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Abstract where fk is the current approximation, and Rk f the 
current residual (error). Using initial values of Ro f = 
f , fo = 0, and k = 1 , the M P  algorithm is comprised 
of the following steps, 

In this paper we describe a recursive algorithm to 
compute representations of functions with respect to 
nonorthogonal and possibly overcomplete dictionaries 

(I) Compute the inner-products {(Rkf, Zn)},. 
of elementary building blocks e.g. affine (wavelet) 
frames. We propose a modification to the Matching 
Pursuit algorithm of Mallat and Zhang (1992) that 
maintains full backward orthogonality of the residual 

convergence. We refer to this modified algorithm as 
Orthogonal Matching Pursuit (OMP). It is shown that 
all additional computation required for the OMP al- 
gorithm may be performed recursively. 

(11) Find nktl such that 

(error) at  every step and thereby leads to improved I ( R k f ,  'nk+I) l  2 asYp I(Rkf, zj)I 1 

where 0 < a 5 1. 

(111) Set, 

1 Introduction and Background 

Given a collection of vectors D = {xi} in a Hilbert (IV) Increment k, (k t IC + l) ,  and repeat steps (1)- 
(IV) until some convergence criterion has been 
satisfied. 

space R, let us define 

V=Span{z,}, and W = V '  ( inR) .  

We shall refer to D as a dictionary, and will assume 
the vectors xn, are normalized (llznII = 1). In [3] Mal- 
lat and Zhang proposed an iterative algorithm that 
they termed Matching Pursuit (MP) to construct rep- 
resentations of the form 

Pvf = C a n z n ,  (1) 
n 

where PV is the orthogonal projection operator onto 
V. Each iteration of the MP algorithm results in an 
intermediate representation of the form 
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The proof of convergence [3] of MP relies essentially on 
the fact that (Rk+lf, z ~ ~ + ~ )  = 0. This orthogonality 
of the residual to the last vector selected leads to  the 
following "energy conservation" equation. 

IIRkfl12 = llRk+lf112 + I(Rkf12nk+1)12' (2) 

It has been noted that the MP algorithm may be de- 
rived as a special case of a technique known as Pro- 
jection Pursuit (c . f ,  [2]) in the statistics literature. 

A shortcoming of the Matching Pursuit algorithm 
in its originally proposed form is that although asymp 
totic convergence is guaranteed, the resulting approxi- 
mation after any finite number of iterations will in gen- 
eral be suboptimal in the following sense. Let N < 00, 
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be the number of MP iterations performed. Thus we 
have 

N-1 

f N  = (Rkf, f n k + , )  

k=O 

Define VN = Span{znl, . .  . , xnN}. We shall refer 
to fN as an optimal N-term approximation if fN = 
PVNf’ i.e. fN is the best approximation we can 
construct using the selected subset {2n1,  . . . , Z n N }  of 
the dictionary D. (Note that this notion of optimal- 
ity does not involve the problem of selecting an “op 
timal” N-element subset of the dictionary.) In this 
sense, f~ is an optimal N-term approximation, if and 
only if RNf E V;. As MP only guarantees that 
RN f 1 f n N ,  fN as generated by MP will in general 
be suboptimal. The difficulty with such suboptimality 
is easily illustrated by a simple example in IR2. Let 
z1, and 2 2  be two vectors in IR2, and take f E Et2, as 
shown in Figure l(a). Figure l(b) is a plot of llRkfllz 

Figure 1: Matching pursuit example in IR2: (a) Dic- 
tionary D = ( 1 1 ,  Q} and a vector f E Et2 

versus k. Hence although asymptotic convergence is 
guaranteed, after any finite number of steps, the error 
may still be quite large. 

In this paper we propose a refinement of the Match- 
ing Pursuit (MP) algorithm that we refer to as Or- 
thogonal Matching Pursuit (OMP). For nonorthogo- 
nal dictionaries, OMP will in general converge faster 
than MP. For any finite size dictionary of N elements, 
OMP converges to the projection onto the span of the 
dictionary elements in no more than N steps. Fur- 
thermore after any finite number of iterations, OMP 

A simlar difficulty with the Projection Pursuit algorithm 
was noted by Donoho et.ol. [l] who suggested that bockfitting 
may be used to improve the convergenceof PPR. Although the 
techniqueii not fully described in [l] it appears that it is in the 
same spirit as the technique we present here. 

gives the optimal approximation with respect to the 
selected subset of the dictionary. This is achieved by 
ensuring full backward orthogonality of the error i.e. 
at each iteration Rkf E Vi. For the example in Fig- 
ure 1, OMP ensures convergence in exactly two itera- 
tions. It is also shown that the additional computation 
required for OMP, takes a simple recursive form. 

We demonstrate the utility of OMP by example 
of applications to representing functions with respect 
to  time-frequency localized affine wavelet dictionaries. 
We also compare the performance of OMP with that 
of MP on two numerical examples. 

2 Orthogonal Matching Pursuit 

Assume we have the following kth-order model for 
f EN, 

k 

f = x Q a f n + R k  f ,  with (Rk f ,  f n )  = 0, 71 = 1,. . .k. 
n=l 

(3) 
The superscript k, in the coefficients a t ,  show the de- 
pendence of these coefficients on the model-order. We 
would like to update this kth-order model to a model 
of order k + 1, 

k+l 

f = Qk+lz, -I- &+if ,  with (&+if,  fn) = 0, 
n = l  n = l ,  . . .  k + l .  

(4) 
Since elements of the dictionary D are not required 
to be orthogonal, to perform such an update, we also 
require an auxiliary model for the dependence of Xk+l 

on the previous t,’~ ( n  = 1,. . . k). Let, 

k 

fk+1 = b;fn+7k, with (yk,xn) = 0, 72 = 1, .  . .k. 
n = l  

(5) 
Thus ~ “ , l b ~ z ,  = PVkzk+l, and 7 k  = p vk L f k + l ,  

is the component of z k + l  which is unexplained by 

Using the auxiliary model (5),  it may be shown that 
the correct update from the kth-order model to the 
model of order k + 1, is given by 

( 2 1 , .  . . , f k } .  
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It also follows that the residual &+If satisfies, 
R k f  = R k + l f  -k O k y k ,  and 

2.1 The OMP Algorithm 

The results of the previous section may be used to 
construct the following algorithm that we will refer to 
as Orthogonal Matching Pursuit (OMP). 

Initialization: 

fo = 0, Rof=f, Do = { 1 
20 = 0, a: = 0, k =  O 

:III) If I ( R k f , z n r + l ) l  < 6, (6 > 0) then stop. 

:IV) Reorder the dictionary D, by applying the per- 
mutation k + 1 C) n k + l .  

(V) Compute {bk,}k=l, such that, 
k 

z k + 1  = zn=l bkzn -k yk  
and (Cyk,Z,) = 0, 

= Qk = l lykl l -2  ( R k f , Z k + l ) ,  

n =  I , . .  .,k. 

[VI) Set, 

Oi+l = k k 
0, - Q k b n ,  n = 1,. ..,k, 

and update the model, 

k + l  

fk+ l  = ~ a ~ " ~ n  
n=l  

R k + l f  = f - f k + l  

D k + l  = D k  U { z k + l } .  

VII) Set k t k + 1, and repeat (1)-(VU). 

2.2 Some Properties of OMP 

As in the case of MP, convergence of OMP relies 
on an energy conservation equation that now takes 
the form (7). The following theorem summarizes the 
convergence properties of OMP. 

Theorem 2.1 For f E 3, let R k f  be the residuals 
genemted by OMP. Then 

(il) fN = PvN f, N = 0, I, 2 , .  . .. 
Proof: The proof of convergence parallels the proof 

of Theorem 1 in [3]. The proof of the the second p rop  
erty follows immediately from the orthogonality con- 
ditions of Equation (3). 

Remarks: 

The key difference between MP and OMP lies in P r o p  
erty (iii) of Theorem 2.1. Property (iii) implies that 
a t  the N t h  step we have the best approximation we 
can get using the N vectors we have selected from 
the dictionary. Therefore in the case of finite dictio- 
naries of size M, OMP converges in no more than M 
iterations to  the projection of f onto the span of the 
dictionary elements. As mentioned earlier, Matching 
Pursuit does not possess this property. 

2.3 Some Computational Details 

As in the case of MP, the inner products 
{ ( R k  f, zcj)} may be computed recursively. For OMP 
we may express these recursions implicitly in the for- 
mula 

k 

( R k f y z j )  = ( f - f k , z j )  = (f,zj) - (%,zj). 
n=l  

(8) 
The only additional computation required for OMP, 

arises in determining the bi's of the auxiliary model 
(5). To compute the hi's we rewrite the normal equa- 
tions associated with ( 5 )  as a system of k linear equa- 
tions, 

v k  = A k b k ,  (9) 

where 

and 

42 



Note that the positive constant 6 used in Step (111) 
of OMP guarantees nonsingularity of the matrix Ak, 
hence we may write 

bk = Ak'Vk. (10) 

However, since Ak+l may be written as 

(where * denotes conjugate transpose) it may be 
shown using the block matrix inversion formula that 

where P = 1/(1 - vibk). Hence and therefore 
bktl, may be computed recursively using A;', and 
bk from the previous step. 

3 Examples 

In the following examples we consider represen- 
tations with repect to an affine wavelet frame con- 
structed from dilates and translates of the second 
derivate of a Gaussian, i.e. D = {$m,", m,n E Z} 
where, 

$m,"(C) = 242$(2% - n), 
and the analyzing wavelet $J is given by, 

Note that for wavelet dictionaries, the initial set of in- 
ner products {(f, $m,n)}, are readily computed by one 
convolution followed by sampling at each dilation level 
m. The dictionary used in these examples consists of 
a total of 351 vectors. 

In our first example, both OMP and MP were a p  
plied to the signal shown in Figure 2(a). We see from 
Figure 2(b) that OMP clearly converges in far fewer 
iterations than MP. The squared magnitude of the co- 
efficients o k ,  of the resulting representation is shown in 
Figure 3. We could also compare the two algorithms 
on the basis of required computational effort to com- 
pute representations of signals to  within a prespecified 
error. However such a comparison can only be made 
for a given signal and dictionary, as the number of it- 
erations required for each algorithm depends on both 
the signal and the dictionary. For example, for the 
signal of Example I, we see from Figure 4 that it is 3 

100, I , , , , , , , , 1 

Figure 2: Example I : (a) Original signal f, with OMP 
approximation superimposed, (b) Squared L2 norm of 
residual Rkf versus iteration number k, for both OMP 
(solid line) and MP (dashed line). 
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Figure 3: Distribution of coefficients obtained by ap- 
plying OMP in Example I. Shading is proportional to 
squared magnitude of the coefficients ah, with dark 
colors indicating large magnitudes. 

to 8 times more expensive to achieve a prespecified er- 
ror using OMP even though OMP converges in fewer 
iterations. On the other hand for the signal shown 
in Figure 5 ,  which lies in the span of three dictionary 
vectors, it  is approximately 20 times more expensive 
to apply MP. In this case OMP converges in exactly 
three iterations. 

4 Summary and Conclusions 

In this paper we have described a recursive al- 
gorithm, which we refer to as Orthogonal Matching 
Pursuit (OMP) , to compute representations of signals 
with respect to arbitrary dictionaries of elementary 
functions. The algorithm we have described is a mod- 
ification of the Matching Pursuit (MP) algorithm of 
Mallat and Zhang [3] that improves convergence us- 
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at each step. 
I 0' - HP 1 
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Figure 4: Computational cost (FLOPS) versus ap- 
proximation error for both OMP (solid line) and MP 
(dashed line) applied to the signal in Example I. 

Figure 5: Example 11: (a) Original signal f ,  (b) 
Squared L2 norm of residual Rkf versus iteration 
number I C ,  for both OMP (solid line) and MP (dashed 
line). 

ing an additional orthogonalization step. The main 
benefit of OMP over MP is the fact that it is guar- 
anteed to converge in a finite number of steps for a 
finite dictionary. We also demonstrated that all addi- 
tional computation that is required for OMP may be 
performed recursively. 

The two algorithms, MP and OMP, were compared 
on two simple examples of decomposition with respect 
to a wavelet dictionary. It was noted that although 
OMP converges in fewer iterations than MP, the com- 
putational effort required for each algorithm depends 
on both the class of signals and choice of dictionary. 
Although we do not provide a rigorous argument here, 
it seems reasonable to conjecture that OMP will be 
computationally cheaper than MP for very redundant 
dictionaries, as knowledge of the redundancy is ex- 
ploited in OMP to reduce the error as much as possible 
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