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Motivation 



Outline 

 Low-rank transform - algorithms and theories 

 Applications 

 Subspace clustering 

 Classification 

 Hashing/indexing 
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Algorithms and Theories 



A Toy Formulation 

 A toy formulation 

 

 

 

 

 Notation 
 Yc denotes d-dim points in the c-th class (arranged as columns). 

 Y=[Y1, Y2, …, YC], points from all C classes. 

 T is a learned d×d transformation matrix. 

 

 Theorem 
 Non-negative. 

 But zero for independent matrices. 

Intra-class Inter-class 
Non-trivial solution 



Low-rank Transformation 

 Basic formulation 

 

 

 

 |A|* denotes the nuclear norm of the matrix A: 
 The sum of the singular values of A. 

 A good approximation to the matrix rank. 

 Theorem:  
 Non-negative 

 Zero for orthogonal subspaces 
 Not true for rank and other popular norms 

 Works on-line. 

 Works with compressing transform matrix. 

 



Low-rank Transformation 

 

 

 

 

rank(A)=1, rank(B)=1, rank([A B]) =2 



Low-rank Transformation 

 

 

 

 



Theorem 1 

 

 

 

 



Theorem 2 

 

 

 

 



Other Popular Norms? 

 

 

 

 



Kernelized Transform 
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Transform-based Dimension 

Reduction 
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Extended YaleB face dataset 



Subspace Clustering using Low-rank 

Transform 



Subspace clustering 
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Robust Sparse Subspace Clustering 

(R-SSC) 
 For the transformed points, we first recover their low-

rank representation L 

 

 Each transformed point Tyi is then represented using 

its KNN in L, denoted as Li 

 

    Let                      ,   

 Perform spectral clustering on sparse representation 

matrix (|X|+|X’|) 
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Misclassification rate (e%) on clustering different subjects. 



Classification using Low-rank 

Transform 



Basic Scheme 

 For the c-th class, we first recover its low-rank 

representation Lc 

 

 

 Each testing point y is assigned to Lc that gives the 

minimal reconstruction error 
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Face recognition across illumination 
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Face recognition across pose and illumination 



Classification using Transform Forest 



Transform Forest 



Transform learner 

 Learn T at each split node 

 

 

 Kernelized version 
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Transform Learner 

 
 Random Grouping: Randomly partition training classes arriving at 

each split node into two groups. 

 Learn a pair of dictionaries D±, for each of the two 

groups by minimizing 

 

 The split function is evaluated using the reconstruction error, 

      

      where  
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Results 



Quantitative Results 

Extended YaleB face dataset 



On the Number of Trees 



Hashing using Transform Forest 



Motivation 

 Hash/binary codes are needed to deal with big data 

 Storage 

 Retrieval 
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ForestHash 

 

 

 

 

 Challenge 1: Create consistent hash codes in each tree. 

 Low-rank transform. 

 Challenge 2: Merging trees for unique codes per class. 

 A mutual information based technique for near-optimal 

code aggregation. 
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We simply set ‘1’ for the visited 

nodes, and ‘0’ for the rest, 

obtaining a (2d−2)-bit hash code. 



Challenge 1: Consistent Codes 

 Transform learner: learn T at each split node 

 

 

 

 

 

 Random Grouping: Randomly partition training classes arriving at 

each split node into two groups. 

 Each tree enforces consistent but non-unique codes for a class. 

 But each class shares codes with different classes in different trees. 
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Challenge 2: Code Aggregation 

 Hash codes from a random forest consisting M trees 

for N training samples 

 Our objective is to select k code blocks B∗,  

 k ≤ L/(2d − 2) 

 Unsupervised code aggregation, 

 

 Supervised code aggregation (class labels C ), 

 

 Semi-supervised code aggregation, 
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Example 1: Image Retrieval 
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HDML and DeepNet are deep learning based hashing methods. 



Example 1: Image Retrieval 
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Cifar-10 dataset 



Example 2: Cross-modality  
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The Wikipedia dataset 



Example 3: Document Retrieval 
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Reuters21578 dataset  



Example 4: Faces 
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… FaceHash 

Each face is indexed by a 48-bit hash code.  

~30 microseconds to index a face. 

~20 milliseconds to scan one million faces. 
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The blacklist/whitelist scenario 

- Enrolling in a list 200 subjects. 

- 5,992 face queries  

~24 seconds to index all 0.7M faces. 

~16 milliseconds to query 0.7M faces.  

Query over a 73K database containing 37,007 unseen 

faces from 200 known subjects and 35,902 unseen faces 

from 27,859 unknown subjects. 

Query over a 0.7M database containing 37,007 unseen 

faces (200 known subjects) and 0.7M unseen faces ( 

29,392 unknown subjects).  



Example 4: Faces 

41 



Example 5: Cross-modality Faces 
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Face attributes 



Example 5: Cross-modality Faces 
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                   Thank you! 
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The Concave-Convex Procedure 

 Difference of convex function 

 

 

 

 A simple projected subgradient method 
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A subgradient of matrix nuclear 

norm 
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