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See [Elad+Bryt '08], [Horev et. AL, “12] ... Image: [Aharon+Elad ‘05]
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Linear subspace model for images of same face under varying lighting.

[Basri+Jacobs ‘03], [Ramamoorthi ‘03], [Belhumeur+Kriegman "96]
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One large underdetermined system: Y = A'z!



UNDERDETERMINED LINEAR SYSTEMS
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Solution is not unique ... is there any hope?



WHAT DO WE KNOW ABOUT z?

Underdetermined system I - .'* - =
|

y= Az n ==

Signal acquisition Face Recognition

ll 3
o
* .
T uses just a few
: training faces.

x* contains just a few ™ uses just a few
significant wavelet dictionary elements. e* corrects a few
coefficients. gross errors.



SPARSITY — More formally

A vector x € R" is sparse if : i
only a few entries are nonzero: "H b I

The number of nonzeros is called the ¢0-“norm” of « :

lzllo = ##17 | zi # 0}



SPARSITY — More formally

A vector x € R" is sparse if : i
only a few entries are nonzero: "H b I

The number of nonzeros is called the ¢0-“norm” of « :

lzllo = ##17 | zi # 0}

Geometrically

x|, = (O, o) /P

Jllo = limy~o ]2




THE SPARSEST SOLUTION
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Underdetermined system

y = Ax

Look for the sparsest x that agrees with our observation:
minimize |x|g subject to Az =1y

[Demo]



THE SPARSEST SOLUTION

I--

J:ll-': d

Underdetermined system

y = Ax

Look for the sparsest x that agrees with our observation:

minimize ||x||p subject to Ax =1y

Theorem 1 (Gorodnitsky+Rao '97) .
Suppose y = Axg, and let k = ||xo||o. If null(A) contains
no 2k-sparse vectors, xg is the unique optimal solution to

minimize ||x||p subject to y = Ax.




THE SPARSEST SOLUTION

l-l-

-':|l-': a4

Underdetermined system

y = Ax

Look for the sparsest x that agrees with our observation:

minimize ' o Ax=wuy.

INTRACTABLE



RELAX!
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RELAX!

minimize _[[2]jo subject to Az = y.

The cardinality || x||p is nonconvex:

Its convex envelope® is

the /'norm: ||x||; = Zz |2 |

*Over theset {@ | |z;| < 1V i}




RELAX!

minimize _|[zlo - subject to Az = y.

The cardinality || x||p is nonconvex:

Its convex envelope® is

the /'norm: ||x||; = ZZ |2 |

*Over theset {@ | |z;| < 1V i}




RELAX!

minimize ”213”0 SllbjeCt to Ax = Y. NP-hard, hard to appx.
[Natarjan "95],
[l ' [Amaldi+Kann ‘97]
minimize ||£13||1 SllbjeCt to Ax = Y. Efficiently solvable

Have we lost anything? [demo]



WHY DOES THIS WORK? Geometric intuition

minimize ||x||; subject to Ax =wy.

*

R” {z| Az = y}

| flzll <t}



WHY DOES THIS WORK? More formally...

Rm

Wesee: y = Ax =) z) Qii a

1Esupp(

Intuition: Recovering x is “easier” if the
a;are not too similar...

Mutual coherence u(A) = MaX;£; (a;, aj>|

Smaller 1s better!



WHY DOES THIS WORK? More formally...

]Rm

Mutual coherence a

M(A) — max?;# |<CL7;, CLJ>| \

Theorem 2 (Gribonval+Nielsen 03, Donoho-+Elad °03) .
Suppose y = Axy with
lzollo < 5(1+1/u(A)).

Then xy is the unique optimal solution to

minimize ||| subject to y = Awx.




WHY DOES THIS WORK? More formally...

The target solution x is
sufficiently structured (sparse!).




WHY DOES THIS WORK? More formally...

The matrix A is incoherent — and

SO, preserves sparse £I.

Theorem 2 (Gribonval

L ’03. Donoho+Elad '03)



WHY DOES THIS WORK? More formally...

]Rm

Mutual coherence a

M(A) — max?;# |<CL7;, CLJ>| \

Theorem 2 (Gribonval+Nielsen 03, Donoho-+Elad °03) .
Suppose y = Axy with
lzollo < 5(1+1/u(A)).

Then xy is the unique optimal solution to

minimize ||| subject to y = Awx.




WHY CARE ABOUT THE THEORY?

Motivates applications

Template for stronger results

... predictions can be very sharp in high dimensions.

s Bu omon Bn Bu i
u §

Generalizes to many other types . b
of low-dimensional structure g

... structured sparsity, low-rank recovery



MOTIVATING APPLICATIONS - Face Recognition
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MOTIVATING APPLICATIONS - Face Recognition

Racognition rate (%)

Recognition rate

~o— Algorithm 1
—©— PCA + NN
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WHY CARE ABOUT THE THEORY?

Motivates applications //'\ E; =

.. but be careful: need to ] mm (and mudm ) the basic models [Lecture 2

Template for stronger results

.. predictions can be very sharp in high dimensions.

== ) U

Wi =t i
A

Generalizes to many other types
of low-dimensional structure

N S )
(L IIRILIR 1ot )

.. structured sparsity, low-rank recovery



LIMITATIONS OF COHERENCE?
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LIMITATIONS OF COHERENCE?

Forany m xn A u(A) > /75" "'1><'
a.

Prev. result therefore requires

|2ollo < 3(1+p(A)™") = O(Vm)

Truth is often much better:

Phase transition at —

|xollo = a*m

0 0.2 04 0.6
Fraction corrupted, p

Plot: Fraction of correct recovery
vs. fraction of nonzeros ||zollo/m
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— all k-sparse &, HA€U||2 ~ HwHQ



STRENGTHENING THE BOUND - the RIP

R'In
as

. a
Incoherence: Each pair A, ; = [a; | a;] spread. ' ><'
a

3

Generalize to subsets of size k:
A well-spread (almost orthonormal) for all / of size k

— all k’-sparse £, HA33||2 H*’BHQ

A satisfies the Restricted Isometry Property of
order k with constant ¢ if for all k-sparse &,

(L=9)l=l3 < [[Az[3 < (14 )ll=|3.



IMPLICATIONS OF RIP

Good Sparse recovery

Theorem 2 (Candeés+Tao ’05, Candes ’08) .
Suppose y = Axg with

52”,1,0“0 < \/§ — 1.
Then xg 1s the unique optimal solution to

minimize ||x||; subject to y = Awx.




IMPLICATIONS OF RIP

Good Sparse recovery

Theorem 2 (Candeés+Tao ’05, Candes ’08) .
Suppose y = Axg with

52||w0||0 < \/5 — 1.
Then xg 1s the unique optimal solution to

minimize ||x||; subject to y = Awx.

Again, if ... & is “structured” and A is “nice”
we exactly recover x.

Compare condition to condition ||:130 ||() < %(1 + ,U(A)_l)



IMPLICATIONS OF RIP

Random A are great:

If A ~jig N(O, m—1/2) then T

L PR
A has RIP of order k with
high probability, when m > Cklog(n/ k).

For random A , / 1 works even when Hil)o ”() ~ m.

Useful property for designing sampling operators
(Compressed sensing).



WHY CARE ABOUT THE THEORY?

Motivates applications

... but be careful: need to justify (and modify) the basic models

Template for stronger results

... predictions can be very sharp in high dimensions.

Generalizes to many other types
of low-dimensional structure

... structured sparsity, low-rank recovery



GENERALIZATIONS - From Sparse to Low-Rank

So far: Recovering a single sparse vector:




FORMULATION - Robust PCA?

E

Given' Y = X + E, with X low-rank, FE sparse, recover X .

Numerous approaches to robust PCA in the literature:

. Multivariate trimming [Gnanadeskian + Kettering '72]
. Random sampling [Fischler + Bolles '81]
. Alternating minimization [Ke + Kanade 03]

. Influence tunctions [de la Torre + Black 03]

Can we give an efficient, provably correct algorithm?
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. Random sampling [Fischler + Bolles '81]
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RELATED SOLUTIONS - Matrix recovery

Classical PCA/SVD - low rank + noise  [Hotelling '35, Karhunen+Loeve '72,...]
Given Y = X + Z, recover X.

Stable, efficient algorithm, theoretically optimal — huge impact

Matrix Completion — low rank, missing data [Candes + Recht "08,
Candeés + Tao 09,

Keshevan, Oh, Montanari "09,
From Y = Pq|X]|, recover X. Gross ‘09,

Ravikumar and Wainwright '10]

Increasingly well-understood; solvable if X is low rank and {2 large enough.



WHY IS THE PROBLEM HARD?

Some very sparse matrices are also low-rank:

ll- ..

—1,, —1,, X =0 EZ]..;,J'

Can we recover X that are incolierent with the standard basis?

Certain sparse error patterns & make recovering X impossible:

E ]
i - =
X E = ¢e;v" Y=X+F

Can we correct V' whose support is not adversarial?



WHEN IS THERE HOPE? Again, (in)coherence

Can we recover X that are incoherent with the standard basis from
almost all errors E?

Incoherence condition on singular vectors, singular values arbitrary:

max; ||U;||? < ur/m.
max; |V;||? < pr/n.

not too cross-correlated:  ||{UV ™| < v/ pur/mn

Singular vectors of X not too spiky: {

Uniform model on error support, signs and magnitudes arbitrary:

support(E) ~ uni ([m] x [n])

pmn

Incoherence condition: [Candes + Recht ‘08]



.. AND HOW SHOULD WE SOLVE IT?

Naive optimization approach

Look for a low-rank X that agrees with the data up to some sparse error F:

min rank(X) + || E|o subj X +E =Y.

/ N

rank(X) = #{0;(X) # 0}. |Ello = #{Ei; # 0}.



.. AND HOW SHOULD WE SOLVE IT?

NaroeQptimization approach

Look for a low Tk X that agrees with the data up to sopwe€parse error F:

min rank(X wstib] X+ E =Y.

s N

rank = #{0i(X) # 0}. |Ello = #{Eu “}.

INTRACTABLE



... AND HOW SHOULD WE SOLVE I'T?

Naive optimization approach

Look for a low-rank X that agrees with the data up to some sparse error F:

min rank(X) + v||E|o subj X +E =Y.

Convex relaxation

rank(X) = #{0:(X) £0}. | Ello = #{E;; # 0}.
W W
| X[ =32, 0i(X). IElx = > [ Eijl.

M
\V/

Nuclear norm heuristic: [Fazel, Hindi, Boyd “01], see also [Recht, Fazel, Parillo ‘08]
[Chandrasekharan et. al. “11]



MAIN RESULT - Correct recovery

Theorem 1 (Principal Component Pursuit). If X, € R™*", m > n has

rank
n

" plog®(m)

and Ey has Bernoulli support with error probability p < p%, then with very high
probability

r<.p

1
—m”E”l subj X + FE = X+ Ej,

(X9, Eg) = argmin || X]||. + NG

and the minimizer is unique.

“Convex optimization recovers matrices of rank O (log’;‘ — )
from errors corrupting O (mn) entries”

[Candes, Li, Ma, and W., "09].



EXAMPLE - Faces under varying illumination

58 images of one
person under Varying
lighting:




APPLICATIONS - Background modeling from video

Static camera
surveillance video

VideoY = Low-rank appx. X+ Sparse error F
200 frames,

144 x 172 pixels,

Significant foreground
motion




BIG PICTURE - Parallelism of Sparsity and Low-Rank

Degeneracy of ing;.;g‘llal correlated signals
Measure Lonorm ||z|o rank(X)
Convex Surrogate Lynorm |z|[; Nuclear norm || X,
Compressed Sensing y = Ax Y = A(X)
Error Correction y=Ax +e Y=AX)+E
Domain Transform yoT=Ax+e Yor=AX)+FE
Mixed Structures Y =AX)+B(E)+ Z




WHY CARE ABOUT THE THEORY?

Motivates applications

... but be careful: need to justify (and modify) the basic models

Template for stronger results

... predictions can be very sharp in high dimensions.

Generalizes to many other types
of low-dimensional structure

... structured sparsity, low-rank recovery



General theory: constructing norms

Atomic norm: choose a set of atoms A4 . Write

|z|lo =inf{> . c; | > . ciai =z, ¢; >0,a; € A}

[Chandrasekharan et. al. “12]



General theory: constructing norms

Atomic norm: choose a set of atoms A . Write
|z|lo =inf{> . c; | > . ciai =z, ¢; >0,a; € A}

Eg, sparsity A={e;|i=1...n}, ||z|o= ||

low-rank A = {wv* | [z = o]l = 1}, |l2]o = |l2].

[Chandrasekharan et. al. “12]



General theory: constructing norms
Atomic norm: choose a set of atoms A . Write
||:I)||o — inf {21 Ci ’ zl cia; =x, ¢; >0,a; € .A}

Eg., sparsity A={e; |i=1...n}, [|z|.=|z|n

low-rank A = {wv* | |uls = [[v]l2 = 1}, [l = |2

column sparsity | A= {ue] [|lullo =1, i=1...n}
. e.g., [Xu+Caramanis+Sanghavi'12]

A = {2 1+E | £ €0,1], € €0,2m)}

- | [Tang + Recht “12]
[Candes + Fernandez-Garza ‘12]

I
t{\ \

sinusoids |
| | N : \ |
.I |




General theory: constructing norms

Atomic norm: choose a set of atoms A . Write
|z|lo =inf{> . ci | > ciai =, ¢; >0,a; € A}
E.g., sparsity A={e;|i=1...n}, |z|o=|z|n

low-rank A = {uv” [ [lul}2 = |[v]]2 = 1}, [z[lo = ||l=]-

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
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oooooooooooooooooooooooooooo
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General theory: recovering a single structure

Observe: y = Axy with A ~ N(0,1) random. When does
min ||x||, st. Ax =y

uniquely recover & ?



General theory: recovering a single structure

Observe: y = Axy with A ~ N(0,1) random. When does
min ||x||, st. Ax =y

uniquely recover & ?

2o +mull(A) /’\ “null(A)

By, D(|| - |[o, 20)



General theory: recovering a single structure

Observe: y = Axy with A ~ N(0,1) random. When does
min ||x||, st. Ax =y

uniquely recover & ?

wo 0
T +nu11(A) /]\ ,___,..-I»illll(A)
BI|-||<> DA - [lo, o)

Recovery iff the descent cone
D(]| - |los o) = {v | |0 + tv||6 < ||@0]|o for some t > 0}
has D(|| - ||s,2o) Nnull(A) = {0}.

More likely if descent cone is “small”. Can we make this precise?



General theory: recovering a single structure

Observe: y = Axy with A ~ N(0,1) random. When does
min ||x||, st. Ax =y

uniquely recover & ?

0 |
- : : : 4\ ~null( A)
The statistical dimension of a cone (' is

C = D] - [lo» @)
5(C) = Egonon [IPegl]

Many nice properties. E.g., if ' a subspace, 6(C') = dim(C).



General theory: recovering a single structure

Observe: y = Axy with A ~ N(0,1) random. When does
min ||z||, st. Az =y

uniquely recover & ?

.. : : . 4\ null( A)
The statistical dimension of a cone (' is

C= D(“ ' llvaO)
0(C) = ]Egrv./\f'((),]) [||PC'Q||2] -

Many nice properties. E.g., if ' a subspace, 6(C') = dim(C).

Sharp phase transition at m = 6(C) :

m > 6(C) = P[recovery] > 1 — exp (—c(m — 6(C))?/n)
m < §(C) = P[recovery] < exp (—c(m — §(C))?*/n)

[Amelunxen, McCoy, Lotz, Tropp “13]



General theory: decomposing two structures

Observe: y = xo + z¢ withregularizers |||o.1, ||2][o,2 - Does

min [zl + [|2]le2 st z+z=1y Cy = D(]| - [lo,2, 20)

uniquely recover x, 2 ?

0

Variant: min |[z|.1 st. ||2]e2 <1, z+2=1y
Cy = D(] - llo,1,®0)



General theory: decomposing two structures

Observe: y = xo + z¢ withregularizers |||o.1, ||2][o,2 - Does

min [zl + [|2]le2 st z+z=1y Cy = D(]| - [lo,2, 20)

uniquely recover x, 2 ?

0

Variant: min |[z|.1 st. ||2]e2 <1, z+2=1y
Cy = D(|[ - [lo,1, o)

In a random incoherence model (C; randomly rotated), phase transition at

0(C1)+d(C2) =n

n>6(C1)+6(C2) = Plrecovery] > 1 —exp (—c(n — §(C1) — §(Cs))?/n)
n < 8(Cy) +0(Ca) = Plrecovery| < exp (—c(n — 8(Cy) — 6(C2))?/n)

[Amelunxen, McCoy, Lotz, Tropp “13]



General theory: statistical estimation

Observe: noisy measurements Yy = Ax + z. Noise-aware optimization:

2
2

min [|z|[, + 3 || Az -y

E.g., Basis pursuit denoising: min |||, + %”Am —yl3
Noise-aware RPCA: min ||L||. + A||S|; + -’21||L + 85— DH%

When does min ||z, + || Az — y||3 produce & ~ x( ?

General theory for decomposable regularizers || - [|o

[Negahbhan, Agarwal, Yu, Wainwright “12]



A suite of models and theoretical guarantees

For robust recovery of a family of low-dimensional structures:

* [Zhou et. al. ‘09] Spatially contiguous sparse errors via MRF
* [Bach "10] - structured relaxations from submodular functions
* [Negahban+Yu+Wainwright "10] — geometric analysis of recovery
* [Becker+Candes+Grant "10] — algorithmic templates
* [XutCaramanis+Sanghavi ‘11] column sparse errors L, ; norm
* [Recht+Parillo+Chandrasekaran+Wilsky "11] — compressive sensing of various structures
* [Candes+Recht "11] — compressive sensing of decomposable structures
X" =argmin || X|s st. Pg(X)="Po(X°)

* [McCoy+Tropp’11] — decomposition of sparse and low-rank structures
(X7, X9) = argmin || X1 ||y + Al Xzll2) s-t. X1+ Xo = XV + X9

* [W.+Ganesh+Min+Ma, I&I'13] - superposition of decomposable structures

(XV,..., Xp) = argmin 3N Xl st Po(32; Xi) = Po(32; X7)

Take home message: Let the data and application tell you the structure...



