that deal with missing entries in data
can be divided into two main categories. The first group
of algorithms, such as Probabilistic PCA (PPCA) (Tip-
ping and Bishop 1999b), Factor Analysis (FA) (Knott and
Bartholomew 1999) and Convex Low-Rank Matrix Comple-
tion (Candes and Recht 2009; Keshavan, Montanari, and Oh
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2010; Chen et al. 2011; Chiang, Hsieh, and Dhillon 2015),
assumes that data lie in a single low-dimensional subspace
and try to recover a completion of the data that has a mini-
mum or a small fixed rank. The second group of algorithms,
including Mixture of Probabilistic PCA (MPPCA) (Tipping
and Bishop 1999a; Gruber and Weiss 2004), Mixture of
Factor Analyzers (MFA) (Ghahramani, Hinton, and others
1996), K-GROUSE (Balzano et al. 2012), SSC-Lifting (El-
hamifar 2016) and (Eriksson, Balzano, and Nowak 2012),
addresses the more general and challenging scenario where
data lie in a union of low-dimensional subspaces. The goals
in this case are to recover missing entries and cluster data
according to subspaces. The union of subspaces models
many real-world problems, including motion and activity
segmentation in videos, recommender systems and multi-
label learning, where there exists multiple groups in data
corresponding to different classes or categories, where each
group is modeled by a single subspace. Since the union of
low-dimensional subspaces is often high/full-rank, methods
in the first category are not effective for data completion.
Matrix Completion with Side Information. In many real-
world problems, we have access to additional information
about the entries of the data matrix, referred to as side in-
formation, which can guide the matrix completion in order
to obtain more accurate solutions (Adams, Dahl, and Mur-
ray 2010; Agarwal and Chen 2009; Menon et al. 2011a;
Porteous, Asuncion, and Welling 2010). For example, in
the classical Netflix problem, which aims to predict the un-
observed entries of a users-movies rating matrix, besides
the rating history, we have access to information/features
of users, such as age, gender, etc., as well as informa-
tion/features of movies, such as suspense, science fiction,
etc. Also, in the multi-label learning problem, whose goal
is to find all relevant labels to each sample, in addition to
the incomplete observed labels, the features describing in-
stances are often given at the same time. Indeed, such side
information can be leveraged in matrix completion for bet-
ter recovery performance, especially, when very few matrix
entries are observed.

Despite its significance, the problem of matrix completion
with side information has only been recently studied, where
all existing techniques have addressed the problem when the
data matrix is low-rank (Goldberg et al. 2010; Menon et al.
2011b; Natarajan and Dhillon 2014; Jain and Dhillon 2013;



Xu, Jin, and Zhou 2013; Chiang, Hsieh, and Dhillon 2015;
Lu et al. 2016; Chiang, Hsieh, and Dhillon 2016; Liu and
Li 2016). The methods in (Menon et al. 2011b; Natara-
jan and Dhillon 2014) cast the problem as finding a fac-
torization of data matrix as the inner product of side infor-
mation features with the product of two unknown matrices
that must be recovered simultaneously, and employ a non-
convex algorithm to recover the unknowns. Although exper-
imental results have shown favorable results, the proposed
methods rely on non-convex programming and depend on
good initialization. The methods in (Jain and Dhillon 2013;
Xu, Jin, and Zhou 2013) use side information feature matri-
ces, Fc and Fr, for the rows and columns of the data matrix,
Y , in a so called Inductive Matrix Completion (IMC) frame-
work. More specifically, assuming that all columns and rows
of the data matrix lie in spaces spanned, respectively, by
the column vectors in Fc and Fr, (Jain and Dhillon 2013;
Xu, Jin, and Zhou 2013) consider a factorization of Y as
Y = FrQF

>
c for an unknown low-rank inductive matrix Q

and try to complete the data by finding Q. While (Jain and
Dhillon 2013) uses a low-rank matrix factorization, (Xu, Jin,
and Zhou 2013) proposes a method, referred to as Maxide,
that directly minimizes the rank of Q based on a singular
value thresholding algorithm. The work in (Chiang, Hsieh,
and Dhillon 2015) considers an extension of the IMC frame-
work, referred to as DirtyIMC, to addresses the problem of
matrix completion with noisy side information. More specif-
ically, it considers the model Y = FrQF

>
c +R, where the

residual matrix R is used to capture the component of the
data that the side information cannot describe, and requires
both Q and R to be low-rank, hence assuming a low-rank
data matrix, Y . The work in (Lu et al. 2016) considers a
modification of IMC by assuming that the inductive matrix
Q is sparse, instead of low-rank, to deal with the situation
that Q in not necessarily low-rank. Hence, it minimizes the
rank of Y while minimizing the sparsity of Q. We refer to
this method as Sparse Interactive Model (SIM) in our paper.

It is important to note that all the above work, which ad-
dress the problem of matrix completion with side informa-
tion, consider the setting where the data matrix is low-rank.
On the other hand, as discussed earlier, in many real-world
problems, the data matrix columns or rows lie in a union of
low-dimensional subspaces which leads to a high-rank data
matrix. As a result, existing techniques will not be effective,
as we will demonstrate in our experiments.

Paper Contributions. In this paper, we address the chal-
lenging and general problem of high-rank matrix comple-
tion with side information. Building on (Elhamifar and Vi-
dal 2013; 2009), we assume that each column of the data
matrix can be efficiently represented as a sparse combina-
tion of a few other columns, which holds for both a sin-
gle subspace as well as a union of subspaces. We cast the
problem as recovering the missing entries and sparse rep-
resentation coefficients, while taking advantage of the side
information to complete the data matrix. More specifically,
we propose a factorization of the data into a product of side
information matrices with an unknown interaction matrix,
under which each column of the data matrix can be recon-

structed using a sparse combination of its other columns.
As our proposed formulation is non-convex and NP-hard,
building on (Elhamifar 2016), we propose a lifting frame-
work, where we couple sparse coefficients and missing val-
ues and define an equivalent optimization that is amenable
to convex relaxation. We derive a convex optimization and
propose an efficient implementation of our framework using
a Linearized Alternating Direction Method (LADM) (Yang
and Yuan 2013), which is significantly faster than standard
alternating direction methods, hence, allowing to efficiently
deal with large data and high percentage of missing entries.
Finally, by extensive experiments on synthetic and real data,
in particular, by studying the problem of multi-label learn-
ing, we demonstrate that our method outperforms existing
techniques in both low-rank and high-rank data regimes.

High-Rank Matrix Completion with Side
Information

In this section, we propose a method to address the problem
of high-rank matrix completion with side information. As-
sume that we are given a data matrix Y 2 Rn⇥N , which
is partially observed, where ⌦ and ⌦

c denote, respectively,
the set of indices of observed and missing entries of Y . As-
sume that every row and column of Y is associated with
an observed feature vector, providing side information. Let
Fr 2 Rn⇥kr and Fc 2 RN⇥kc denote side information
matrices of feature vectors associated, respectively, with the
rows and columns of Y . We refer to Fr and Fc as row and
column space side information matrices, as they provide ad-
ditional information about the relationships between entries
of the data matrix, which we will use for data completion.

In this paper, we consider a general high/full rank model
for Y by assuming that the columns (or similarly rows) of Y
lie in a union of low-dimensional subspaces. Our goal is to
find missing entries of Y , while taking advantage of the side
information and respecting the underlying model of the data
matrix. While the problem of matrix completion with side
information has been studied before (Goldberg et al. 2010;
Menon et al. 2011b; Natarajan and Dhillon 2014; Jain and
Dhillon 2013; Xu, Jin, and Zhou 2013; Chiang, Hsieh, and
Dhillon 2015; Lu et al. 2016; Chiang, Hsieh, and Dhillon
2016; Liu and Li 2016), all existing research has focused
on the case where the data matrix is low-rank. On the other
hand, in this paper, we study and address the more challeng-
ing problem of high-rank matrix completion with side infor-
mation, which covers the low-rank setting as a special case.

To tackle the problem, similar to all conventional meth-
ods (Natarajan and Dhillon 2014; Jain and Dhillon 2013;
Xu, Jin, and Zhou 2013; Chiang, Hsieh, and Dhillon 2015;
Lu et al. 2016; Chiang, Hsieh, and Dhillon 2016; Liu and
Li 2016), we assume that the columns and rows of Y lie in
spaces spanned by the columns of Fr and Fc, respectively.
Thus, we can write Y = FrQF

>
c , where Q 2 Rkr⇥kc is

a unknown interaction matrix. Let ¯

Y 2 Rn⇥N denote the
zero-filled data matrix, where the missing entries are filled
with zeros. Our goal is to find the complete matrix Y , so
that it can be decomposed as Y = FrQF

>
c and the en-

tries of Y indexed by ⌦ coincide with the entries of ¯

Y ,



i.e., R⌦(Y ) = R⌦(
¯

Y ). The function R⌦(Y ) returns a ma-
trix whose (i, j)-th entry is Yi,j when (i, j) 2 ⌦ and is 0
otherwise. When the number of observed entries is small,
in particular when |⌦| < krkc, without priors on Q and
Y the problem has infinitely many solutions for unknown
variables. Thus, in addition to utilizing side information, we
need to impose appropriate priors on the unknown parame-
ters and use the underlying structure of the data in order to
perform data completion.

To take advantage of the fact that the columns of the
data matrix Y lie in a union of subspaces, we use the
Self-Expressive Model (SEM) (Elhamifar and Vidal 2013;
Elhamifar 2016), which states that each column of the data
matrix can be written as a sparse representation of the other
columns, hence, Y = Y C, where C 2 RN⇥N denotes the
self-representation coefficient matrix. In addition, we need
to impose diag(C) = 0 to remove the trivial solution of
writing each point as a combination of itself. Notice that the
SEM covers both a single and a union of low-dimensional
subspaces, since in each subspace of dimension d, every
point can be written as a combination of only d other points,
in general positions, from the same subspace. Thus, to solve
the problem of high-rank matrix completion with side infor-
mation, we propose to solve

min

C,Q,Y

1

2

h(Q) + �kCk0

s. t. Y = FrQF

>
c , Y = Y C, diag(C) = 0,

R⌦(Y ) = R⌦(
¯

Y ),

(1)

where kCk0 indicates the `0-norm of C, counting the num-
ber of non-zero elements, and h(·) is an appropriate prior on
the interaction matrix Q, which will be discussed shortly.
Notice that the optimization in (1) is NP-hard and non-
convex, due to the product of unknown matrices Y and C

as well as the sparsity regularization on C. To tackle the
problem, building on (Elhamifar 2016), we propose a lifting
scheme, where we define new optimization variables, cor-
responding to the product of unknown coefficients and the
missing values, and pose the problem as an optimization on
the new variables that, together with appropriate constraints,
will lead to an equivalent optimization to (1).

Lifting-Based Formulation
In this part, we develop an equivalent optimization for our
formulation in (1) and propose an efficient convex relax-
ation. We denote by yi, ¯yi 2 Rn the i-th column of Y and
¯

Y , respectively. We also denote by ⌦i,⌦c
i ✓ {1, . . . , n} the

set of, respectively, observed and missing entries of the i-th
column of Y . Denoting by U⌦c

i
2 Rn⇥|⌦c

i | a matrix formed
by taking the columns of the identity matrix indexed by ⌦

c
j ,

we can write

yi = ¯

yi +U⌦c
i
xi =

⇥
¯

yi U⌦c
i

⇤ 
1

xi

�
, (2)

where xi 2 R|⌦c
i | denotes the vector of missing values of

the i-th column of the data matrix. Denoting the element
(i, j) of C by ci,j , using equation (2), we can rewrite the

self-expressiveness model, yj =
PN

i=1 ci,jyi, as

yj=

NX

i=1

ci,j
⇥
¯

yi U⌦c
i

⇤
1

xi

�
=

NX

i=1

⇥
¯

yi U⌦c
i

⇤ ci,j
ci,jxi

�
. (3)

Given the fact that yj is the j-th column of Y , using the
above, we can write

Y =

NX

i=1

⇥
¯

yi U⌦c
i

⇤  ci,1 · · · ci,N
ci,1xi · · · ci,Nxi

�
= DA, (4)

where the dictionary D is a given and known matrix and
is defined, using the zero-filled data and the columns of the
identity matrix indexed by missing entries of points, as

D =

⇥
¯

y1 U⌦c
1
| · · · | ¯yN U⌦c

N

⇤
, (5)

while the matrix A, which consists of missing entries and
self-representation coefficients, is unknown and defined as

A =

⇥
A

>
1 · · · A

>
N

⇤>
, Ai =


ci,1 · · · ci,N
ci,1xi · · · ci,Nxi

�
. (6)

It is important to notice that each Ai is a rank-1 matrix, since
we can write it is as the outer product of vectors

⇥
1 x

>
i

⇤>

and [

ci,1 · · · ci,N ]. This helps us to pave the way for an
equivalent optimization to (1) that is amenable to convex re-
laxation. More specifically, if we define each Ai as

Ai =


ci,1 · · · ci,N
↵i,1 · · · ↵i,N

�
, (7)

and impose that rank of Ai be one, we obtain ↵i,j = ci,jxi.
As a result, we can write our proposed optimization in (1) as
the equivalent optimization program

min

A,Q,Y

1

2

h(Q) + �kA(c)k0

s. t. Y = FrQF

>
c , Y = DA, diag(A

(c)
) = 0,

rk(Ai) = 1, 8i, R⌦(Y ) = R⌦(
¯

Y ).

(8)

Here, A(c) denotes a submatrix of A, whose i-th row cor-
responds to the first row of Ai, i.e., A(c)

= C. Notice that
we have transferred the non-convexity of the product of un-
known coefficients and missing entries in (1) to a set of rank-
1 constraints on the new optimization variables. As we show
next, our new formulation in (8) allows to explore efficient
methods based on convex relaxation to solve the problem.

Convex Relaxation and Extensions
To obtain a convex optimization, first we use the convex sur-
rogate of the `0-norm, and minimize the `1-norm kA(c)k1.
In the paper, we select the prior on Q to be h(Q) =

1/2kQk2F . Also, we use the nuclear norm relaxation of the
rank constraints, i.e., we use kAik⇤  ⌘, for ⌘ > 0, where
the nuclear norm kAik⇤ is defined as the sum of the singular
values of Ai. To reduce the number of constraints, we bring
the nuclear norm constraints to the objective function via a
regularization parameter ⇢ > 0 and propose to solve

min

A,Q,Y

1

2

kQk2F + �kA(c)k1 + ⇢
NX

i=1

kAik⇤

s. t. Y = FrQF

>
c , Y = DA, diag(A

(c)
) = 0,

R⌦(Y ) = R⌦(
¯

Y ).

(9)



Notice that the above optimization is convex, which can be
solved efficiently using convex programming techniques.

In real-world problems, however, observed data entries
are corrupted by noise (Soltanolkotabi, Elhamifar, and Can-
des 2014). In other words, we have R⌦(

¯

Y ) = R⌦(Y +E1),
for an error matrix E1. Moreover, since error-free data may
not necessarily lie perfectly on subspaces, we should ac-
count for deviations from the SEM model, i.e., ¯Y = Y +E2,
for an error matrix E2. We assume that the energy of the
noise terms are bounded, i.e., kE1k2F  ⇣1 and kE2k2F  ⇣2
for ⇣1 > 0 and ⇣2 > 0. Thus, using the Lagrange multipliers,
we propose to solve

min

A,Q,Y

1

2

kQk2F + �kA(c)k1 + ⇢
NX

i=1

kAik⇤

+

µ1

2

kR⌦(Y � ¯

Y )k2F +

µ2

2

kY �DAk2F

s. t. Y = FrQF

>
c , diag(A

(c)
) = 0

(10)

where µ1, µ2 > 0 are positive regularization parameters.
Next, we develop an efficient algorithm to solve our pro-
posed optimization in (10).

Linearized ADM Algorithm
In this section, we develop a Linearized Alternating Direc-
tion Method (LADM) (Yang and Yuan 2013) to efficiently
solve (10). To do so, we introduce two auxiliary matrices Z
and V , which we enforce to be equal to A, and define the
notations of submatrices Vi and Z

(c) similar to (7) and (8),
respectively. We consider the following optimization,

min

A,Z,V ,Q,Y

1

2

kQk2F + �kZ(c)k1 + ⇢
nX

i=1

kVik⇤

+

µ1

2

kR⌦(Y � ¯

Y )k2F +

µ2

2

kY �DAk2F

s. t. Y = FrQF

>
c , diag(Z(c)

) = 0, A = Z, A = V .
(11)

which is equivalent to (10). To solve the above optimiza-
tion via the LADM approach, we first form the augment La-
grangian function of (11), which is

L(Q,Y ,A,Z,V ) =

+

1

2

kQk2F + �kZ(c)k1 + ⇢
nX

i=1

||Vi||⇤

+

µ1

2

kR⌦(Y � ¯

Y )k2F +

µ2

2

kY �DAk2F

+ h�1,FrQF

>
c � Y i+ h�2,Z �Ai

+ h�3,V �Ai+ �

2

kFrQF

>
c � Y k2F

+

�

2

kZ �Ak2F +

�

2

kV �Ak2F ,

(12)

where �1, �2 and �3 are Lagrange multiplier matrices as-
sociated with the constraints of (11), and � > 0 is the aug-
mented Lagrangian penalty parameter.

In an ADM framework, we take an iterative approach,
where starting from initialization of optimization matrices,
we fix all unknown matrices except one, solve for the un-
known matrix, and repeat this procedure for every optimiza-
tion matrix. It is straightforward to verify that the updates of
A and Q depends on the updates of Y , Z and V and vice
versa. To derive the updates, we perform the following.
– At iteration k + 1, minimizing L with respect to A, while
fixing other matrices, leads to

A

k+1
= (µ2D

>
D + 2�I)�1

(µ2D
>
Y

k

+�Zk
+ �V k

+ �k
2 + �k

3),
(13)

where I is identity matrix. Indeed, as long as the number
of points and the percentage of missing entries is small, we
use the above formulation. However, when the number of
points and/or the percentage of missing entries increases, the
size of D>

D will be large and computation of the inverse,
which is cubic in the size of the matrix, will be computa-
tionally prohibitive. Thus, we propose to solve A using the
Linearized ADM technique, which also enjoys convergence
to optimal solution (Yang and Yuan 2013). To do so, we ap-
proximate the term involving A with its linearized form as

1

2

kDA�Y

kk2F ⇡ 1

2⌧1
kA�(A

k�⌧1D
>
(DA

k�Y

k
)k2F ,

where ⌧1 > 0 is the proximal parameter. Hence, we can
compute the solution of A as

A

k+1
=

⌧1
2�⌧1 + µ2

⇣µ2

⌧1
A

k � µ2D
>
(DA

k � Y

k
)

+ �(Zk
+ V

k
) + �k

2 + �k
3

⌘
.

(14)

– To solve for Q, while fixing other unknowns, we need to
minimize the Lagrangian with respect to the terms involving
Q, i.e., need to solve the following subproblem

min

Q

1

2

kQk2F +

�

2

kFrQF

>
c � Y

k
+

�k
1

�
k2F . (15)

While we can solve for Q in closed-form, the solution re-
quires to compute the inverse of (Fr⌦Fc)

>
(Fr⌦Fc), where

⌦ denotes the the kronecker product. Since this computation
is expensive, we use a linearization of (15) and solve the fol-
lowing subproblem

min

Q

1

2

kQk2F +

�

2⌧2
kQ� (Q

k � ⌧2g
k
)k2F , (16)

where ⌧2 > 0 is a proximal parameter, and g

k is the gradient
of 1

2kFrQF

>
c � Y

k
+

�k
1
� k2F at Qk, which is given by

g

k
= F

>
r FrQ

k
F

>
c Fc � F

>
r (Y

k � �k
1

�
)Fc. (17)

As a result, solving (16), we obtain the following closed-
form solution for Qk+1,

Q

k+1
=

⌧2
� + ⌧2

(Q

k � ⌧2g
k
). (18)



Algorithm 1
Input: Incomplete data matrix ¯

Y , side information matri-
ces Fr, Fc and set of indices of observed entries ⌦.

Output: Y ,A,Q.
1: Set k = 0. Initialize matrices Q0, Y 0, A0, Z0, V 0, �0

1,
�0
2,�

0
3 as zero matrices.

2: Update A

k+1 using the equation (13) or (14).
3: Update Q

k+1 using the equations (18).
4: Update Y

k+1 using the equation (19).
5: Update Z

k+1 using (20) and (21).
6: Update V

k+1 using (20) and (21).
7: Update the multipliers �k+1

1 ,�k+1
2 ,�k+1

3 using (22).
8: Set k = k + 1. While not converged, go to step 2.
9: return Y ,A,Q.

– To solve for Y , we minimize the Lagrangian with respect
to Y while fixing other optimization matrices. The solution
of the corresponding least square problem leads to

Y

k+1
ij =

8
<

:

h
µ1Y

k+µ2DAk+�FrQ
kF>

c +�k
1

µ1+µ2+�

i

ij
, (i, j) 2 ⌦,

h
µ2DAk+�FrQ

kF>
c +�k

1
µ2+�

i

ij
, (i, j) 62 ⌦.

(19)
– At iteration k + 1, minimizing the augmented Lagrangian
with respect to Z, while fixing other matrices, leads to the
soft thresholding operation,

Z

(c),k+1
= max

✓���Ak � �k
2

�

����
�

�
, 0

◆
� sign(A

k � �k
2

�
),

(20)
for the entires of Z(c), where � denotes the Hadamard prod-
uct. On the other hand, the solution for other entries of Z is
given by

Z

k+1
= A

k � �k
2

�
(21)

– At iteration k + 1, minimizing the augmented Lagrangian
with respect to V , while fixing other matrices, leads to

V

k+1
i = svt(A

k
i �

⇥
�k
3

⇤
i

�
,
⇢

�
), 8i, (22)

where svt(M , t) is the singular value thresholding opera-
tion (Cai, Candès, and Shen 2010).
– Finally we update the Lagrange multiplier matrices
�1,�2,�3 by a coordinate ascent method,

�k+1
1 = �k

1 + �
�
FrQ

k+1
F

>
c � Y

k+1
�
,

�k+1
2 = �k

2 + �
�
Z

k+1 �A

k+1
�
,

�k+1
3 = �k

3 + �
�
V

k+1 �A

k+1
�
.

(23)

Algorithm 1 shows the steps of our framework.

Experiments
In this section, we evaluate the performance of our proposed
algorithm for high-rank matrix completion against the ex-
isting methods on both synthetic and real data and in both

low-rank and high-rank settings. We compare our method
with Maxide (Xu, Jin, and Zhou 2013), IMC (Natarajan and
Dhillon 2014), dirtyIMC (Chiang, Hsieh, and Dhillon 2015)
and SIM (Lu et al. 2016).1 All the methods address the prob-
lem of low-rank matrix completion with side information. In
contrast, our framework addresses the more challenging and
general problem of high-rank matrix completion with side
information. Given a ground-truth data matrix, Y ⇤, we drop
the values of � fraction of the entries uniformly at random
and change � from 0.1 to 0.9. Given the recovered completed
data, Y , we compute the relative matrix completion error as

RE = kY � Y

⇤kF /kY ⇤kF . (24)

In the experiments, for our proposed method, we set � =

10, ⇢ = 2 ⇥ 10

2, µ1 = µ2 = 10

5, � = 10

2, ⌧1 = 10

�5,
⌧2 = 10

�2 . Experimentally, we observed robust perfor-
mance with respect to the change of these parameters.

Synthetic Experiments
We first evaluate different methods on synthetic low-rank
and high-rank data. We let kr = kc = k and generate F

>
c

so that the columns lie in a union of L low-dimensional sub-
spaces, where the dimension of each subspace is d. To do
so, we generate L random d-dimensional bases in Rk and
generate Ng random data points in each subspace, form-
ing matrices {Bi 2 Rk⇥Ng}Li=1. We then form F

>
c =

[

B1 · · · BL] 2 Rk⇥LNg . We also draw Fr 2 Rn⇥k and
Q 2 Rk⇥k from a standard Normal distribution. We set
Y

⇤
= 100 ⇥ FrQF

>
c + E, where the entries of the noise

matrix E are drawn from the standard normal distribution.
Since F

>
c has a union of low-rank structure, the columns

of Y

⇤ also lie in a union of low-rank subspaces. We set
n = 100 for all the synthetic experiments. For the low-
rank regime, we set L = 3, d = 4, k = 12, Ng = 30,
hence, L ⇥ d = 12 ⌧ n = 100. For high-rank regime,
we set L = 10, d = 10, r = 100, Ng = 50, hence,
L⇥ d = n = 100, i.e., a full-rank data matrix.

Table 1 shows the average relative matrix completion er-
rors of different methods over 10 random trials. Notice that
in both low-rank and high-rank regimes, our method out-
performs existing methods across all fractions of missing
entries �. More specifically, the errors of IMC and SIM
are higher than other methods as they rely on the low-rank
assumption on the data matrix. Our proposed method and
Maxide obtain smaller errors for all �, while our method
achieves better performance, due to being able to deal with
the more general setting of the high-rank data. The perfor-
mance of DirtyIMC significantly degrades when � � 0.7 for
the low-rank and � � 0.2 for the high-rank regime. Notice
also that the results of all methods degrade in the high-rank
case compared to the low-rank regime. However, the perfor-
mance of our method is less affected, thanks to its ability to
handle high-rank data matrices.

Figure 1 shows the recovered sparse coefficient matri-
ces C, recovered by our method, for synthetic low-rank
(with three subspaces) and high-rank (with ten subspaces)

1For Maxide, IMC and SIM, we used the publically available
codes. We implemented dirtyIMC, since the code was not available.



Table 1: Relative completion errors for low-rank and high-rank data matrices.
� SIM dirtyIMC IMC Maxide Proposed

0.1 4.01⇥ 10

�2
2.39⇥ 10

�4
1.09⇥ 10

�1
3.23⇥ 10

�4 6.16⇥ 10�5

0.2 6.69⇥ 10

�2
2.61⇥ 10

�4
2.07⇥ 10

�1
6.57⇥ 10

�4 6.47⇥ 10�5

0.3 9.76⇥ 10

�2
2.94⇥ 10

�4
3.08⇥ 10

�1
2.54⇥ 10

�4 7.12⇥ 10�5

0.4 1.33⇥ 10

�1
3.38⇥ 10

�4
4.03⇥ 10

�1
2.86⇥ 10

�4 7.63⇥ 10�5

Low-Rank 0.5 1.88⇥ 10

�1
4.29⇥ 10

�4
5.06⇥ 10

�1
4.83⇥ 10

�4 8.34⇥ 10�5

0.6 2.80⇥ 10

�1
7.17⇥ 10

�4
6.03⇥ 10

�1
1.15⇥ 10

�4 9.31⇥ 10�5

0.7 5.32⇥ 10

�1
1.87⇥ 10

�2
7.03⇥ 10

�1
7.58⇥ 10

�4 1.08⇥ 10�4

0.8 1.17⇥ 10

0
5.23⇥ 10

�1
8.04⇥ 10

�1
3.32⇥ 10

�4 1.36⇥ 10�4

0.9 2.64⇥ 10

0
5.55⇥ 10

�1
9.03⇥ 10

�1
7.45⇥ 10

�4 2.23⇥ 10�4

0.1 1.21⇥ 10

�1
8.25⇥ 10

�2
1.75⇥ 10

�1
8.47⇥ 10

�3 1.32⇥ 10�4

0.2 2.09⇥ 10

�1
1.43⇥ 10

�1
2.75⇥ 10

�1
7.72⇥ 10

�3 2.47⇥ 10�4

0.3 3.18⇥ 10

�1
2.14⇥ 10

�1
3.73⇥ 10

�1
8.22⇥ 10

�3 4.01⇥ 10�4

0.4 4.25⇥ 10

�1
3.02⇥ 10

�1
4.64⇥ 10

�1
9.60⇥ 10

�3 6.35⇥ 10�4

High-Rank 0.5 5.31⇥ 10

�1
4.12⇥ 10

�1
5.55⇥ 10

�1
1.24⇥ 10

�2 8.48⇥ 10�4

0.6 6.34⇥ 10

�1
5.49⇥ 10

�1
6.44⇥ 10

�1
1.69⇥ 10

�2 1.31⇥ 10�3

0.7 7.39⇥ 10

�1
7.12⇥ 10

�1
7.34⇥ 10

�1
4.14⇥ 10

�2 3.92⇥ 10�3

0.8 8.42⇥ 10

�1
8.77⇥ 10

�1
8.24⇥ 10

�1
1.90⇥ 10

�1 1.58⇥ 10�2

0.9 9.39⇥ 10

�1
1.00⇥ 10

0
9.12⇥ 10

�1
5.12⇥ 10

�1 3.67⇥ 10�2
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Figure 1: The coefficient matrix C obtained by our method
for (a) low-rank and (b) high-rank matrices, where � = 0.1.

datasets, where points are ordered according to their mem-
berships to subspaces. Notice that in both cases, our method
successfully recovers a representation of each point as a
sparse combination of points from its own subspace.

Real Experiments: Multi-Label Learning
In this section, we evaluate our method on real data for the
problem of multi-label learning, where the goal is to pre-
dict the unobserved labels in an instance-label matrix. More
specifically, in multi-label learning, each sample/instance
could belong to multiple classes, in which case the labels of
the classes are assigned +1, while the labels of other classes
to which the sample does not belong will be -1. Given an
incomplete matrix of samples and labels, whose entries are
±1, our goal is to complete the matrix using additional infor-
mation about the feature representation of samples, hence,
predict the values of missing labels, see Figure 2. Notice that
while each sample is often correlated with a few other sam-
ples, hence a sparse combination is valid, it is unrealistic to
assume that all samples are highly correlated and lie on the

Figure 2: In multi-label learning, we are given an incomplete
matrix of label-samples, whose entries indicate the presence
(+1) or absence (-1) of each label in each sample.

same low-rank model. To evaluate our method, we consider
three datasets, consisting of audio, music and image data.

Multi-label learning for audio classification. The Birds
dataset consists of 645 ten-second audio files recording the
sounds of 19 different species of birds as well as the sounds
of environments, such as wind or rain (Briggs et al. 2013).
Each recording is labeled by a 19-dimensional vector corre-
sponding to 19 species of birds with the entries being 1 if
the recording contains a particular class of birds and -1 oth-
erwise. Each recording is associated with a 258-dimensional
feature vector extracted from its spectrogram, corresponding
to the side information. In our experiments, the ground-truth
label matrix is Y 2 R19⇥645, corresponding to 19 labels of
645 samples. We set the feature matrix Fc 2 R645⇥258 using
the spectrogram information of each of the 645 recordings.
We also set Fr as the 19⇥ 19 identity matrix, since we only
have access to the feature matrix for the audio files, not sam-
ples. Analysis of the singular values of Y shows the data
matrix being high-rank, where the smallest singular value is
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Figure 3: (a) Relative matrix completion error, (b) Transduc-
tive label error, for the Birds dataset.
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Figure 4: (a) Relative matrix completion error, (b) Transduc-
tive label error, for the CAL500 dataset.
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Figure 5: (a) Relative matrix completion error, (b) Transduc-
tive label error, for the NUS-WIDE dataset.

4.9. We randomly select � fraction of labels of Y , as miss-
ing entries, and set them to zeros to generate ¯

Y . We then
recover the completed data matrix using different methods
and record both the relative matrix completion error (RE)
and the transductive label error (TLE). To compute TLE, we
take the sign of the entries of the recovered data matrices and
then compute the percentage of unobserved labels that are
misclassified (Goldberg et al. 2010). We report the average
of the two errors over 10 random trials. As the results in Fig-
ure 3 illustrates, our proposed method outperforms Maxide,
IMC, dirtyIMC and SIM on both types of errors. Notice that
the relative completion error (RE) of all algorithms is higher
than the transductive label error (TLE). This comes from the
fact that while the completed entries might be far from the
true values, their sign is compatible with the true label.

Multi-label learning for music classification. The
CAL500 dataset is a collection of 502 “Western popular”
songs from 502 unique artists, where each song is has

multiple labels from 174 “musically relevant” semantic
keywords, corresponding to different categories, such as
genre, emotional content and instrumentation (Turnbull et
al. 2008). In addition, each song is represented by a 68-
dimensional acoustic feature vector extracted from the audio
files. In our experiments, the label and feature matrices are
Y 2 R174⇥502 and Fc 2 R502⇥68, respectively. Similar to
before, we set Fr to be the identity matrix. Figure 4 shows
the average multi-label learning and relative completion
errors of different methods over 10 random trials. Notice
that our proposed method achieves the smallest transductive
label errors, in particular, when the fraction of missing en-
tries is smaller than 0.7. Moreover, our method significantly
performs better than other algorithms for matrix completion
with side information when the missing entries fraction is
less than 0.7, thanks to our more general setting of dealing
with high-rank data matrices.

Multi-label learning for image classification. The NUS-
WIDE dataset contains more than 269,648 images, where
each images is represented by a 128-dimensional feature
vector (Spyromitros-Xioufis et al. 2014). The images are
collected from Flickr, where each image has 81 unique tags
(labels) which will be used for our evaluation. In our exper-
iments, we randomly 1,079 images from the dataset (sam-
pling images in the list with steps of 250). Thus the ground
truth matrix is Y 2 R81⇥1079 and the feature matrix is
Fc 2 R1079⇥128. We set Fr to be the identity matrix. In this
case, the data matrix Y is high-rank, since the top 75 sin-
gular values out of 81 are larger than 1. Figure 5 shows the
average results of different algorithms as a function of the
percentage of missing entries of Y , over 10 random trials.
Notice that our method achieves the smallest transductive
label errors as well as relative completion error across all
percentages of missing entries. In particular, with less than
70% missing entries, our method achieves the smallest com-
pletion error. Similar to previous cases, the label errors of
different methods are smaller than their completion error, as
they correctly predict the sign in most cases while the recov-
ered entries can be far from the ground-truth.

Conclusions
We studied the problem of high-rank matrix completion with
side information. We cast the problem as finding a factoriza-
tion of the data into the product of side information matrices
with an unknown interaction matrix, under which each col-
umn of the data matrix can be reconstructed using a sparse
combination of its other columns. We proposed a lifting
framework, where we coupled sparse coefficients and miss-
ing values and defined an equivalent optimization, amenable
to convex relaxation. We proposed an efficient implementa-
tion of our convex framework using a Linearized Alternating
Direction Method. Experiments on synthetic and real data
demonstrated that our method outperforms existing tech-
niques in dealing with both low and high rank matrices.
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