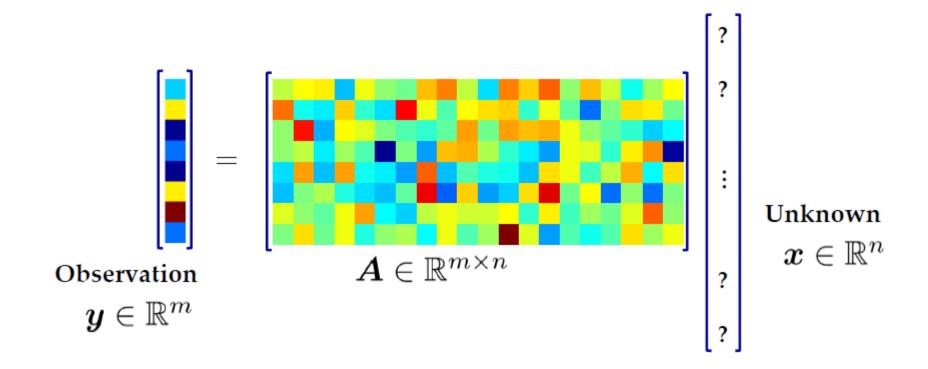
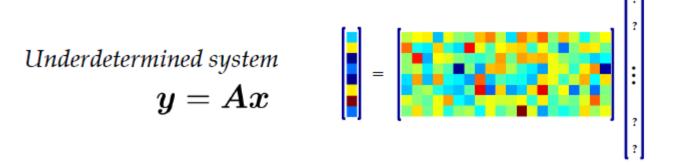
Theory of Sparse and Low-Rank Recovery

John Wright
Electrical Engineering
Columbia University





Signal acquisition

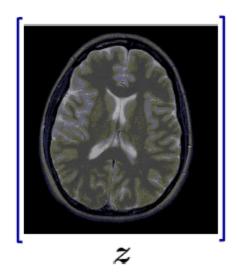
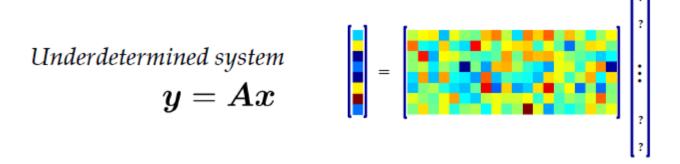
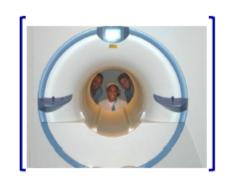


Image to be sensed



Signal acquisition



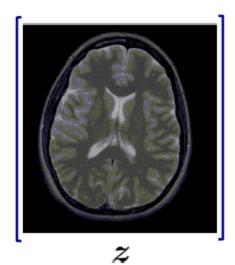
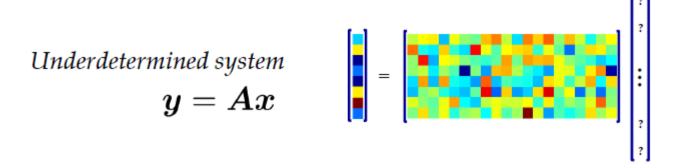
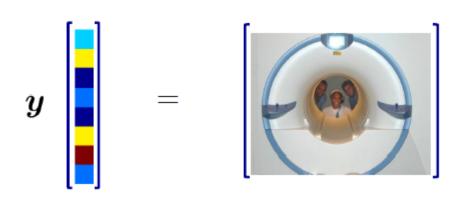


Image to be sensed



Signal acquisition



$$y_i = \int_{\boldsymbol{u}} \boldsymbol{z}(u) \exp(-2\pi j \boldsymbol{k}(t_i)^* \boldsymbol{u}) d\boldsymbol{u}$$

Observations are Fourier coefficients!

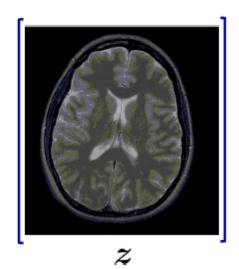
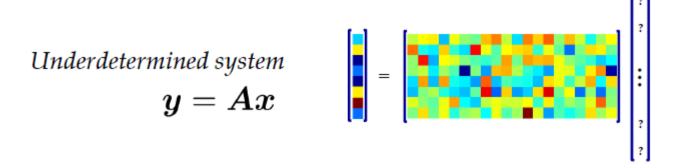
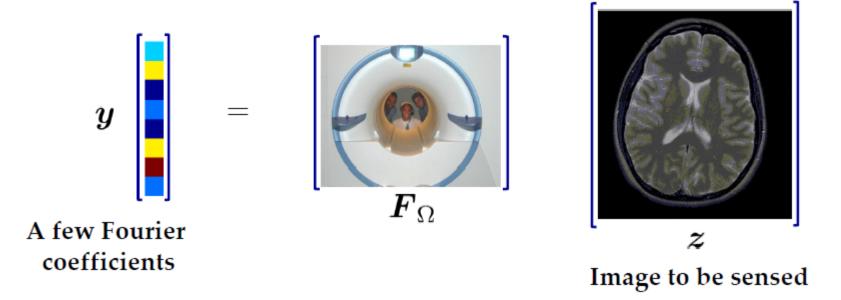
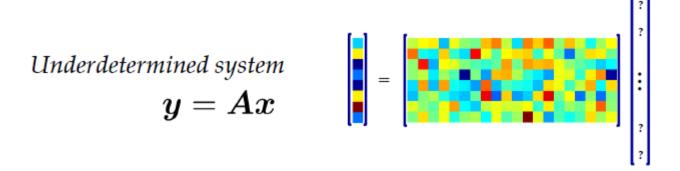


Image to be sensed

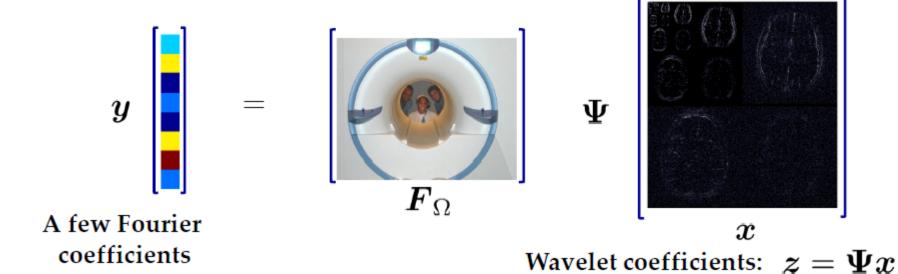


Signal acquisition

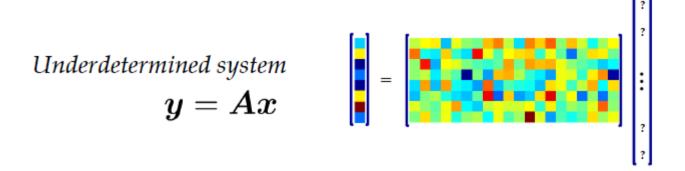




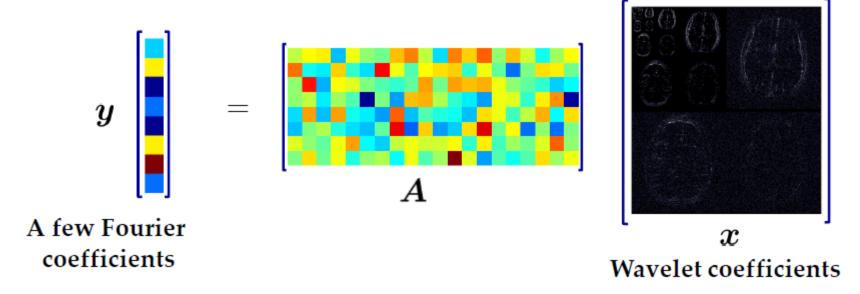
Signal acquisition



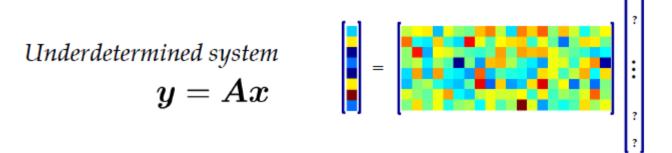
[Lustig, Donoho + Pauly '10] ... brain image – Lustig '12



Signal acquisition



[Lustig, Donoho + Pauly '10] ... brain image – Lustig '12

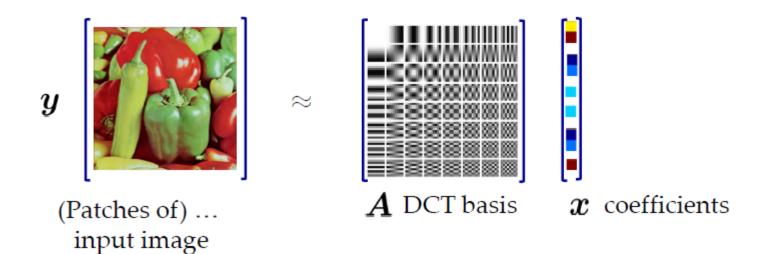


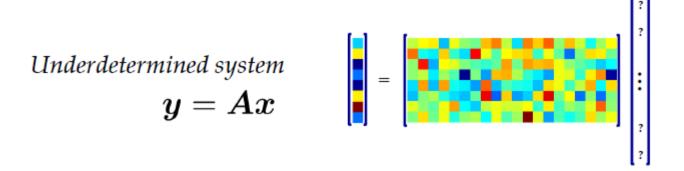
Compression

Image to be compressed

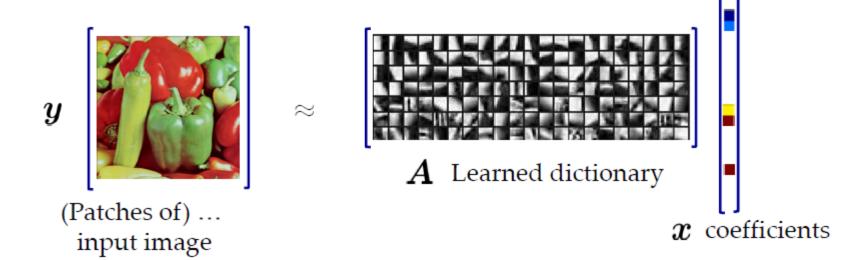
Underdetermined system $oldsymbol{y} = oldsymbol{A} oldsymbol{x}$

Compression – JPEG

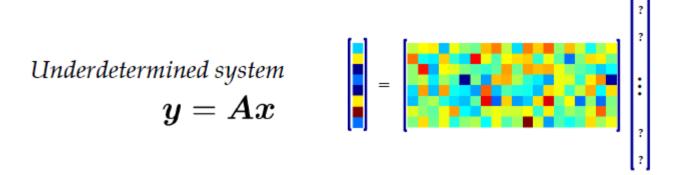




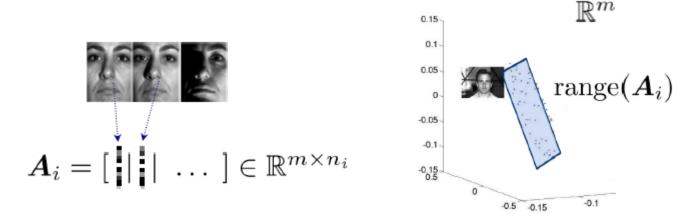
Compression – Learned dictionary



See [Elad+Bryt '08], [Horev et. Al., '12] ... Image: [Aharon+Elad '05]

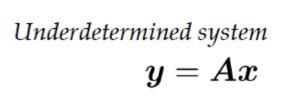


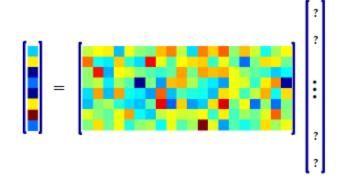
Recognition



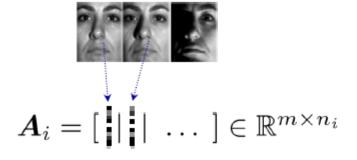
Linear subspace model for images of same face under varying lighting.

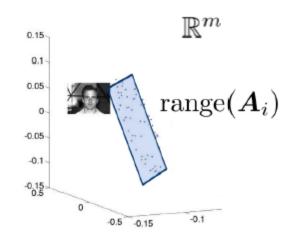
[Basri+Jacobs '03], [Ramamoorthi '03], [Belhumeur+Kriegman '96]



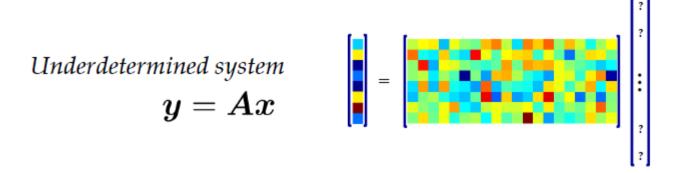


Recognition

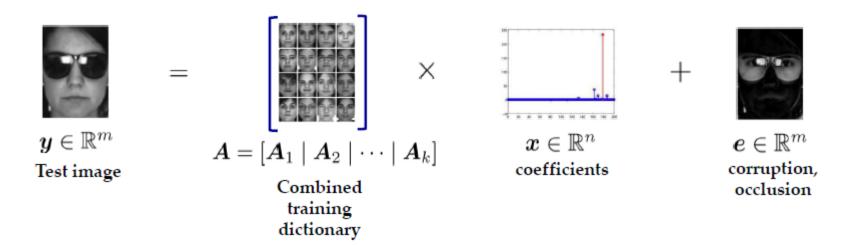




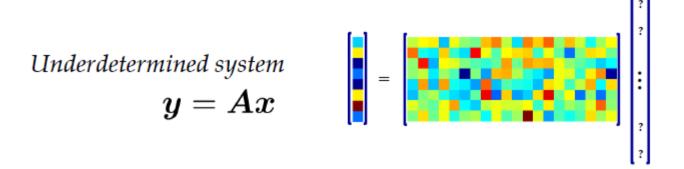
 $oldsymbol{y} \quad pprox \quad x_{i,1} \quad oldsymbol{\lambda} \quad + \quad x_{i,2} \quad oldsymbol{\lambda} \quad + \quad \dots \quad + \quad x_{i,n} \quad oldsymbol{\lambda} \quad = oldsymbol{A}_i oldsymbol{x}_i$



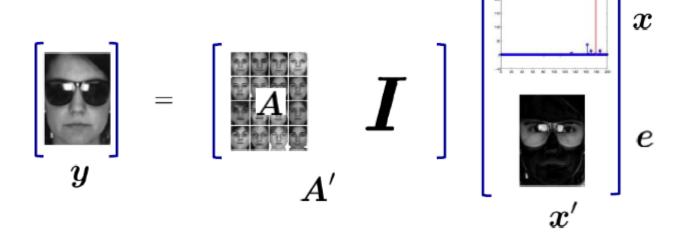
Recognition



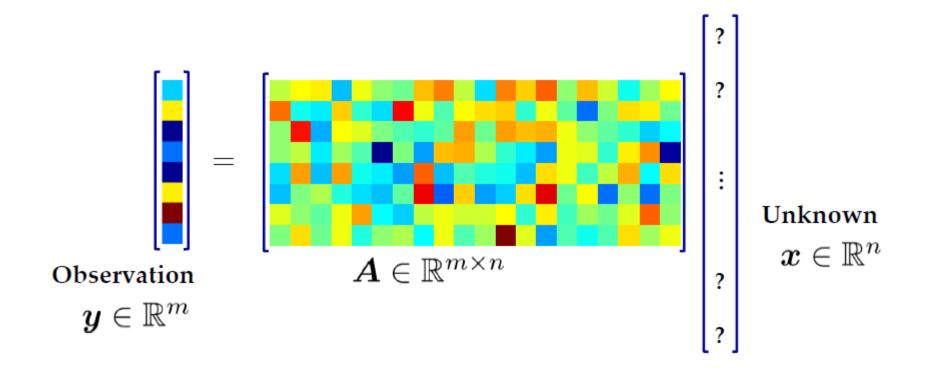
[W., Yang, Ganesh, Sastry, Ma '09]



Recognition



One large underdetermined system: y = A'x'



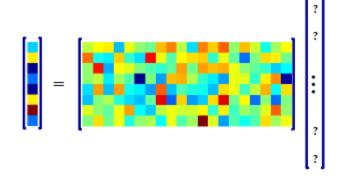
In all of these examples,
$$m \ll n$$
.

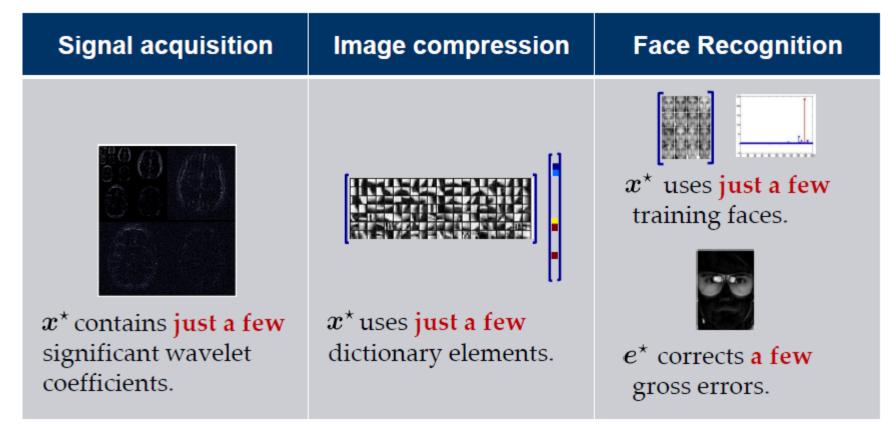
#observations #unknowns

Solution is **not unique** ... is there any hope?

WHAT DO WE KNOW ABOUT x?

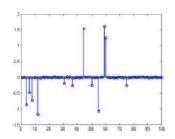
Underdetermined system $oldsymbol{y} = oldsymbol{A} oldsymbol{x}$





SPARSITY – More formally

A vector $x \in \mathbb{R}^n$ is **sparse** if only a few entries are nonzero:

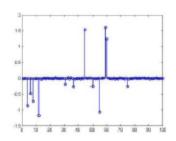


The **number of nonzeros** is called the ℓ^0 -"norm" of x:

$$\|\boldsymbol{x}\|_0 \doteq \#\{i \mid x_i \neq 0\}.$$

SPARSITY – More formally

A vector $x \in \mathbb{R}^n$ is **sparse** if only a few entries are nonzero:



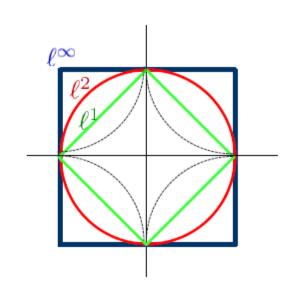
The **number of nonzeros** is called the ℓ^0 -"norm" of x:

$$\|\boldsymbol{x}\|_0 \doteq \#\{i \mid x_i \neq 0\}.$$

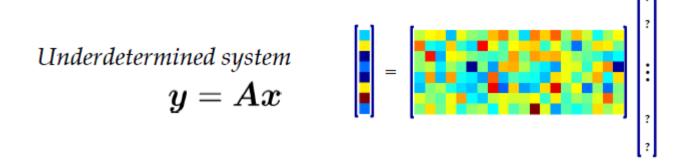
Geometrically

$$\|x\|_p = (\sum_i |x_i|^p)^{1/p}$$

$$\|\boldsymbol{x}\|_0 = \lim_{p \searrow 0} \|\boldsymbol{x}\|_p^p.$$



THE SPARSEST SOLUTION

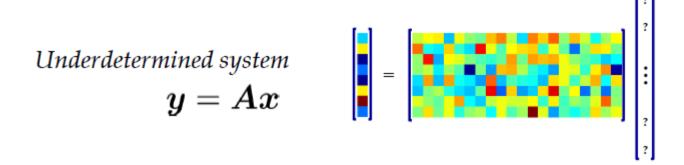


Look for the sparsest x that agrees with our observation:

minimize $\|\boldsymbol{x}\|_0$ subject to $\boldsymbol{A}\boldsymbol{x}=\boldsymbol{y}$.

[Demo]

THE SPARSEST SOLUTION



Look for the sparsest x that agrees with our observation:

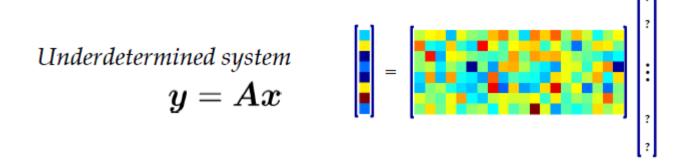
minimize $\|\boldsymbol{x}\|_0$ subject to $\boldsymbol{A}\boldsymbol{x}=\boldsymbol{y}$.

Theorem 1 (Gorodnitsky+Rao '97).

Suppose $\mathbf{y} = \mathbf{A}\mathbf{x}_0$, and let $k = \|\mathbf{x}_0\|_0$. If $\text{null}(\mathbf{A})$ contains no 2k-sparse vectors, \mathbf{x}_0 is the unique optimal solution to

minimize $\|\boldsymbol{x}\|_0$ subject to $\boldsymbol{y} = \boldsymbol{A}\boldsymbol{x}$.

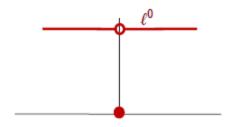
THE SPARSEST SOLUTION



Look for the sparsest x that agrees with our observation:

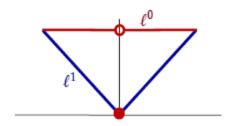
INTRACTABLE

The cardinality $\|\boldsymbol{x}\|_0$ is **nonconvex**:



minimize
$$\|\boldsymbol{x}\|_0$$
 subject to $A\boldsymbol{x}=\boldsymbol{y}$.

The cardinality $\|\boldsymbol{x}\|_0$ is **nonconvex**:



Its convex envelope* is

the
$$\ell^1$$
norm: $\|\boldsymbol{x}\|_1 = \sum_i |x_i|$

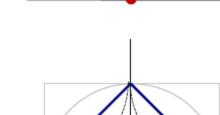
* Over the set $\{\boldsymbol{x} \mid |x_i| \leq 1 \ \forall i\}$

minimize
$$\|\boldsymbol{x}\|_0$$
 subject to $A\boldsymbol{x}=\boldsymbol{y}$.

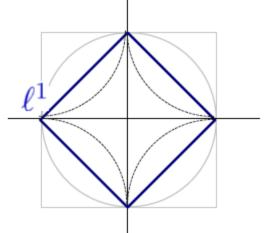
The cardinality $\|\boldsymbol{x}\|_0$ is **nonconvex**:

Its convex envelope* is

the
$$\ell^1$$
norm: $\|\boldsymbol{x}\|_1 = \sum_i |x_i|$



* Over the set $\{\boldsymbol{x} \mid |x_i| \leq 1 \ \forall i\}$



minimize
$$\|\boldsymbol{x}\|_0$$
 subject to $\boldsymbol{A}\boldsymbol{x}=\boldsymbol{y}$.

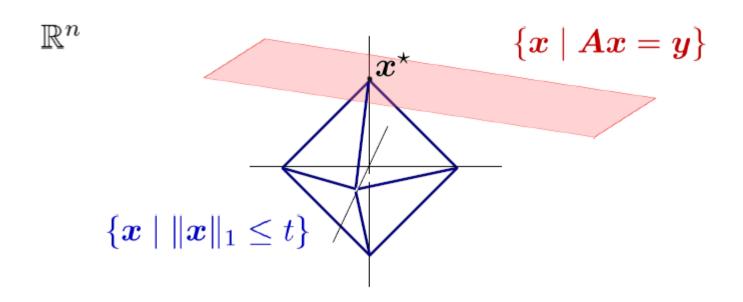
NP-hard, hard to appx. [Natarjan '95], [Amaldi+Kann '97]

minimize
$$\|x\|_1$$
 subject to $Ax = y$. Efficiently solvable

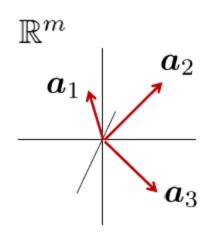
Have we lost anything? [demo]

WHY DOES THIS WORK? Geometric intuition

minimize $\|x\|_1$ subject to Ax = y.



We see:
$$\mathbf{y} = \mathbf{A}\mathbf{x} = \sum_{i \in \text{supp}(\mathbf{x})} \mathbf{a}_i x_i$$



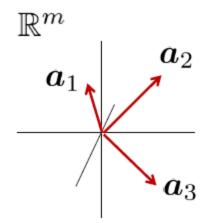
Intuition: Recovering x is "easier" if the a_i are not too similar...

Mutual coherence
$$\mu(\mathbf{A}) \doteq \max_{i \neq j} |\langle \mathbf{a}_i, \mathbf{a}_j \rangle|$$

Smaller is better!

Mutual coherence

$$\mu(\mathbf{A}) \doteq \max_{i \neq j} |\langle \mathbf{a}_i, \mathbf{a}_j \rangle|$$



Theorem 2 (Gribonval+Nielsen '03, Donoho+Elad '03) .

Suppose $y = Ax_0$ with

$$\|\boldsymbol{x}_0\|_0 < \frac{1}{2}(1 + 1/\mu(\boldsymbol{A})).$$

Then x_0 is the unique optimal solution to

minimize
$$\|\boldsymbol{x}\|_1$$
 subject to $\boldsymbol{y} = \boldsymbol{A}\boldsymbol{x}$.

Mutual coherence

The target solution x_0 is sufficiently structured (sparse!).

 $egin{array}{c|c} a_1 & a_2 \\ \hline & a_3 \\ \hline & a_3 \\ \hline \end{array}$

Theorem 2 (Gribonval+Nielsen '03, Donoho+Elad '03) .

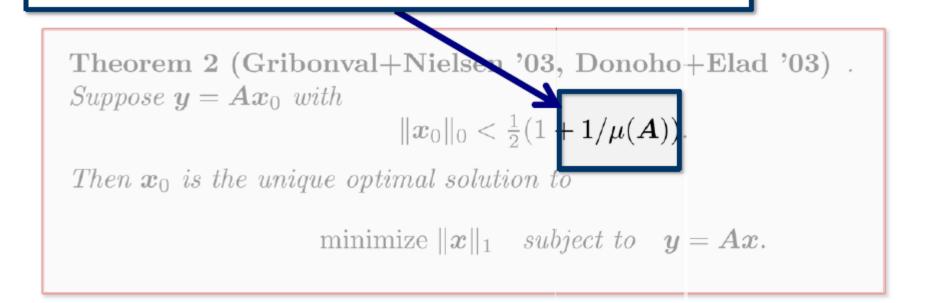
Suppose $y = Ax_0$ with

$$\|\boldsymbol{x}_0\|_0 < \frac{1}{2}(1 + 1/\mu(\boldsymbol{A})).$$

Then x_0 is the unique optimal solution to

minimize
$$\|x\|_1$$
 subject to $y = Ax$.

The matrix \boldsymbol{A} is **incoherent** – and so, preserves sparse \boldsymbol{x} .

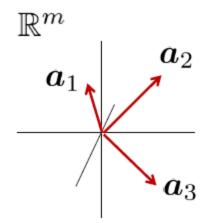


 a_2

 a_1

Mutual coherence

$$\mu(\mathbf{A}) \doteq \max_{i \neq j} |\langle \mathbf{a}_i, \mathbf{a}_j \rangle|$$



Theorem 2 (Gribonval+Nielsen '03, Donoho+Elad '03) .

Suppose $y = Ax_0$ with

$$\|\boldsymbol{x}_0\|_0 < \frac{1}{2}(1 + 1/\mu(\boldsymbol{A})).$$

Then x_0 is the unique optimal solution to

minimize
$$\|\boldsymbol{x}\|_1$$
 subject to $\boldsymbol{y} = \boldsymbol{A}\boldsymbol{x}$.

WHY CARE ABOUT THE THEORY?

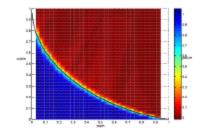
Motivates applications



... but be careful: need to justify (and modify) the basic models

Template for stronger results

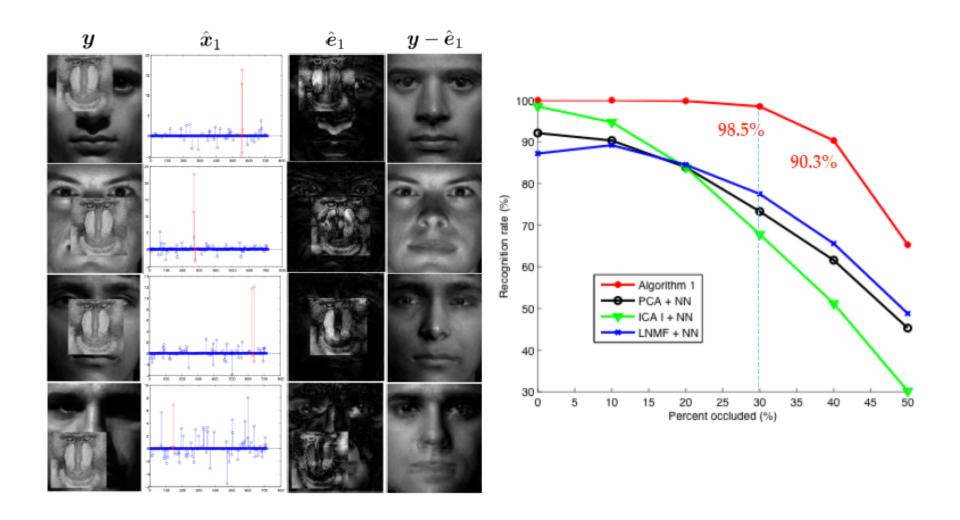
... predictions can be very sharp in high dimensions.



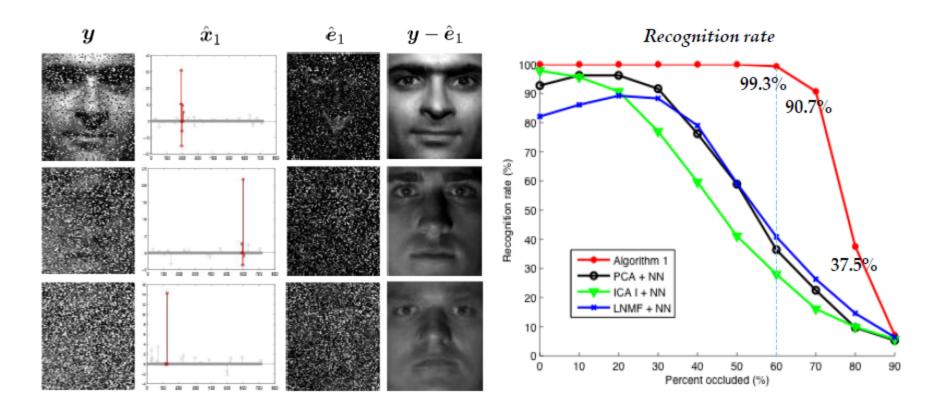
Generalizes to many other types of low-dimensional structure

... structured sparsity, low-rank recovery

MOTIVATING APPLICATIONS – Face Recognition

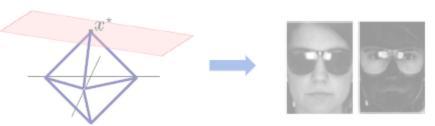


MOTIVATING APPLICATIONS – Face Recognition



WHY CARE ABOUT THE THEORY?

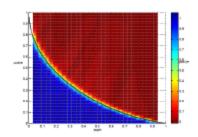
Motivates applications



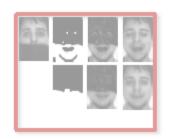
... but be careful: need to justify (and modify) the basic models [Lecture 2].

Template for stronger results

... predictions can be very sharp in high dimensions.



Generalizes to many other types of low-dimensional structure



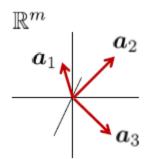
... structured sparsity, low-rank recovery

LIMITATIONS OF COHERENCE?

For any
$$m \times n$$
 \mathbf{A} , $\mu(\mathbf{A}) \geq \sqrt{\frac{n-m}{m(n-1)}}$

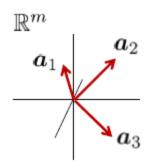
Prev. result therefore requires

$$\|\boldsymbol{x}_0\|_0 < \frac{1}{2}(1 + \mu(\boldsymbol{A})^{-1}) = O(\sqrt{m})$$



LIMITATIONS OF COHERENCE?

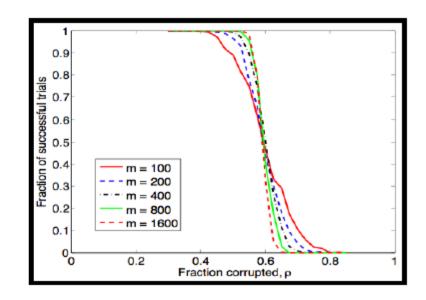
For any
$$m \times n$$
 \mathbf{A} , $\mu(\mathbf{A}) \geq \sqrt{\frac{n-m}{m(n-1)}}$



Prev. result therefore requires

$$\|\boldsymbol{x}_0\|_0 < \frac{1}{2}(1 + \mu(\boldsymbol{A})^{-1}) = O(\sqrt{m})$$

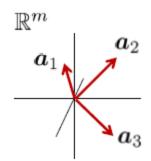
Truth is often **much better**:



Plot: Fraction of correct recovery vs. fraction of nonzeros $\|x_0\|_0/m$

LIMITATIONS OF COHERENCE?

For any
$$m \times n$$
 \mathbf{A} , $\mu(\mathbf{A}) \geq \sqrt{\frac{n-m}{m(n-1)}}$



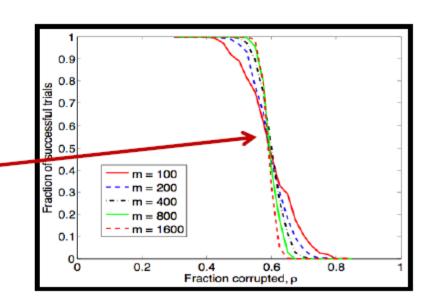
Prev. result therefore requires

$$\|\boldsymbol{x}_0\|_0 < \frac{1}{2}(1 + \mu(\boldsymbol{A})^{-1}) = O(\sqrt{m})$$

Truth is often much better:

Phase transition at

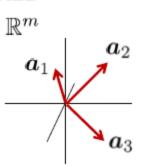
$$\|\boldsymbol{x}_0\|_0 = \alpha^* m$$



Plot: Fraction of correct recovery vs. fraction of nonzeros $\|x_0\|_0/m$

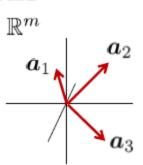
STRENGTHENING THE BOUND - the RIP

Incoherence: Each pair $A_{i,j} = [a_i \mid a_j]$ spread.



STRENGTHENING THE BOUND - the RIP

Incoherence: Each pair $A_{i,j} = [a_i \mid a_j]$ spread.



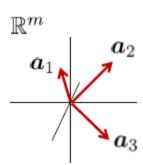
Generalize to subsets of size k:

 $oldsymbol{A}_I$ well-spread (almost orthonormal) for all I of size k

$$\implies$$
 all k -sparse $oldsymbol{x}$, $\|oldsymbol{A}oldsymbol{x}\|_2 pprox \|oldsymbol{x}\|_2$

STRENGTHENING THE BOUND - the RIP

Incoherence: Each pair $A_{i,j} = [a_i \mid a_j]$ spread.



Generalize to subsets of size k:

 $oldsymbol{A}_I$ well-spread (almost orthonormal) for all I of size k

$$\Longrightarrow$$
 all k -sparse $oldsymbol{x}$, $\|oldsymbol{A}oldsymbol{x}\|_2pprox\|oldsymbol{x}\|_2$

 \boldsymbol{A} satisfies the Restricted Isometry Property of order k with constant δ if for all k-sparse \boldsymbol{x} ,

$$(1-\delta)\|\boldsymbol{x}\|_2^2 \le \|\boldsymbol{A}\boldsymbol{x}\|_2^2 \le (1+\delta)\|\boldsymbol{x}\|_2^2.$$

IMPLICATIONS OF RIP

Good sparse recovery

Theorem 2 (Candès+Tao '05, Candès '08) . Suppose $y = Ax_0$ with

$$\delta_{2\|\boldsymbol{x}_0\|_0} < \sqrt{2} - 1.$$

Then x_0 is the unique optimal solution to

minimize $\|x\|_1$ subject to y = Ax.

IMPLICATIONS OF RIP

Good sparse recovery

Theorem 2 (Candès+Tao '05, Candès '08) . Suppose $y = Ax_0$ with

$$\delta_{2||\boldsymbol{x}_0||_0} < \sqrt{2} - 1.$$

Then x_0 is the unique optimal solution to

minimize $\|x\|_1$ subject to y = Ax.

Again, if ... x_0 is "structured" and A is "nice" we exactly recover x_0 .

Compare condition to condition $\|m{x}_0\|_0 < rac{1}{2}(1+\mu(m{A})^{-1})$

IMPLICATIONS OF RIP

Random A are great:

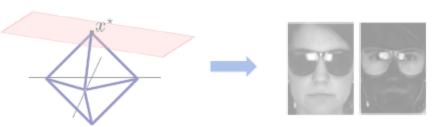
If
$$A\sim_{iid} \mathcal{N}(0,m^{-1/2})$$
 then A has RIP of order k with high probability, when $m\geq Ck\log(n/k)$.

For random $m{A}$, ℓ^1 works even when $\|m{x}_0\|_0 \sim m$.

Useful property for designing sampling operators (Compressed sensing).

WHY CARE ABOUT THE THEORY?

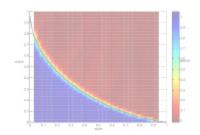
Motivates applications



... but be careful: need to justify (and modify) the basic models

Template for stronger results

... predictions can be very sharp in high dimensions.



Generalizes to many other types of low-dimensional structure

... structured sparsity, low-rank recovery

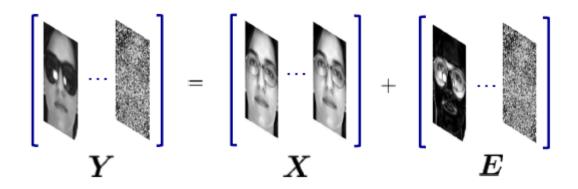
GENERALIZATIONS – From Sparse to Low-Rank

So far: Recovering a single sparse vector:

Next: Recovering low-rank matrix (many correlated vectors):

$$egin{bmatrix} oldsymbol{W} & oldsymbol{X} & oldsymbol{X} & oldsymbol{E} \end{pmatrix}$$

FORMULATION – Robust PCA?



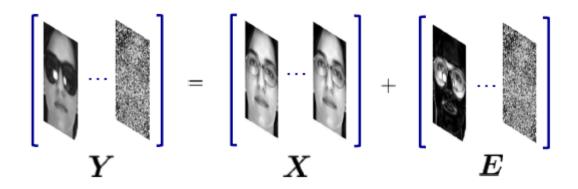
Given Y = X + E, with X low-rank, E sparse, recover X.

Numerous approaches to **robust PCA** in the literature:

- Multivariate trimming [Gnanadeskian + Kettering '72]
- Random sampling [Fischler + Bolles '81]
- Alternating minimization [Ke + Kanade '03]
- Influence functions [de la Torre + Black '03]

Can we give an efficient, provably correct algorithm?

FORMULATION – Robust PCA?



Given Y = X + E, with X low-rank, E sparse, recover X.

Numerous approaches to **robust PCA** in the literature:

- Multivariate trimming [Gnanadeskian + Kettering '72]
- Random sampling [Fischler + Bolles '81]
- Alternating minimization [Ke + Kanade '03]
- Influence functions [de la Torre + Black '03]

Can we give an efficient, provably correct algorithm?

RELATED SOLUTIONS – Matrix recovery

Classical PCA/SVD – low rank + noise [Hotelling '35, Karhunen+Loeve '72,...]

Given
$$Y = X + Z$$
, recover X .

Stable, efficient algorithm, theoretically optimal → huge impact

Matrix Completion – low rank, missing data

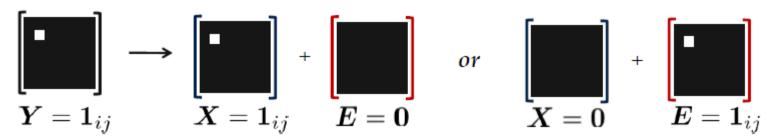
From $Y = \mathcal{P}_{\Omega}[X]$, recover X.

[Candès + Recht '08, Candès + Tao '09, Keshevan, Oh, Montanari '09, Gross '09, Ravikumar and Wainwright '10]

Increasingly well-understood; solvable if X is low rank and Ω large enough.

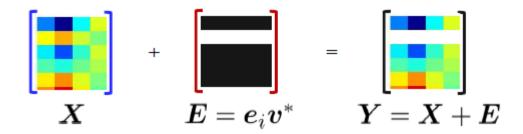
WHY IS THE PROBLEM HARD?

Some very sparse matrices are also low-rank:



Can we recover X that are incoherent with the standard basis?

Certain sparse error patterns E make recovering X impossible:



Can we correct E whose support is not adversarial?

WHEN IS THERE HOPE? Again, (in)coherence

Can we recover X that are incoherent with the standard basis from almost all errors E?

Incoherence condition on singular vectors, singular values arbitrary:

Singular vectors of
$$\boldsymbol{X}$$
 not too spiky:
$$\begin{cases} \max_i \|\boldsymbol{U}_i\|^2 \leq \mu r/m, \\ \max_i \|\boldsymbol{V}_i\|^2 \leq \mu r/n. \end{cases}$$

not too cross-correlated: $\| \boldsymbol{U} \boldsymbol{V}^* \|_{\infty} \leq \sqrt{\mu r/mn}$

Uniform model on error support, signs and magnitudes arbitrary:

$$\operatorname{support}(\boldsymbol{E}) \sim \operatorname{uni}\binom{[m] \times [n]}{\rho m n}$$

... AND HOW SHOULD WE SOLVE IT?

Naïve optimization approach

Look for a low-rank $oldsymbol{X}$ that agrees with the data up to some sparse error $oldsymbol{E}$:

$$\min \operatorname{rank}(\boldsymbol{X}) + \gamma \|\boldsymbol{E}\|_{0} \operatorname{subj} \boldsymbol{X} + \boldsymbol{E} = \boldsymbol{Y}.$$

$$\operatorname{rank}(\boldsymbol{X}) = \#\{\sigma_{i}(\boldsymbol{X}) \neq 0\}. \quad \|\boldsymbol{E}\|_{0} = \#\{\boldsymbol{E}_{ij} \neq 0\}.$$

... AND HOW SHOULD WE SOLVE IT?

Naive optimization approach

Look for a low-rank X that agrees with the data up to some sparse error E:

$$\min \ \mathrm{rank}(\boldsymbol{X}) + \gamma \|\boldsymbol{E}\|_0 \ \ \mathrm{subj} \ \boldsymbol{X} + \boldsymbol{E} = \boldsymbol{Y}.$$
 $\mathrm{rank}(\boldsymbol{X}) = \#\{\sigma_i(\boldsymbol{X}) \neq 0\}.$ $\|\boldsymbol{E}\|_0 = \#\{\boldsymbol{E}_{ij} \neq 0\}$

INTRACTABLE

... AND HOW SHOULD WE SOLVE IT?

Naïve optimization approach

Look for a low-rank $oldsymbol{X}$ that agrees with the data up to some sparse error $oldsymbol{E}$:

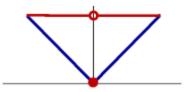
$$\min \operatorname{rank}(\boldsymbol{X}) + \gamma \|\boldsymbol{E}\|_{0} \quad \operatorname{subj} \quad \boldsymbol{X} + \boldsymbol{E} = \boldsymbol{Y}.$$

Convex relaxation

$$\operatorname{rank}(\boldsymbol{X}) = \#\{\sigma_i(\boldsymbol{X}) \neq 0\}. \qquad \|\boldsymbol{E}\|_0 = \#\{\boldsymbol{E}_{ij} \neq 0\}.$$

$$\downarrow \downarrow \qquad \qquad \downarrow \downarrow$$

$$\|\boldsymbol{X}\|_* = \sum_i \sigma_i(\boldsymbol{X}). \qquad \|\boldsymbol{E}\|_1 = \sum_{ij} |\boldsymbol{E}_{ij}|.$$



Nuclear norm heuristic: [Fazel, Hindi, Boyd '01], see also [Recht, Fazel, Parillo '08] [Chandrasekharan et. al. '11]

MAIN RESULT – Correct recovery

Theorem 1 (Principal Component Pursuit). If $X_0 \in \mathbb{R}^{m \times n}$, $m \geq n$ has rank

$$r \le \rho_r \frac{n}{\mu \log^2(m)}$$

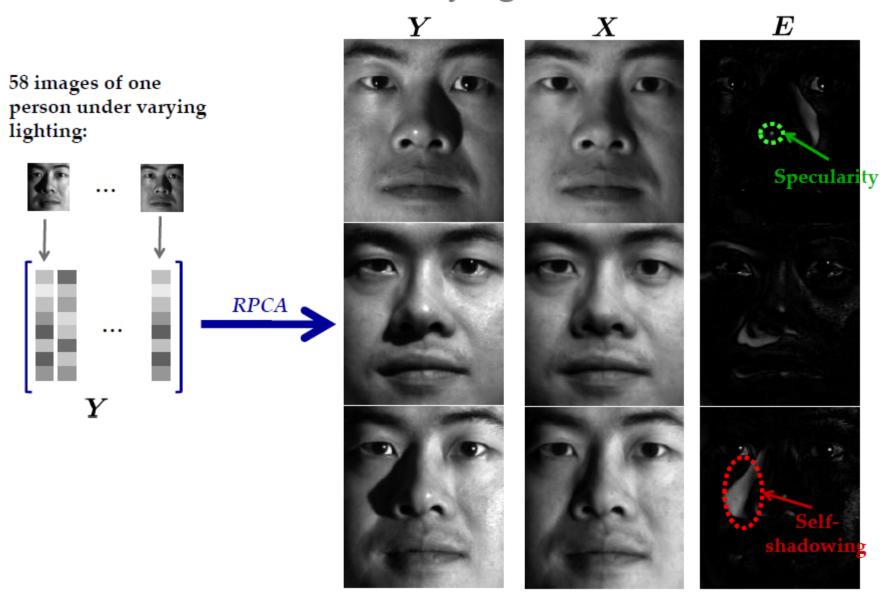
and E_0 has Bernoulli support with error probability $\rho \leq \rho_s^{\star}$, then with very high probability

$$(X_0, E_0) = \arg \min \|X\|_* + \frac{1}{\sqrt{m}} \|E\|_1 \quad \text{subj} \quad X + E = X_0 + E_0,$$

and the minimizer is unique.

"Convex optimization recovers matrices of rank $O\left(\frac{n}{\log^2 m}\right)$ from errors corrupting $O\left(mn\right)$ entries"

EXAMPLE – Faces under varying illumination

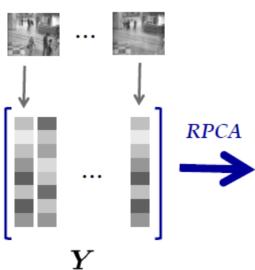


APPLICATIONS – Background modeling from video

Static camera surveillance video

200 frames, 144 x 172 pixels,

Significant foreground motion



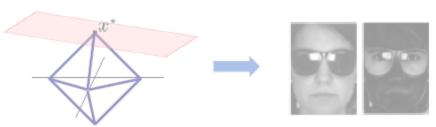
Video Y = Low-rank appx. X+ Sparse error E

BIG PICTURE – Parallelism of Sparsity and Low-Rank

	Sparse Vector	Low-Rank Matrix
Degeneracy of	individual signal	correlated signals
Measure	L_0 norm $ x _0$	$\operatorname{rank}(X)$
Convex Surrogate	$\mathbf{L_1}$ norm $\ x\ _1$	Nuclear norm $\ X\ _*$
Compressed Sensing	y = Ax	Y = A(X)
Error Correction	y = Ax + e	Y = A(X) + E
Domain Transform	$y \circ \tau = Ax + e$	$Y \circ \tau = A(X) + E$
Mixed Structures	Y = A(X) + B(E) + Z	

WHY CARE ABOUT THE THEORY?

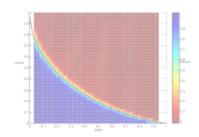
Motivates applications



... but be careful: need to justify (and modify) the basic models

Template for stronger results

... predictions can be very sharp in high dimensions.



Generalizes to many other types of low-dimensional structure

... structured sparsity, low-rank recovery

Atomic norm: choose a set of atoms \mathcal{A} . Write

$$\|\boldsymbol{x}\|_{\diamond} = \inf \left\{ \sum_{i} c_{i} \mid \sum_{i} c_{i} \boldsymbol{a}_{i} = \boldsymbol{x}, \ c_{i} > 0, \boldsymbol{a}_{i} \in \mathcal{A} \right\}$$

[Chandrasekharan et. al. '12]

Atomic norm: choose a set of atoms A. Write

$$\|oldsymbol{x}\|_{\diamond}=\inf\left\{\sum_{i}c_{i}\mid\sum_{i}c_{i}oldsymbol{a}_{i}=oldsymbol{x},\;c_{i}>0,oldsymbol{a}_{i}\in\mathcal{A}
ight\}$$
 E.g., sparsity $\mathcal{A}=\{oldsymbol{e}_{i}\mid i=1\dots n\}$, $\|oldsymbol{x}\|_{\diamond}=\|oldsymbol{x}\|_{\ell^{1}}$ low-rank $\mathcal{A}=\{oldsymbol{u}oldsymbol{v}^{*}\mid\|oldsymbol{u}\|_{2}=\|oldsymbol{v}\|_{2}=1\}$, $\|oldsymbol{x}\|_{\diamond}=\|oldsymbol{x}\|_{*}$

[Chandrasekharan et. al. '12]

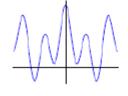
Atomic norm: choose a set of atoms A. Write

$$\|\boldsymbol{x}\|_{\diamond} = \inf \left\{ \sum_{i} c_{i} \mid \sum_{i} c_{i} \boldsymbol{a}_{i} = \boldsymbol{x}, \ c_{i} > 0, \boldsymbol{a}_{i} \in \mathcal{A} \right\}$$

E.g., sparsity
$$A = \{e_i \mid i = 1 \dots n\}$$
, $\|x\|_{\diamond} = \|x\|_{\ell^1}$
low-rank $A = \{uv^* \mid \|u\|_2 = \|v\|_2 = 1\}$, $\|x\|_{\diamond} = \|x\|_*$

column sparsity

$$\mathcal{A}=\{oldsymbol{u}oldsymbol{e}_i^*\mid \|oldsymbol{u}\|_2=1,\ i=1\dots n\}$$
 e.g., [Xu+Caramanis+Sanghavi'12]



$$\mathcal{A} = \{e^{2\pi f t + \xi} \mid f \in [0, 1], \ \xi \in [0, 2\pi)\}$$
[Tang + Recht '12]

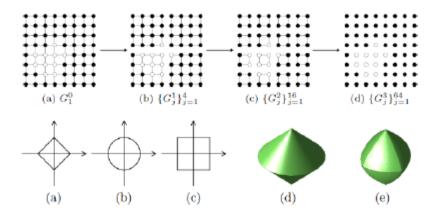
[Candes + Fernandez-Garza '12]

Atomic norm: choose a set of atoms A. Write

$$\|\boldsymbol{x}\|_{\diamond} = \inf \left\{ \sum_{i} c_{i} \mid \sum_{i} c_{i} \boldsymbol{a}_{i} = \boldsymbol{x}, c_{i} > 0, \boldsymbol{a}_{i} \in \mathcal{A} \right\}$$

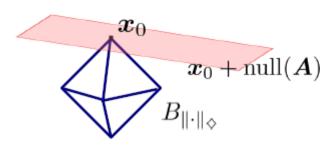
E.g., sparsity
$$A = \{e_i \mid i = 1 \dots n\}$$
, $\|x\|_{\diamond} = \|x\|_{\ell^1}$
low-rank $A = \{uv^* \mid \|u\|_2 = \|v\|_2 = 1\}$, $\|x\|_{\diamond} = \|x\|_*$

spatial sparsity



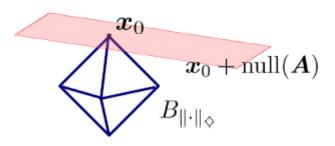
[Bach '11] [Jia et. '12]

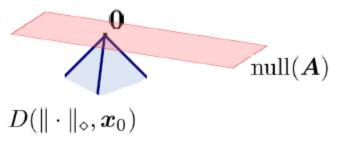
Observe: $m{y} = m{A} m{x}_0$ with $m{A} \sim \mathcal{N}(0,1)$ random. When does $\min \| m{x} \|_{\diamond}$ s.t. $m{A} m{x} = m{y}$ uniquely recover $m{x}_0$?



Observe: $m{y} = m{A} m{x}_0$ with $m{A} \sim \mathcal{N}(0,1)$ random. When does $\min \|m{x}\|_{\diamond}$ s.t. $m{A} m{x} = m{y}$

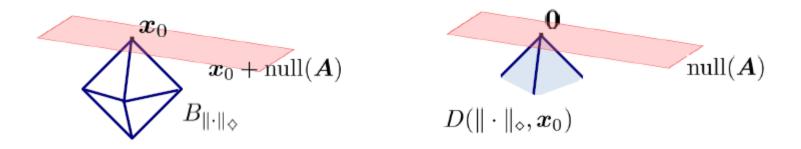
uniquely recover x_0 ?





Observe: $m{y} = m{A} m{x}_0$ with $m{A} \sim \mathcal{N}(0,1)$ random. When does $\min \|m{x}\|_{\diamond}$ s.t. $m{A} m{x} = m{y}$

uniquely recover x_0 ?



Recovery iff the descent cone

$$D(\|\cdot\|_{\diamond}, \boldsymbol{x}_{0}) = \{\boldsymbol{v} \mid \|\boldsymbol{x}_{0} + t\boldsymbol{v}\|_{\diamond} \leq \|\boldsymbol{x}_{0}\|_{\diamond} \text{ for some } t > 0\}$$
has $D(\|\cdot\|_{\diamond}, \boldsymbol{x}_{0}) \cap \text{null}(\boldsymbol{A}) = \{\boldsymbol{0}\}.$

More likely if descent cone is "small". Can we make this precise?

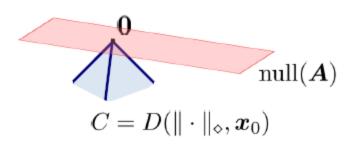
Observe: $y = Ax_0$ with $A \sim \mathcal{N}(0,1)$ random. When does

$$\min \|\boldsymbol{x}\|_{\diamond}$$
 s.t. $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{y}$

uniquely recover x_0 ?

The **statistical dimension** of a cone C is

$$\delta(C) = \mathbb{E}_{\boldsymbol{g} \sim \mathcal{N}(0,1)} \left[\| P_C \boldsymbol{g} \|^2 \right].$$



Many nice properties. E.g., if C a subspace, $\delta(C) = \dim(C)$.

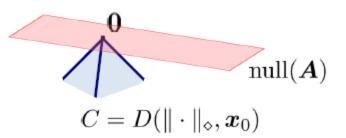
Observe: $y = Ax_0$ with $A \sim \mathcal{N}(0,1)$ random. When does

$$\min \|\boldsymbol{x}\|_{\diamond}$$
 s.t. $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{y}$

uniquely recover x_0 ?

The **statistical dimension** of a cone C is

$$\delta(C) = \mathbb{E}_{\boldsymbol{g} \sim \mathcal{N}(0,1)} \left[\| P_C \boldsymbol{g} \|^2 \right].$$



Many nice properties. E.g., if C a subspace, $\delta(C) = \dim(C)$.

Sharp **phase transition** at $m = \delta(C)$:

$$m > \delta(C) \implies \mathbb{P}[\text{recovery}] > 1 - \exp\left(-c(m - \delta(C))^2/n\right)$$

 $m < \delta(C) \implies \mathbb{P}[\text{recovery}] < \exp\left(-c(m - \delta(C))^2/n\right)$

[Amelunxen, McCoy, Lotz, Tropp '13]

General theory: decomposing two structures

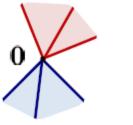
Observe: $y = x_0 + z_0$ with regularizers $||x||_{\diamond,1}$, $||z||_{\diamond,2}$. Does

$$\min \|x\|_{\diamond,1} + \|z\|_{\diamond,2}$$
 s.t. $x + z = y$

uniquely recover x_0 , z_0 ?

Variant: $\min \|\boldsymbol{x}\|_{\diamond,1}$ s.t. $\|\boldsymbol{z}\|_{\diamond,2} \leq 1, \ \boldsymbol{x} + \boldsymbol{z} = \boldsymbol{y}$

$$C_2 = D(\|\cdot\|_{\diamond,2}, \boldsymbol{z}_0)$$



$$C_1 = D(\|\cdot\|_{\diamond,1}, \boldsymbol{x}_0)$$

General theory: decomposing two structures

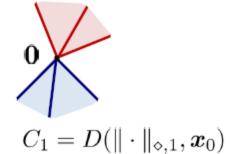
Observe: $y = x_0 + z_0$ with regularizers $||x||_{\diamond,1}$, $||z||_{\diamond,2}$. Does

$$\min \|\boldsymbol{x}\|_{\diamond,1} + \|\boldsymbol{z}\|_{\diamond,2}$$
 s.t. $\boldsymbol{x} + \boldsymbol{z} = \boldsymbol{y}$

uniquely recover x_0 , z_0 ?

Variant:
$$\min \|\boldsymbol{x}\|_{\diamond,1}$$
 s.t. $\|\boldsymbol{z}\|_{\diamond,2} \leq 1, \ \boldsymbol{x} + \boldsymbol{z} = \boldsymbol{y}$

$$C_2 = D(\|\cdot\|_{\diamond,2}, \boldsymbol{z}_0)$$



In a random incoherence model (C_2 randomly rotated), phase transition at

$$\delta(C_1) + \delta(C_2) = n$$

$$n > \delta(C_1) + \delta(C_2) \implies \mathbb{P}[\text{recovery}] > 1 - \exp\left(-c(n - \delta(C_1) - \delta(C_2))^2/n\right)$$

 $n < \delta(C_1) + \delta(C_2) \implies \mathbb{P}[\text{recovery}] < \exp\left(-c(n - \delta(C_1) - \delta(C_2))^2/n\right)$

[Amelunxen, McCoy, Lotz, Tropp '13]

General theory: statistical estimation

Observe: noisy measurements $y = Ax_0 + z$. Noise-aware optimization:

$$\min \|oldsymbol{x}\|_{\diamond} + rac{\gamma}{2} \|oldsymbol{A}oldsymbol{x} - oldsymbol{y}\|_2^2$$

E.g., Basis pursuit denoising:
$$\min \|\boldsymbol{x}\|_1 + \frac{\lambda}{2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|_2^2$$

Noise-aware RPCA: $\min \|\boldsymbol{L}\|_* + \lambda \|\boldsymbol{S}\|_1 + \frac{\gamma}{2} \|\boldsymbol{L} + \boldsymbol{S} - \boldsymbol{D}\|_F^2$

When does $\min \|\boldsymbol{x}\|_{\diamond} + \frac{\gamma}{2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|_{2}^{2}$ produce $\hat{\boldsymbol{x}} \approx \boldsymbol{x}_{0}$?

General theory for decomposable regularizers $\|\cdot\|_{\diamond}$

[Negahbhan, Agarwal, Yu, Wainwright '12]

A suite of models and theoretical guarantees

For robust recovery of a family of low-dimensional structures:

- [Zhou et. al. '09] Spatially contiguous sparse errors via MRF
- [Bach '10] structured relaxations from submodular functions
- [Negahban+Yu+Wainwright '10] geometric analysis of recovery
- [Becker+Candès+Grant '10] algorithmic templates
- [Xu+Caramanis+Sanghavi '11] column sparse errors L_{2,1} norm
- [Recht+Parillo+Chandrasekaran+Wilsky '11] compressive sensing of various structures
- [Candes+Recht '11] compressive sensing of decomposable structures

$$X^0 = \arg\min \|X\|_{\diamond}$$
 s.t. $\mathcal{P}_Q(X) = \mathcal{P}_Q(X^0)$

[McCoy+Tropp'11] – decomposition of sparse and low-rank structures

$$(X_1^0, X_2^0) = \arg\min \|X_1\|_{(1)} + \lambda \|X_2\|_{(2)}$$
 s.t. $X_1 + X_2 = X_1^0 + X_2^0$

[W.+Ganesh+Min+Ma, I&I'13] – superposition of decomposable structures

$$(X_1^0, \dots, X_k^0) = \arg\min \sum \lambda_i ||X_i||_{(i)} \text{ s.t. } \mathcal{P}_Q(\sum_i X_i) = \mathcal{P}_Q(\sum_i X_i^0)$$

Take home message: Let the data and application tell you the structure...