
Learning Low-rank Transformations:

Algorithms and Applications

Qiang Qiu

Guillermo Sapiro

Motivation

Outline

 Low-rank transform - algorithms and theories

 Applications

 Subspace clustering

 Classification

 Hashing/indexing

3

Algorithms and Theories

A Toy Formulation

 A toy formulation

 Notation
 Yc denotes d-dim points in the c-th class (arranged as columns).

 Y=[Y1, Y2, …, YC], points from all C classes.

 T is a learned d×d transformation matrix.

 Theorem
 Non-negative.

 But zero for independent matrices.

Intra-class Inter-class
Non-trivial solution

Low-rank Transformation

 Basic formulation

 |A|* denotes the nuclear norm of the matrix A:
 The sum of the singular values of A.

 A good approximation to the matrix rank.

 Theorem:
 Non-negative

 Zero for orthogonal subspaces
 Not true for rank and other popular norms

 Works on-line.

 Works with compressing transform matrix.

Low-rank Transformation

rank(A)=1, rank(B)=1, rank([A B]) =2

Low-rank Transformation

Theorem 1

Theorem 2

Other Popular Norms?

Kernelized Transform

12

Transform-based Dimension

Reduction

13

Extended YaleB face dataset

Subspace Clustering using Low-rank

Transform

Subspace clustering

15

Robust Sparse Subspace Clustering

(R-SSC)
 For the transformed points, we first recover their low-

rank representation L

 Each transformed point Tyi is then represented using

its KNN in L, denoted as Li

 Let ,

 Perform spectral clustering on sparse representation

matrix (|X|+|X’|)

16

17

18

Misclassification rate (e%) on clustering different subjects.

Classification using Low-rank

Transform

Basic Scheme

 For the c-th class, we first recover its low-rank

representation Lc

 Each testing point y is assigned to Lc that gives the

minimal reconstruction error

20

21

Face recognition across illumination

22

Face recognition across pose and illumination

Classification using Transform Forest

Transform Forest

Transform learner

 Learn T at each split node

 Kernelized version

25

Transform Learner

 Random Grouping: Randomly partition training classes arriving at

each split node into two groups.

 Learn a pair of dictionaries D±, for each of the two

groups by minimizing

 The split function is evaluated using the reconstruction error,

 where

26

Results

Quantitative Results

Extended YaleB face dataset

On the Number of Trees

Hashing using Transform Forest

Motivation

 Hash/binary codes are needed to deal with big data

 Storage

 Retrieval

31

ForestHash

 Challenge 1: Create consistent hash codes in each tree.

 Low-rank transform.

 Challenge 2: Merging trees for unique codes per class.

 A mutual information based technique for near-optimal

code aggregation.

32

We simply set ‘1’ for the visited

nodes, and ‘0’ for the rest,

obtaining a (2d−2)-bit hash code.

Challenge 1: Consistent Codes

 Transform learner: learn T at each split node

 Random Grouping: Randomly partition training classes arriving at

each split node into two groups.

 Each tree enforces consistent but non-unique codes for a class.

 But each class shares codes with different classes in different trees.

33

Challenge 2: Code Aggregation

 Hash codes from a random forest consisting M trees

for N training samples

 Our objective is to select k code blocks B∗,

 k ≤ L/(2d − 2)

 Unsupervised code aggregation,

 Supervised code aggregation (class labels C),

 Semi-supervised code aggregation,

34

Example 1: Image Retrieval

35

HDML and DeepNet are deep learning based hashing methods.

Example 1: Image Retrieval

36

Cifar-10 dataset

Example 2: Cross-modality

37

The Wikipedia dataset

Example 3: Document Retrieval

38

Reuters21578 dataset

Example 4: Faces

39

… FaceHash

Each face is indexed by a 48-bit hash code.

~30 microseconds to index a face.

~20 milliseconds to scan one million faces.

40

The blacklist/whitelist scenario

- Enrolling in a list 200 subjects.

- 5,992 face queries

~24 seconds to index all 0.7M faces.

~16 milliseconds to query 0.7M faces.

Query over a 73K database containing 37,007 unseen

faces from 200 known subjects and 35,902 unseen faces

from 27,859 unknown subjects.

Query over a 0.7M database containing 37,007 unseen

faces (200 known subjects) and 0.7M unseen faces (

29,392 unknown subjects).

Example 4: Faces

41

Example 5: Cross-modality Faces

42

Face attributes

Example 5: Cross-modality Faces

43

44

 Thank you!

45

Reference

 Qiang Qiu, Guillermo Sapiro, "Learning Transformations for Clustering and

Classification", Journal of Machine Learning Research (JMLR),

16(Feb):187−225, 2015

 Qiang Qiu, Guillermo Sapiro, Alex Bronstein, "Random Forests Can Hash",

International Conference on Learning Representations (ICLR) Workshop,

2015

 Qiang Qiu and Guillermo Sapiro, "Learning Transformations for

Classification Forests", International Conference on Learning

Representations (ICLR), 2014

 Qiang Qiu and Guillermo Sapiro, "Learning Compressed Image Classification

Features", International Conference on Image Processing, 2014

46

The Concave-Convex Procedure

 Difference of convex function

 A simple projected subgradient method

47

A subgradient of matrix nuclear

norm

48

