

Learning Low-rank Transformations: Algorithms and Applications

Qiang Qiu Guillermo Sapiro

Motivation

Outline

- □ Low-rank transform algorithms and theories
- Applications
 - Subspace clustering
 - Classification
 - Hashing/indexing

Algorithms and Theories

A Toy Formulation

• A toy formulation

$$\arg \min \sum_{c=1}^{C} rank(\mathbf{T}\mathbf{Y}_{c}) - rank(\mathbf{T}\mathbf{Y}), \quad \text{s.t.} ||\mathbf{T}||_{2} = 1$$

Intra-class Inter-class Non-trivial solution

- Notation
 - Y_c denotes *d*-dim points in the *c*-th class (arranged as columns).
 - $Y=[Y_1, Y_2, ..., Y_C]$, points from all C classes.
 - \Box T is a learned d×d transformation matrix.
- Theorem $rank([\mathbf{A}, \mathbf{B}]) \le rank(\mathbf{A}) + rank(\mathbf{B})$
 - □ Non-negative.
 - □ But zero for independent matrices.

Low-rank Transformation

Basic formulation

 $\underset{\mathbf{T}}{\operatorname{arg\,min}} \sum_{c=1}^{C} ||\mathbf{T}\mathbf{Y}_{c}||_{*} - ||\mathbf{T}\mathbf{Y}||_{*}, \quad \text{s.t.} ||\mathbf{T}||_{2} = 1.$

■ |**A**|_{*} denotes the nuclear norm of the matrix **A**:

• The sum of the singular values of **A**.

- A good approximation to the matrix rank.
- Theorem:
 - □ Non-negative
 - Zero for orthogonal subspaces
 - Not true for rank and other popular norms
- Works on-line.
- Works with compressing transform matrix.

Theorem 1

Theorem 1 Let A and B be matrices of the same row dimensions, and [A, B] be the concatenation of A and B, we have

 $||[\mathbf{A},\mathbf{B}]||_* \leq ||\mathbf{A}||_* + ||\mathbf{B}||_*.$

Proof:

 $||\mathbf{A}||_* + ||\mathbf{B}||_* = ||[\mathbf{A} \ \mathbf{0}]||_* + ||[\mathbf{0} \ \mathbf{B}]||_* \geq ||[\mathbf{A} \ \mathbf{0}] + [\mathbf{0} \ \mathbf{B}]||_* = ||[\mathbf{A}, \mathbf{B}]||_*$

Theorem 2

Theorem 2 Let A and B be matrices of the same row dimensions, and [A, B] be the concatenation of A and B, we have

 $||[\mathbf{A},\mathbf{B}]||_* = ||\mathbf{A}||_* + ||\mathbf{B}||_*.$

when the column spaces of A and B are orthogonal.

Proof: We perform the singular value decomposition of \mathbf{A} and \mathbf{B} as

$$\mathbf{A} = \begin{bmatrix} \mathbf{U}_{\mathbf{A}1} \mathbf{U}_{\mathbf{A}2} \end{bmatrix} \begin{bmatrix} \boldsymbol{\Sigma}_{\mathbf{A}} & 0\\ 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{V}_{\mathbf{A}1} \mathbf{V}_{\mathbf{A}2} \end{bmatrix}', \quad \mathbf{B} = \begin{bmatrix} \mathbf{U}_{\mathbf{B}1} \mathbf{U}_{\mathbf{B}2} \end{bmatrix} \begin{bmatrix} \boldsymbol{\Sigma}_{\mathbf{B}} & 0\\ 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{V}_{\mathbf{B}1} \mathbf{V}_{\mathbf{B}2} \end{bmatrix}',$$

where the diagonal entries of Σ_A and Σ_B contain non-zero singular values. We have

$$\mathbf{A}\mathbf{A}' = \begin{bmatrix} \mathbf{U}_{\mathbf{A}1}\mathbf{U}_{\mathbf{A}2} \end{bmatrix} \begin{bmatrix} \boldsymbol{\Sigma}_{\mathbf{A}}^2 & 0\\ 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{U}_{\mathbf{A}1}\mathbf{U}_{\mathbf{A}2} \end{bmatrix}', \quad \mathbf{B}\mathbf{B}' = \begin{bmatrix} \mathbf{U}_{\mathbf{B}1}\mathbf{U}_{\mathbf{B}2} \end{bmatrix} \begin{bmatrix} \boldsymbol{\Sigma}_{\mathbf{B}}^2 & 0\\ 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{U}_{\mathbf{B}1}\mathbf{U}_{\mathbf{B}2} \end{bmatrix}'.$$

The column spaces of A and B are considered to be orthogonal, i.e., $U_{A1}'U_{B1} = 0$. The above can be written as

$$\mathbf{A}\mathbf{A}' = \begin{bmatrix} \mathbf{U}_{\mathbf{A}\mathbf{1}}\mathbf{U}_{\mathbf{B}\mathbf{1}} \end{bmatrix} \begin{bmatrix} \boldsymbol{\Sigma}_{\mathbf{A}}^2 & 0\\ 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{U}_{\mathbf{A}\mathbf{1}}\mathbf{U}_{\mathbf{B}\mathbf{1}} \end{bmatrix}', \quad \mathbf{B}\mathbf{B}' = \begin{bmatrix} \mathbf{U}_{\mathbf{A}\mathbf{1}}\mathbf{U}_{\mathbf{B}\mathbf{1}} \end{bmatrix} \begin{bmatrix} 0 & 0\\ 0 & \boldsymbol{\Sigma}_{\mathbf{B}}^2 \end{bmatrix} \begin{bmatrix} \mathbf{U}_{\mathbf{A}\mathbf{1}}\mathbf{U}_{\mathbf{B}\mathbf{1}} \end{bmatrix}'.$$

Then, we have

$$[\mathbf{A},\mathbf{B}][\mathbf{A},\mathbf{B}]' = \mathbf{A}\mathbf{A}' + \mathbf{B}\mathbf{B}' = [\mathbf{U}_{\mathbf{A}\mathbf{1}}\mathbf{U}_{\mathbf{B}\mathbf{1}}] \begin{bmatrix} \boldsymbol{\Sigma}_{\mathbf{A}}^2 & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\Sigma}_{\mathbf{B}}^2 \end{bmatrix} [\mathbf{U}_{\mathbf{A}\mathbf{1}}\mathbf{U}_{\mathbf{B}\mathbf{1}}]'.$$

The nuclear norm $||\mathbf{A}||_*$ is the sum of the square root of the singular values of $\mathbf{A}\mathbf{A}'$. Thus, $||[\mathbf{A},\mathbf{B}]||_* = ||\mathbf{A}||_* + ||\mathbf{B}||_*$.

Other Popular Norms?

Proposition 3 Let A and B be matrices of the same row dimensions, and [A, B] be the concatenation of A and B, we have

 $||[\mathbf{A},\mathbf{B}]||_2 \le ||\mathbf{A}||_2 + ||\mathbf{B}||_2,$

with equality if at least one of the two matrices is zero.

Proposition 4 Let A and B be matrices of the same row dimensions, and [A, B] be the concatenation of A and B, we have

 $||[\mathbf{A},\mathbf{B}]||_F \le ||\mathbf{A}||_F + ||\mathbf{B}||_F,$

with equality if and only if at least one of the two matrices is zero.

Kernelized Transform

$$\min_{\mathbf{T}} \sum_{c=1}^{C} ||\mathbf{T}\mathcal{K}(\mathbf{Y}_{c})||_{*} - ||\mathbf{T}\mathcal{K}(\mathbf{Y})||_{*}, \text{ s.t. } ||\mathbf{T}||_{2} = 1.$$

$$\mathcal{K}(\mathbf{y}) = (\kappa(\mathbf{y}, \mathbf{y}_1); ...; \kappa(\mathbf{y}, \mathbf{y}_n))$$

Transform-based Dimension Reduction

SP

Subspace Clustering using Low-rank Transform

Subspace clustering

Input: A set of data points $\mathbf{Y} = {\mathbf{y}_i}_{i=1}^N \subseteq \mathbb{R}^d$ in a union of C subspaces. Output: A partition of \mathbf{Y} into C disjoint clusters ${\mathbf{Y}_c}_{c=1}^C$ based on underlying subspaces. begin 1. Initial a transformation matrix \mathbf{T} as the identity matrix ; repeat Assignment stage: 2. Assign points in $\mathbf{T}\mathbf{Y}$ to clusters with any subspace clustering methods, e.g., the proposed R-SSC; Update stage: 3. Obtain transformation \mathbf{T} by minimizing (6) based on the current clustering result ; until assignment convergence;

4. Return the current clustering result $\{\mathbf{Y}_c\}_{c=1}^C$;

 \mathbf{end}

Algorithm 1: Learning a robust subspace clustering (LRSC) framework.

Robust Sparse Subspace Clustering (R-SSC)

For the transformed points, we first recover their lowrank representation L

 $\underset{\mathbf{L},\mathbf{S}}{\arg\min||\mathbf{L}||_*} + \beta||\mathbf{S}||_1 \text{ s.t. } \mathbf{T}\mathbf{Y} = \mathbf{L} + \mathbf{S}.$

Each transformed point Ty_i is then represented using its KNN in L, denoted as L_i

$$\underset{\mathbf{x}_i}{\operatorname{arg\,min}} \|\mathbf{T}\mathbf{y}_i - \mathbf{L}_i \mathbf{x}_i\|_2^2 \quad \text{s.t. } \mathbf{1}' \mathbf{x}_i = 1.$$

Let $\bar{\mathbf{L}}_i = \mathbf{L}_i - \mathbf{1} \mathbf{T} \mathbf{y}_i^T$, $\mathbf{x}_i = \bar{\mathbf{L}}_i \bar{\mathbf{L}}_i^T \setminus \mathbf{1}$

 Perform spectral clustering on sparse representation matrix (|X|+|X'|)

(a) Example illumination conditions.

(b) Example subjects.

Dubbetb	[1.10]	[1.10]	[1.20]	[1.20]	[1.00]	[1.00]
C	10	15	20	25	30	38
LSA	78.25	82.11	84.92	82.98	82.32	84.79
LBF	78.88	74.92	77.14	78.09	78.73	79.53
LRSC	5.39	4.76	9.36	8.44	8.14	11.02

Misclassification rate (e%) on clustering different subjects.

Classification using Low-rank Transform

Basic Scheme

 For the c-th class, we first recover its low-rank representation L_c

 $\underset{\mathbf{L}_{c},\mathbf{S}_{c}}{\arg\min||\mathbf{L}_{c}||_{*}} + \beta||\mathbf{S}_{c}||_{1} \text{ s.t. } \mathbf{T}\mathbf{Y}_{c} = \mathbf{L}_{c} + \mathbf{S}_{c}$

• Each testing point **y** is assigned to **L**_c that gives the minimal reconstruction error

$$\underset{\mathbf{x}}{\arg\min} \|\mathbf{T}\mathbf{y} - \mathbf{L}_i \mathbf{x}\|_2^2 \quad \text{s.t.} \ \|\mathbf{x}\|_0 \le T$$

Face recognition across illumination

Method	Accuracy (%)
D-KSVD Zhang and Li (2010)	94.10
LC-KSVD Jiang et al. (2011)	96.70
SRC Wright et al. (2009)	97.20
Original+NN	91.77
Class LRT+NN	97.86
Class LRT+OMP	92.43
Global LRT+NN	99.10
Global LRT+OMP	99.51

Face recognition across pose and illumination

Method	Frontal	Side	Profile
	(c27)	(c05)	(c22)
SMD Castillo and Jacobs (2009)	83	82	57
Original+NN	39.85	37.65	17.06
Original(crop+flip)+NN	44.12	45.88	22.94
Class LRT+NN	98.97	96.91	67.65
Class LRT+OMP	100	100	67.65
Global LRT+NN	97.06	95.58	50
Global LRT+OMP	100	98.53	57.35

Profile

Classification using Transform Forest

The ensemble model Forest output probability $p(c|\mathbf{v}) = rac{1}{T}\sum_{t}^{T} p_t(c|\mathbf{v})$

Transform learner

Learn **T** at each split node

 $\underset{\mathbf{T}}{\arg\min} ||\mathbf{T}\mathbf{Y}_{+}||_{*} + ||\mathbf{T}\mathbf{Y}_{-}||_{*} - ||\mathbf{T}[\mathbf{Y}_{+}, \mathbf{Y}_{-}]||_{*},$ s.t.||**T**||₂ = 1,

Kernelized version

$$\begin{split} \min_{\mathbf{T}} ||\mathbf{T}\mathcal{K}(\mathbf{Y}^+)||_* + ||\mathbf{T}\mathcal{K}(\mathbf{Y}^-)||_* - ||\mathbf{T}[\mathcal{K}(\mathbf{Y}^+), \mathcal{K}(\mathbf{Y}^-)]||_*,\\ \text{s.t.} ||\mathbf{T}||_2 = 1. \quad (2) \end{split}$$

Transform Learner

- Random Grouping: Randomly partition training classes arriving at each split node into two groups.
- Learn a pair of dictionaries D[±], for each of the two groups by minimizing

$$\min_{\mathbf{D}^{\pm}, \mathbf{Z}^{\pm}} \|\mathbf{X}^{\pm} - \mathbf{D}^{\pm}\mathbf{Z}^{\pm}\| \text{ s.t. } \|\mathbf{z}_{i}^{\pm}\|_{0} \leq l,$$

• The split function is evaluated using the reconstruction error,

$$e^{\pm}(\mathbf{x}) = \|\mathbf{x} - \mathbf{P}^{\pm}\mathbf{x}\|_2$$

where $\mathbf{P}^{\pm} = \mathbf{D}^{\pm} (\mathbf{D}^{\pm T} \mathbf{D}^{\pm})^{-1} \mathbf{D}^{\pm T}$

Quantitative Results

Method	Accuracy	Testing
	(%)	time (s)
Non-tree based methods		
D-KSVD (Zhang & Li, 2010)	94.10	-
LC-KSVD (Jiang et al., 2011)	96.70	-
SRC (Wright et al., 2009)	97.20	-
Classification trees		
Decision stump (1 tree)	28.37	0.09
Decision stump (100 trees)	91.77	13.62
Conic section (1 tree)	8.55	0.05
Conic section (100 trees)	78.20	5.04
C4.5 (1 tree) (Quinlan, 1993)	39.14	0.21
LDA (1 tree)	38.32	0.12
LDA (100 trees)	94.98	7.01
SVM (1 tree)	95.23	1.62
Identity learner (1 tree)	84.95	0.29
Transformation learner (1 tree)	98.77	0.15

Extended YaleB face dataset

On the Number of Trees

Hashing using Transform Forest

- Hash/binary codes are needed to deal with big data
 - □ Storage
 - Retrieval

ForestHash

We simply set '1' for the visited nodes, and '0' for the rest, obtaining a (2^d-2) -bit hash code.

- Challenge 1: Create consistent hash codes in each tree.
 Low-rank transform.
- Challenge 2: Merging trees for unique codes per class.
 - A mutual information based technique for near-optimal code aggregation.

Challenge 1: Consistent Codes Transform learner: learn \mathbf{T} at each split node $\arg \min ||\mathbf{T}\mathbf{Y}_{+}||_{*} + ||\mathbf{T}\mathbf{Y}_{-}||_{*} - ||\mathbf{T}[\mathbf{Y}_{+},\mathbf{Y}_{-}]||_{*},$ $s.t.||\mathbf{T}||_2 = 1,$ (a) Depth-1 tree (b) Decision tree 1 (c) Decision tree 2 (d) Decision tree 3 (e) Decision tree 4 (f) Decision tree 5 (h) Transform tree 2 (i) Transform tree 3 (k) Transform tree 5 (g) Transform tree 1 (j) Transform tree 4

- Random Grouping: Randomly partition training classes arriving at each split node into two groups.
 - Each tree enforces consistent but non-unique codes for a class.
 - But each class shares codes with different classes in different trees.

Challenge 2: Code Aggregation Duke

- Hash codes from a random forest consisting M trees for N training samples $\mathcal{B} = {\mathbf{B}_i}_{i=1}^M$
- Our objective is to select k code blocks B*,
 k ≤ L/(2^d 2)
- Unsupervised code aggregation, $\mathbf{B}^* = \arg \max_{\mathbf{B}:|\mathbf{B}|=k} I(\mathbf{B}; \mathcal{B} \setminus \mathbf{B}).$
- Supervised code aggregation (class labels C), $\arg \max_{\mathbf{B}:|\mathbf{B}|=k} I(\mathbf{B}; C).$
- Semi-supervised code aggregation, $\arg \max_{\mathbf{B}:|\mathbf{B}|=k} I(\mathbf{B}; \mathcal{B} \setminus \mathbf{B}) + \lambda I(\mathbf{B}; C).$

Example 1: Image Retrieval

Table 1. 36-bit retrieval performance (%) on MNIST (rejection hamming radius 0) using different training set sizes. Test time is the average binary encoding time in microseconds (μ s).

		6,000 samples per class				100 samples per class			30 samples per class				
	Test	Train				Train				Train			
	time (µs)	time (s)	Precision	Recall	NN	time (s)	Precision	Recall	NN	time (s)	Precision	Recall	NN
HDML [23]	10	93780	92.94	60.44	98.33	1505	62.52	2.19	83.23	458	24.28	0.21	75.12
DeepNet [30]	52	3407	79.12	0.92	97.52	62.07	63.91	0.39	88.49	23.57	63.71	0.73	81.18
FastHash [19]	115	865	84.70	76.60	97.42	213	73.32	33.04	90.95	151	57.08	11.77	82.57
TSH [20]	411	164325	86.30	3.17	97.09	21.08	74.00	5.19	91.79	2.83	56.86	3.94	81.84
FaceHash-base	1.2	0.02	20.92	16.24	17.88	0.003	20.10	13.63	14.90	0.002	22.35	13.87	26.11
FaceHash-aggr	1.2	0.02	20.28	30.09	20.04	0.003	21.03	36.57	13.27	0.002	17.07	44.68	17.86
FaceHash	57	24.20	86.53	46.30	90.78	4.19	84.98	45.00	90.14	1.43	79.38	42.27	84.49

HDML and DeepNet are deep learning based hashing methods.

Example 1: Image Retrieval

Cifar-10 dataset

Example 2: Cross-modality

Example 3: Document Retrieval Duke

Reuters21578 dataset

Example 4: Faces

Each face is indexed by a 48-bit hash code.

~30 microseconds to index a face.~20 milliseconds to scan one million faces.

The blacklist/whitelist scenario

Enrolling in a list 200 subjects.5,992 face queries

Query over a 73K database containing 37,007 unseen faces from 200 known subjects and 35,902 unseen faces from 27,859 unknown subjects.

			•		
Mathad	radius	= 0	radius	dius ≤ 2	
Weulou	Precision	Recall	Precision	Recall	
SH [31]	6.56	0.15	37.18	1.98	
KLSH [15]	16.97	3.73	31.93	8.38	
AGH1 [21]	31.74	56.12	17.17	82.30	
AGH2 [21]	22.44	57.48	12.17	89.52	
LDAHash [27]	23.42	0.65	45.30	10.25	
FastHash [19]	16.33	3.47	27.87	20.62	
TSH [20]	6.75	0.22	9.96	0.35	
FaceHash	95.91	82.29	88.05	89.38	
FaceHash (48-bit)	96.54	80.42	96.45	87.41	

Query over a 0.7M database containing 37,007 unseen faces (200 known subjects) and 0.7M unseen faces (29,392 unknown subjects).

Method	radius	= 0	radius ≤ 2					
Wieulou	Precision	Recall	Precision	Recall				
KLSH [15]	16.97	3.73	31.93	8.38				
AGH1 [21]	18.38	56.12	7.75	82.30				
AGH2 [21]	13.56	57.48	5.53	89.52				
LDAHash [27]	23.42	0.65	45.11	10.25				
FastHash [19]	16.33	3.47	27.82	20.62				
FaceHash	82.17	82.29	47.58	89.38				
FaceHash (48-bit)	90.74	80.42	81.74	87.41				

~24 seconds to index all 0.7M faces. ~16 milliseconds to query 0.7M faces.

Example 4: Faces

41

Example 5: Cross-modality Face Suke

Face attributes

1 Male	19 Frowning	37 Narrow Eyes
2 Asian	20 Chubby	38 Eyes Open
3 White	21 Blurry	39 Big Nose
4 Black	22 Harsh	40 Pointy Nose
5 Baby	23 Lighting Flash	41 Big Lips
6 Child	24 Soft Lighting	42 Mouth Closed
7 Youth	25 Outdoor	43 Mouth Slightly Open
8 Middle Aged	26 Curly Hair	44 Mouth Wide Open
9 Senior	27 Wavy Hair	45 Teeth Not Visible
10 Black Hair	28 Straight Hair	46 No Beard
11 Blond Hair	29 Receding Hairline	47 Goatee
12 Brown Hair	30 Bangs	48 Round Jaw
13 Bald	31 Sideburns	49 Double Chin
14 No Eyewear	32 Fully Visible Forehead	50 Wearing Hat
15 Eyeglasses	33 Partially Visible Forehead	51 Oval Face
16 Sunglasses	34 Obstructed Forehead	52 Square Face
17 Mustache	35 Bushy Eyebrows	53 Round Face
18 Smiling	36 Arched Eyebrows	54 Color Photo

55 Posed Photo 56 Attractive Man 57 Attractive Woman 58 Indian 59 Gray Hair 60 Bags Under Eyes 61 Heavy Makeup 62 Rosy Cheeks 63 Shiny Skin 64 Pale Skin 65.5 o' Clock Shadow 66 Strong Nose-Mouth Lines 67 Wearing Lipstick 68 Flushed Face 69 High Cheekbones 70 Brown Eyes 71 Wearing Earrings 72 Wearing Necktie 73 Wearing Necklace

Example 5: Cross-modality FaceSuke

Table 5. FaceHash cross-representation face retrieval performance(%) using attribute queries on large scale datasets (36-bit).

	radius	= 0	radius ≤ 2		
	Precision	Recall	Precision	Recall	
Pubfig dataset	93.12	77.24	95.56	88.01	
73K dataset	91.49	77.24	87.25	88.01	
0.7M dataset	76.93	77.24	46.09	88.01	

 Query
 Top-10 matches

 Image: Provide the state of the st

Found 194 results, Elapsed time 282 millisecond

pf1-Aaron Eckhart_88 [0]

pf1-Aaron Eckhart_58 [0]

pf1-Aaron Eckhart_146 [0]

pf1-Aaron Eckhart_123 [0]

pf1-Aaron Eckhart_79 [0]

pf1-Aaron Eckhart_157 [0] pf1-Aaron Eckhart_130 [0]

pf1-Aaron Eckhart_129 [0]

pf1-Aaron Eckhart_5 [0]

© 2014 Powered by LUDUAN

pf1-Aaron Eckhart_52 [0]

pf1-Aaron Eckhart_104 [0]

pf1-Aaron Eckhart_92 [0]

pf1-Aaron Eckhart_187 [0]

Thank you!

Reference

- Qiang Qiu, Guillermo Sapiro, "Learning Transformations for Clustering and Classification", Journal of Machine Learning Research (JMLR), 16(Feb):187–225, 2015
- Qiang Qiu, Guillermo Sapiro, Alex Bronstein, "Random Forests Can Hash", International Conference on Learning Representations (ICLR) Workshop, 2015
- Qiang Qiu and Guillermo Sapiro, "Learning Transformations for Classification Forests", International Conference on Learning Representations (ICLR), 2014
- Qiang Qiu and Guillermo Sapiro, "Learning Compressed Image Classification Features", International Conference on Image Processing, 2014

The Concave-Convex Procedure Duke

Difference of convex function

J

$$(\mathbf{T}) = \mathcal{J}_{vex}(\mathbf{T}) + \mathcal{J}_{cav}(\mathbf{T})$$
$$= \left[\sum_{c=1}^{C} ||\mathbf{T}\mathbf{Y}_{c}||_{*}\right] + \left[-||\mathbf{T}\mathbf{Y}||_{*}\right]$$

A simple projected subgradient method

$$\sum_{c=1}^{C} \partial ||\mathbf{T}\mathbf{Y}_{c}||_{*}\mathbf{Y}_{c}' - \partial ||\mathbf{T}^{(t)}\mathbf{Y}||_{*}\mathbf{Y}'.$$

A subgradient of matrix nuclear Duke

norm

```
Input: An m \times n matrix A, a small threshold value \delta
Output: A subgradient of the nuclear norm \partial ||\mathbf{A}||_*.
begin
      1. Perform singular value decomposition:
      A = U\Sigma V;
      2. s \leftarrow the number of singular values smaller than \delta,
      3. Partition U and V as
      \mathbf{U} = [\mathbf{U}^{(1)}, \mathbf{U}^{(2)}], \mathbf{V} = [\mathbf{V}^{(1)}, \mathbf{V}^{(2)}];
      where \mathbf{U}^{(1)} and \mathbf{V}^{(1)} have (n-s) columns.
      4. Generate a random matrix B of the size (m - n + s) \times s,
      \mathbf{B} \leftarrow \frac{\mathbf{B}}{||\mathbf{B}||};
      5. \partial ||\mathbf{A}||_{*} \leftarrow \mathbf{U}^{(1)}\mathbf{V}^{(1)'} + \mathbf{U}^{(2)}\mathbf{B}\mathbf{V}^{(2)'};
      6. Return \partial ||\mathbf{A}||_*;
end
```