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Abstract—We propose a distributed algorithm for calibrating
the intrinsic and extrinsic parameters of a Camera Sensor
Network (CSN). We assume that only one of the cameras is
calibrated and that the network graph, i.e. the graph over which
the cameras communicate, is connected. Each camera uses simple
algorithms based on epipolar geometry to obtain its calibration
matrix as well as its pose relative to a reference frame. A
distributed consensus algorithm is derived to enforce a globally
consistent solution for the recovered 3D structure across the
entire network. We demonstrate the validity and effectiveness
of our method through synthetic experiments.

I. INTRODUCTION

Recent hardware innovations have produced low-power em-
bedded computers (motes) equipped with small cameras that
can self-organize into wireless networks. Such networks can
be used in a variety of computer vision applications, such as
3D reconstruction of large environments, tracking of mobile
targets, recognition of events and activities, etc.

In a camera sensor network, the cameras are often deployed
in an unknown and unstructured 3D environment. Thus, an
important pre-processing step for several computer vision
applications is to compute the relative position and orientation
of each camera with respect to a reference frame as well as
the 3D structure of the observed scene. This problem, known
as structure from motion (SfM), has been extensively studied
in the computer vision community for the past few decades.
However, most existing algorithms are not easily applicable to
camera sensor networks, as we argue in the next paragraphs.

Prior work. The problem of camera calibration for a single
camera has been widely studied in the computer vision liter-
ature [1], [2], [3], [4], [5]. Such methods typically require
the user to show a known object (calibration rig) to the
camera. The camera parameters are found by minimizing the
reprojection error between the 2D projections of known 3D
points in the object and their measured 2D projections in
the image. Obviously, such semi-automatic methods do not
scale well for large camera sensor networks, because they
would require manual calibration of each camera. Moreover,
since each camera would be calibrated independently from the
others, the estimated poses may not be globally consistent.

On the other hand, several auto-calibration methods have
been proposed [6], [7], [8], [9], [10], [5]. Such methods
automatically match image points across several images and
calibrate the cameras by solving nonlinear equations such
as Kruppa’s equations [11]. While these methods are very

elegant, they suffer from the fact that the problem of solving
Kruppa’s equations is numerically ill-conditioned. Moreover,
these methods assume that all the cameras have the same
intrinsic parameters so they are not readily applicable to
camera sensor networks, where each camera can have different
intrinsic parameters.

Once the cameras’ intrinsic and extrinsic parameters are
known, the next problem is to recover the structure of the
3D scene. This triangulation problem can be solved in closed
form from 2 views and requires nonlinear optimization in the
case of multiple views [5]. However, solving the multiple view
triangulation problem becomes difficult in a sensor network
setup. This is because, while each pair of motes could easily
compute the 3D structure of the scene via linear triangulation,
the estimates from different pairs of motes may not be the
same, especially in real situations where image data are noisy.
Thus, there is a need for developing algorithms for integrating
local SfM estimates in such a way that they converge to the
global solution given by centralized SfM algorithms.

This has motivated several distributed localization algo-
rithms in the camera sensor networks community such as
[12], [13], [14], [15], [16], [17], [18], [19]. Semi-automatic
camera network calibration methods use laser printed textures
mounted on a board [12] or modulated LED emissions [13],
[14]. Automatic methods perform local SfM via robust bundle
adjustment [17] and integrate the information using belief
propagation [18]. However, these algorithms integrate the
information in an ad-hoc fashion and do not provide rigorous
proofs of convergence to the centralized solution.

Paper contributions. This paper makes two important con-
tributions. First, we show that the problem of automatically
calibrating a large number of cameras in a sensor network
can be solved in a distributed way by solving a set of linear
equations. We show that this is possible under the mild
assumption that only one of the cameras needs to be calibrated.
Second, we propose a method based on distributed consensus
algorithms [20], [21] for estimating the 3D structure of a scene
in a distributed way. We show that all the motes compute the
same 3D structure, even though they communicate with only a
few neighbors in the network. This method requires that all the
cameras observe the same scene and that the network graph
over which the nodes communicate be connected.

Paper outline. The remainder of the paper is organized
as follows. In Section II, we briefly review basic definitions



from graph theory and the consensus algorithms. Section III
reviews the intrinsic and extrinsic calibration parameters of
cameras and epipolar geometry methods for their estimation.
In Section IV, we show how to recover the extrinsic and
intrinsic calibration parameters of cameras in a sensor network
by having only one calibrated camera. In Section V, we
propose a method based on distributed consensus algorithm
to get a common 3D structure in the network. Finally, in
Section VI, we show the efficacy of our method using synthetic
experiments.

II. DISTRIBUTED CONSENSUS ALGORITHMS

We represent a network of n nodes by a graph G = (V,E).
The set V = {1, 2, . . . , n} represents the set of vertices in the
graph and each i ∈ V represents one node in the network.
The set E ⊆ V × V represents the set of edges in the
graph. An edge (i, j) belongs to E if nodes i and j can
communicate with each other. We say that two nodes i and j
are adjacent in G when there is an edge between them in
the graph. The adjacency matrix of the graph A ∈ Rn×n
models this relation as aij 6= 0 when nodes i and j are
adjacent and aij = 0 otherwise. The set of nodes adjacent
to node i are represented by Ni. The degree of each node i
denoted by di is the sum of the weights of the edges connected
to node i, i.e. di =

∑
j∈Ni

aij . We collect the degree of
all nodes in a diagonal matrix D = diag{d1, d2, · · · , dn}.
Finally, the Laplacian matrix of the graph is defined as
L = D−A. One can show that when the graph is undirected,
i.e., when the corresponding adjacency matrix is symmetric,
the Laplacian matrix is always positive semi-definite and has
a zero eigenvalue whose corresponding eigenvector has all the
elements equal to 1, i.e., L 1 = 0.

There are two main challenges in sensor networks. First,
making a decision based on only few sensors’ measurements
is inherently unreliable. Thus one has to integrate information
from all the sensors in order to make a good decision. Second,
due to limited computational power and communication capa-
bilities, each node cannot collect and store data from all the
other nodes in the network in order to make a decision. Thus,
there is a need for developing distributed algorithms in which
every node gathers information only from its neighbors, yet
all the nodes eventually reach the same decision.

There are several methods for integrating information across
a sensor network. In this paper, we are particularly interested
in distributed consensus algorithms. For the sake of simplicity,
let us describe this method in the scalar case. That is, we
assume that each node i measures a scalar quantity xi(0) (the
argument would be similar for vectors and matrices). We say
the nodes have reached consensus at time t when all the nodes
have achieved a collective decision α, i.e.

x1(t) = x2(t) = . . . = xn(t) = α. (1)

There are a variety of distributed consensus algorithms en-
suring the network will asymptotically reach consensus. The
interested reader is referred to [21] for a comprehensive review

of the algorithms. In this paper, we consider a popular iterative
algorithm, each iteration of which has the following form:

xi(t+ 1) = xi(t) + ε
∑
j∈Ni

(xj(t)− xi(t)), (2)

where ε < 1/∆G and ∆G = max{d1, . . . dn} is the maximum
degree of the nodes. One can see from the above equation that,
at every iteration, each node only gets information from its
neighbors. It is shown in [21] that when the network graph is
connected, all nodes will asymptotically reach the same value
α = 1

n

∑n
i=1 xi(0). The speed of convergence is determined

by the connectivity of the graph. More specifically, notice that
one can write equation (2) in a compact form as:

x(t+ 1) = (I − ε L)x(t) (3)

where x(t) = [x1(t), x2(t), . . . , xn(t)]>. The second smallest
eigenvalue of the Laplacian L, known as the algebraic connec-
tivity of the graph, will determine the speed of convergence
of the algorithm. As the degree of each node increases, the
second smallest eigenvalue will be larger and the convergence
would be faster.

III. EPIPOLAR GEOMETRY AND CAMERA CALIBRATION

Assume we have N points {Xj ∈ R3}Nj=1 in 3D space,
where the vector Xj contains the coordinates of point j in the
world reference frame. Let (R, T ) ∈ SO(3)×R3 be the pose
of a camera, with respect to the world reference frame, where
R is a rotation matrix belonging to SO(3) = {R ∈ R3×3 :
R>R = I, det(R) = +1} and T is the translation between the
world and the camera frames. Then the projection of the point
Xj onto the image plane of this camera has homogeneous
coordinates x̃j ∈ R3 satisfying the following equation:

λj x̃j = KRXj +KT. (4)

In this equation, λj is the projective depth of a point j and
is equal to the third coordinate of KRXj +KT . The matrix
K ∈ R3×3 is called the intrinsic parameter matrix or camera
calibration matrix and is of the following form:

K =

fsx fsθ ox
0 fsy oy
0 0 1

 . (5)

The calibration matrix is constructed using the intrinsic pa-
rameters of the camera, namely, the position of the optical
center (ox, oy), the size of the pixels (sx, sy), the skew factor
sθ and the focal length f . The rotation R and translation T
describe the relative position and orientation of the camera
frame with respect to the world reference frame. They are
also called the extrinsic calibration parameters of the camera.
Note that x̃j in equation (4) describes the image point in the
pixel coordinates, while xj = K−1x̃j is the image point in the
metric coordinates. The SfM problem refers to the problem of
inferring both extrinsic and intrinsic parameters of the camera.

Now, assume that we have two cameras observing the
same scene. Without loss of generality, we assume the world



reference frame is located at the center of the first camera,
i.e., (R1, T1) = (I, 0). The relation between the image points
in the two cameras is then given as:

λj2x̃
j
2 = λj1K2RK

−1
1 x̃j1 +K2T (6)

where, for simplicity of notation, we used (R, T ) rather than
(R2, T2). One can eliminate the unknown scales λj1 and λj2
from (6) and get:

x̃j>2 Fx̃j1 = 0, where F = K̂2TK2RK
−1
1 . (7)

The matrix F is called the fundamental matrix between the
two cameras and incorporates intrinsic and extrinsic calibration
parameters. Here, û ∈ so(3) denotes the mapping of u ∈ R3

to the space of skew-symmetric matrices so that û u = 0.
Note that equation (7) is a bilinear equation in x̃j1 and x̃j2.

As a result, having enough number of point correspondences
(at least 8) {x̃j1, x̃

j
2}Nj=1 between the two cameras, one can

reconstruct the fundamental matrix F up to a scale factor from
the linear equation:

x̃1>
2 ⊗ x̃1>

1

x̃2>
2 ⊗ x̃2>

1
...

x̃N>2 ⊗ x̃N>1

 f = 0 (8)

where ⊗ denotes the Kronecker product, and f ∈ R9 is
obtained by stacking all rows of F into a vector.

When the intrinsic calibration parameters of the cameras,
Ki, are known, one can use the metric coordinates xji =
K−1
i x̃ji in (6) to get the so called epipolar constraint as:

xj>2 Exj1 = 0, (9)

where E = T̂R is called the essential matrix. It is known that,
under generic conditions, one can recover the essential matrix
using the 7-point algorithm ([22], [5]) and get the unique
rotation R and translation T (up to a scale factor).

When the (intrinsic) calibration matrices are unknown, it
is not as simple to recover intrinsic and extrinsic calibration
parameters. In general, there are three main approaches to
tackle the calibration problem for uncalibrated cameras:

1) Calibration with a rig. In this case one has access to
the camera and an object with distinct points on it, and
the coordinates of these points are known with high
accuracy with respect to some reference frame.

2) Calibration using a stratified approach. In this case
one assumes that the cameras have the same calibration
matrix, i.e. K1 = K2 = K. First a projective recon-
struction of the camera pose is achieved as (KRK−1 +
KTv>,KT ) for some v ∈ R3. Then by finding a ”plane
at infinity” one can get v and upgrade the camera pose
to an affine reconstruction (KRK−1,KT ). Finally, the
calibration matrix K is obtained by solving a linear
(Lyapunov) equation [22].

3) Auto-calibration using Kruppa’s equations. This method
addresses the calibration problem by solving Kruppa’s

equation FY F> = β2 K̂T Y K̂T
>

, where Y =
KK> ∈ R3×3 and β ∈ R are unknowns. These
nonlinear equations are solved from three views (i.e.
two fundamental matrices) to find the unknown matrix
Y . Then the matrix K is obtained from the Cholesky
factorization of Y . Although Kruppa’s equation provides
a nice algebraic relationship between the calibration
matrix K and the fundamental matrix F , the unknown
scale β requires to solve a set of nonlinear equations
to get Y . Such equations are numerically unstable when
the fundamental matrices are computed from noisy point
correspondences.

IV. DISTRIBUTED CALIBRATION

As mentioned in the previous section, calibration of a
camera is not an easy and straightforward task to do. The
situation becomes worse in a camera sensor network where
each camera possibly has a different calibration matrix. Look-
ing back at the three methods of calibration, mentioned in
the previous section, calibration with a rig does not seem to
be a feasible approach, since it requires taking each one of
the cameras separately and calibrating it with an object with
known points coordinates. On the other hand, the stratified
approach is a long process that requires finding a ”plane at
infinity” which can not be done automatically. Thus, the only
interesting approach for calibrating a network of cameras is
the auto-calibration approach which does not require any user
interaction. However, as mentioned in the previous section,
solving Kruppa’s equation is not an straightforward task and
requires solving a set of nonlinear equations.

To address these issues, we propose a method to automat-
ically calibrate a network of cameras. We assume that (at
least) one camera in the network is calibrated, the network
graph is connected, and all cameras observe the same scene.
This means we only need to calibrate one camera using a
method such as calibration with a rig, and then the rest of the
nodes in the network can automatically calibrate themselves
by interacting only with their neighbors.

A. Calibration using one neighbor information

Without loss of generality, assume that node 1 represents the
calibrated camera in the network. Each camera is associated
with a flag that indicates whether it has been calibrated or
not. At the beginning, only the flag of camera 1 is set to one
and the value of the flag for the rest of the network is zero.
As a result all neighbors of camera 1 in the network graph,
would find a calibrated node in their adjacency. Consider an
uncalibrated camera i adjacent to camera 1. We assume that
the world reference frame is at the center of camera 1 and the
relative pose of camera 1 with respect to camera i is denoted
by (Ri, Ti). Therefore, the relation X1 = RiXi + Ti must
hold for a point which has the coordinates X1 and Xi with
respect to the first and the i-th camera frames, respectively.
Then, the relation between the projections of this point in the
image planes of camera 1 and i can be written as:

λ1x̃1 = λiK1RiK
−1
i x̃i +K1Ti. (10)



Now, since the calibration matrix of camera 1 is known, we
can replace x1 = K−1

1 x̃1 in the equation above and get

λ1x1 = λiRiK
−1
i x̃i + Ti. (11)

Then, by eliminating the unknown scales λ1 and λi, we get
the equation x>1 Fix̃i = 0 where

Fi = T̂iRiK
−1
i (12)

is the fundamental matrix associated to camera 1 and i. One
can immediately see that in this case, the two matrices are
related by

Ei = FiKi. (13)

One can recover the fundamental matrix Fi from a set of point
correspondences {x̃j1, x̃

j
i}Nj=1 using the 7-point algorithm [5]

and then recover the translation T
′

i = γiTi (up to a scale factor
γi), since by equation (12), Ti is in the left nullspace of Fi.
Note that in order to compute Fi, node i needs to get the
image points {x̃j1}Nj=1 from node 1 (the calibrated node).

Having recovered T
′

i and Fi, one particular canonical re-
construction of the projective camera matrices for camera i is
given by (T̂

′>
i Fi, T

′

i ), where T̂
′>
i Fi = RiK

−1
i + T

′

i v
> for

some v ∈ R3 [22]. If we let Yi = KiK
>
i , it is easy to check

that the following equation holds:

(T̂
′>
i Fi − T

′

i v
>)Yi (T̂

′>
i Fi − T

′

i v
>)> = I. (14)

Multiplying both sides of the above equation on left by T̂
′

i

and on right by T̂
′>
i , we get:

(T̂
′

i T̂
′>
i Fi)Yi (F>i T̂

′

i T̂
′>
i ) = T̂

′

i T̂
′>
i . (15)

One can show that T̂
′

i T̂
′>
i Fi = 1/βiFi for some βi ∈ R and

as a result equation (15) reduces to

Fi Yi F
>
i = β2

i T̂
′

i T̂
′>
i . (16)

Notice that this is a linear equation in Yi in contrast to the
original Kruppa’s equations which are nonlinear. As a result,
one can linearly solve for Y

′

i from Fi Y
′

i F
>
i = T̂

′

i T̂
′>
i where

Y
′

i = 1/β2
i Yi. Since Y

′

i is still a positive definite matrix,
we can get the calibration matrix K

′

i = 1/βiKi using the
Cholesky factorization. Since from (5), the last entry of the
calibration matrix must be 1, we can eliminate the unknown
scale βi and get Ki by enforcing the last entry of K

′

i to be 1.

Remark 1: According to Proposition 6.11 in [22], after
eliminating the unknown scale in the general Kruppa’s equa-
tion, one obtains at most two algebraically independent equa-
tions in the unknown parameters. With a similar analysis, we
can show that equation (16) consists of at most two alge-
braically independent equations, allowing only two unknown
variables in Yi. As a result, one can recover the calibration
matrix of each neighbor of node 1, when it has at most two
unknown parameters. In the next subsection, we discuss a more
general case where multiple calibrated nodes are available
to begin with and discuss that under certain conditions on
the network topology, we can recover the calibration matrices
having more than two unknown parameters.

Having recovered the intrinsic calibration parameters Ki,
for camera i, one can get the related essential matrix Ei from
(13) as Ei = FiKi. Then, we can extract the pose information
(Ri, T

′

i ) from the essential matrix using the SVD of Ei. There
would be generally 4 different solutions, but only one solution
satisfies the positive depth constraint [22].

At this point, all the nodes adjacent to node 1 have calibrated
themselves and obtained their relative pose with respect to
node 1, so they set their calibration flags to 1. Then, neighbors
of a newly calibrated camera i∗ which detect a calibrated node
in their adjacency, get the image points of node 1 from node
i∗ (this information is already available in node i∗). Then,
they compute their fundamental matrices with respect to node
1, estimate their calibration matrices from (16), and finally
extract their pose relative to the reference frame. By continuing
this procedure, all cameras in the network calibrate themselves
and obtain their relative poses with respect to camera 1, in at
most n− 1 steps.

B. Calibration using multiple neighbors information

While we showed how to calibrate a camera by having one
calibrated neighbor, after the algorithm starts, it can happen
that an uncalibrated camera has several calibrated neighbors.
In this case, it would be preferable to use the information from
all calibrated neighbors to obtain a more accurate estimate of
the calibration parameters.

Looking back at the linear auto-calibration equation we
derived in (16), for any two linearly independent vectors
wi1,wi2 ⊥ T

′

i , if we multiply both sides of the equation
from left and right by w>ij and wij , respectively, we can get
the unknown scale β2

i as:

β2
i =

w>i1FiYiF
>
i wi1

w>i1T̂
′
i T̂

′>
i wi1

=
w>i2FiYiF

>
i wi2

w>i2T̂
′
i T̂

′>
i wi2

=
w>i1FiYiF

>
i wi2

w>i1T̂
′
i T̂

′>
i wi2

.

(17)
This gives two linear equations in the entries of the matrix Yi.
If we collect the 6 entries of Yi (note that Yi is symmetric)
into a vector yi ∈ R6, we get a linear equation of the form

Aiyi = 0, (18)

where Ai ∈ R2×6 is a matrix whose entries are a function
of the elements of Fi, T

′

i . Notice that wi1 and wi2 can be
chosen as two rows from T̂i, thus the entries of Ai need not
depend on the choice of wij .

Now, assume that the uncalibrated node i detects m ≤ |Ni|
calibrated nodes in its neighborhood. Then, it gets the image
points {xj1}Nj=1 of node 1, which are available at all the cali-
brated neighbors, to form the fundamental matrix Fi between
itself and the reference frame. In addition, it gets the metric
image coordinates {xji1 , . . . , x

j
im
}Nj=1 from the m calibrated

nodes to form the fundamental matrices Fik between node i
and ik for k ∈ {1, . . . ,m}. Since the calibration matrix Ki for
all these fundamental matrices is fixed, we would get 2(m+1)



linear equations in yi of the form (18), which together give
Ai
Ai1

...
Aim

yi = 0. (19)

As a result, we can get a better estimate of the calibration
matrix of node i by using the additional information from
all the calibrated neighbors. Similarly, node i receives the
rotation matrices of the m calibrated neighbors with respect
to the reference frame and estimates its rotation with respect
to the reference frame and from the m+ 1 essential matrices
Ei, Ei1 , . . . , Eim get m+1. Then a more accurate estimate of
the rotation can be obtained by averaging these m+1 rotations
in the manifold SO(3) using the Karcher mean [23], [24].

Remark 2: The analysis in this part suggests to begin with
more than one calibrated camera in the network and impose
a certain network topology so that at the first step, the
immediate (uncalibrated) neighbors of the calibrated cameras,
have more than one calibrated node in their adjacency. This
allows more freedom in the number of unknown parameters of
the calibration matrix for each camera. However, as stated, it
restricts the topology of the network to certain configurations.

V. DISTRIBUTED 3D STRUCTURE RECOVERY

In the previous section, we showed how to calibrate a
network of cameras having only one calibrated camera. As
a result, every node i recovers its calibration matrix Ki and
also its relative motion (Ri, T

′

i ) with respect to the reference
frame at node 1. In this section, we propose a method based
on the consensus algorithm, such that all nodes in the network
recover a common 3D structure by having each node exchange
information only with its neighbors.

First, remember that the relation between the coordinates of
3D points in camera 1 and i is given by Xj

i = RiX
j
1+γiT

′

i for
j ∈ {1, 2, . . . , N}, where (Ri, T

′

i ) are given from the camera
calibration step. After projecting the points, Xj

i = λjix
j
i , and

eliminating the unknown depth scale λji , one gets the following
equation:

x̂jiRiX
j
1 + γix̂

j
iTi = 0, (20)

where xji = K−1
i x̃ji represents the metric coordinates of point

j in the image plane of camera i. Since the scale of motion
γi is fixed for all points in camera i, one can recover the 3D
structure of the scene up to a scale factor from the following
equation:

x̂1
iRi 0 · · · 0 x̂1

iTi
0 x̂2

iRi · · · 0 x̂2
iTi

...
...

...
...

...
0 0 · · · x̂Ni Ri x̂Ni Ti



X1

1
...

XN
1

γi

 = 0. (21)

A naive approach would be that every node solves (21) to find
the 3D structure and the scale factor. However, there are two
main problems with this approach. First, (21) is equivalent
to finding a vector in the nullspace of a matrix, so a scaled

version of a solution would also be a valid solution. As a
result, each node recovers the 3D structure with a different
scale. More importantly, when the data {x̃ji}Nj=1 are noisy, the
solution of (21) for each node would be different.

We now propose a distributed algorithm to aggregate infor-
mation from all cameras in order to get a common solution
for the whole network. Let for each node i ∈ {1, 2, . . . , n},

Mi ,


x̂1
iRi 0 · · · 0
0 x̂2

iRi · · · 0
...

...
...

...
0 0 · · · x̂Ni Ri

 and Pi ,

 x̂
1
iTi
...

x̂Ni Ti


(22)

where Mi ∈ R3N×3N and Pi ∈ R3N . Then using (21), the
following equation must hold:


M1 0 0 . . . 0
M2 P2 0 . . . 0
M3 0 P3 . . . 0

...
...

...
...

...
Mn 0 0 . . . Pn





X1
1

...
XN

1

γ2

...
γN


= 0. (23)

If each node solves the above equation and enforces the norm
of the solution to be 1, then all nodes get the same 3D
structure. However, note that solving (23) at each node requires
having the information from all nodes in the network which
of course is not possible.

Now, we show how to solve (23) in a distributed way using
the consensus algorithm described in Section II. Let W ∈
R3nN×(3N+n−1) denote the matrix on the left side of (23)
with the SVD of W = UΣV >. Then what we are interested
in is to find the nullspace of W , i.e. the last column of V ,
in a distributed way. Let Wi denote the i-th block of 3N
rows of W containing the information from node i, i.e. W =[
W>1 , · · · , W>n

]>
, then we have the following:

W>W =
n∑
i=1

W>i Wi = V Σ2V >. (24)

One can see from the above equation that in order to compute
V at each node, we need to have

∑n
i=1W

>
i Wi at every node.

Since W>i Wi is the information available at node i, nodes in
the network can use the iterative consensus algorithm in (2)
to compute 1

n

∑n
i=1W

>
i Wi = 1

nV Σ2V >. When the nodes
reach consensus, each node can find the norm one vector in
the nullspace of equation (23) by taking the last column of
V . As a result, all nodes recover the same 3D structure in
addition to all the scales γi.

VI. EXPERIMENTS

In this section, we present synthetic experiments to illustrate
the behavior of our method. We consider a nonplanar network
of n = 14 cameras, where only the first camera is calibrated
(K1 = I). We assume that for each uncalibrated camera, the
position of the optical center (ox, oy) is known and the skew
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Fig. 1. Synthetic Camera Network Setup

factor sθ is equal to zero. The unknown parameters fsx and
fsy in (5) are chosen from Normal distributions with means
of 400 and 500, and variances of 10 and 20, respectively. The
cameras are roughly distributed in a circle of radius 8 times
the average focal length of cameras and they are all facing
toward the center of the scene. The structure of the scene is
represented by N = 20 points randomly distributed in a cube
with the length of each side to be 5.6 times the average focal
length of cameras. We assume the network graph is 4-regular
meaning that each node has 4 neighbors in the network. Figure
1 illustrates the camera network setup where only 7 cameras
are shown.

We test our method under 4 different noise levels: when
there is no noise in the image points, and when we add
Gaussian noise with variance of 1, 2, and 3 pixels to the image
points for an image of size 1000× 1000 pixels.

We find the fundamental matrices by using the 7-point
algorithm [5] and then get the calibration matrices from
equation (16). Table I shows the average error of the estimated
calibration matrices over 100 trials. The error is defined as

Err =
||Ki − K̃i||F
||Ki||F

× 100%, (25)

where Ki and K̃i are the original and the estimated calibration
matrices, respectively. The results show that when there is no
noise in the images, calibration matrices are estimated exactly
with zero errors. However, the solution of Kruppas equation
is sensitive to the error in the recovered scale. As a result,
estimation accuracy decreases drastically by increasing the
noise level. It would remain an open problem how to solve
Kruppas equation in a robust way for the case of noisy image
coordinates.

After finding the calibration matrix of each camera, we use
(13) to get the essential matrices and extract the pose of the
cameras. Table II shows the average and the variance of angles
between the estimated and the ground-truth rotations over
100 trials in addition to the angle between the estimated and
the ground-truth translations. Note that since translations are

TABLE I
AVERAGE AND VARIANCE OF CALIBRATION ERRORS (%)

Noise 0 px 1 px 2 px 3 px
Average of Err 0.000 0.810 2.130 4.380
Variance of Err 0.000 0.030 0.080 0.210

TABLE II
AVERAGE AND VARIANCE OF ROTATION AND TRANSLATION ANGLE

ERRORS (DEG.)

Noise 0 px 1 px 2 px 3 px
Rotation Average 0.000 0.947 1.978 4.364

Error Variance 0.000 0.142 0.321 1.055
Translation Average 0.000 0.998 1.830 4.498

Error Variance 0.000 0.125 0.464 1.073

TABLE III
AVERAGE AND VARIANCE OF 3D STRUCTURE ANGLE ERRORS (DEG.)

Noise 0 px 1 px 2 px 3 px
Average 0.000 0.989 2.097 4.835
Variance 0.000 0.109 0.570 1.196
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Fig. 2. Structure estimation error between centralized and distributed solution
at each node in the network. Each curve indicates convergence at each node.

always recovered up to a scale factor, we use the angle between
the normalized estimate and the ground-truth translations as
the measure of error. The results indicate that the method
performs well when the noise is small. However, the perfor-
mance of estimation decreases for larger values of noise partly
because of the error in the estimation of the true calibration
matrices and partly as a direct result of having noise in the
image points.

Finally, we use the iterative consensus algorithm in (3)
to find the common 3D structure for ε = 0.02∆−1

G . Table
III shows the average and the variance of angles between
the estimated and the ground-truth 3D points. Again, since
the structure is always recovered up to a scale factor, we
used the angle between the estimated 3D structure (as a 3N -
dimensional vector) and the true one. Figure 2 shows how
after only a few iterations all the nodes estimates of the 3D
structure converge to the centralized solution of equation (23).



VII. CONCLUSION

In this paper, we showed how to calibrate a network of
cameras by having only one calibrated camera. We proposed
a method based on auto-calibration and epipolar geometry to
calibrate both the intrinsic and the extrinsic parameters of
all the cameras in a distributed way. Finally, we proposed a
distributed consensus algorithm to find a common 3D structure
of the scene in all the cameras. Future work includes finding
the pose parameters from a global cost function in a distributed
way as well as exploring robust methods for estimating the
parameters in a distributed fashion.

ACKNOWLEDGMENT

This work was partially supported by startup funds from
JHU and by grants NSF CAREER ISS-0447739, NSF CNS-
0834470, and ONR N00014-05-10836.

REFERENCES

[1] R. Y. Tsai, “An efficient and accurate camera calibration technique for
3D machine vision,” in IEEE Conf. on Computer Vision and Pattern
Recognition, ser. IEEE Publ.86CH2290-5. IEEE, 1986, pp. 364–374.

[2] Z. Zhang, “A flexible new technique for camera calibration,” Microsoft
Technical Report MSR-TR-98-71, 1998.

[3] Z. Zhang, Q.-T. Luong, and O. Faugeras, “Motion of an uncalibrated
stereo rig: self-calibration and metric reconstruction.” IEEE Transactions
on Robotics and Automation, vol. 12, no. 1, pp. 103–13, 1996.

[4] P. Sturm, “Critical motion sequences for monocular self-calibration and
uncalibrated Euclidean reconstruction,” in IEEE Conf. on Computer
Vision and Pattern Recognition. IEEE Comput. Soc. Press, 1997, pp.
1100–1105.

[5] R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision, 2nd ed. Cambridge, 2004.

[6] B. Triggs, “Autocalibration and the absolute quadric,” in IEEE Conf. on
Computer Vision and Pattern Recognition, 1997.

[7] ——, “Autocalibration from planar scenes,” in IEEE Conf. on Computer
Vision and Pattern Recognition, 1998.

[8] M. Pollefeys, R. Koch, and L. V. Gool, “Self-calibration and metric
reconstruction in spite of varying and unknown internal camera param-
eters,” in IEEE Int. Conf. on Computer Vision, 1998.

[9] R. I. Hartley, “Self-calibration from multiple views with a rotating
camera,” in European Conf. on Computer Vision, 1994, pp. 471–8.

[10] Q.-T. Luong and O. Faugeras, “Self-calibration of a moving camera
from point correspondences and fundamental matrices.” Int. Journal of
Computer Vision, vol. 22, no. 3, pp. 261–89, 1997.

[11] E. Kruppa, “Zur ermittlung eines objecktes aus zwei perspektiven
mit innerer orientierung.” Sitz.-Ber.Akad.Wiss., Math.Naturw., Kl.Abt.IIa,
122:1939-1948, 1913.

[12] P. Baker and Y. Aloimonos, “Calibration of a multicamera network,”
in CVPR Workshop on Omnidirectional Vision and Camera Networks,
2000, pp. 134–141.

[13] A. Barton-Sweeney, D. Lymberopoulos, and A. Savvides, “Sensor local-
ization and camera calibration in distributed camera sensor networks,”
in International Conference on Broadband Communications, Networks
and Systems, 2006, pp. 1–10.

[14] R. Farrell, R. Garcia, D. Lucarelli, A. Terzis, and I.-J. Wang, “Localiza-
tion in multi-modal sensor networks,” in Third International Conference
on Intelligent Sensors, Sensor Networks and Information Processing,
2007.

[15] S. Sinha, M. Pollefeys, and L. McMillan, “Camera network calibration
from dynamic silhouettes,” in IEEE Conference on Computer Vision and
Pattern Recognition, vol. 1, 2004, pp. 195–202.

[16] S. Sinha and M. Pollefeys, “Synchronization and calibration of a
camera network for 3D event reconstruction from live video,” in IEEE
Conference on Computer Vision and Pattern Recognition, vol. 2, 2005,
p. 1196.

[17] D. Devarajan, R. Radke, and H. Chung, “Distributed metric calibration
of ad hoc camera networks,” ACM Transactions on Sensor Networks,
vol. 2, no. 3, pp. 380–403, 2006.

[18] D. Devarajan and R. Radke, “Calibrating distributed camera networks
using belief propagation,” EURASIP Journal of Applied Signal Process-
ing, pp. 221–221, 2007.

[19] S. Funiak, C. Guestrin, M. Paskin, and R. Sukthankar, “Distributed
localization of networked cameras,” in International Conference on
Information Processing in Sensor Networks, 2006, pp. 34–42.

[20] R. Olfati-Saber and R. Murray, “Consensus problems in networks of
agents with switching topology and time-delays,” IEEE Transactions on
Automatic Control, vol. 49, no. 3, pp. 1520–1533, 2004.

[21] R. Olfati-Saber, J. Fax, and R. Murray, “Consensus and cooperation in
networked multi-agent systems,” Proceedings of the IEEE, vol. 95, no. 1,
pp. 215–233, 2007.
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