
Modular Analysis via
Abstract Reduction Semantics

Sam Tobin-Hochstadt and David Van Horn?

Northeastern University
{samth,dvanhorn}@ccs.neu.edu

Abstract. Modular static analysis requires treating some portion of the
program opaquely. To enable such analysis, we introduce a notion of
abstract reduction semantics. Opaque components are approximated by
their specifications, which in turn are treated as abstract values during
reduction. We demonstrate the technique by applying it to two kinds of
specifications for higher-order languages: types and first-class contracts,
showing that each soundly approximates opaque components. Finally, we
derive modular static analyzers from these semantics, soundly predicting
evaluation, contract violations, and blame assignment.

1 Modules, Specifications, and Analysis

A modular analysis, in contrast to a whole-program analysis, approximates the
behavior of some portion of a program without examining the remainder. Mod-
ularity is especially important for multi-language programs, where key modules
are often written in low-level languages such as C, rendering them unsuitable for
high-level analyses, and for distributed systems where modules may be loaded
remotely, making them unavailable at analysis time. Even for single language
programs, choosing how much to analyze often depends on the situation; power-
ful flow analyses produce precise results at the cost of significant computational
resources. It is often prohibitive to analyze the whole program at once; further,
different portions of the program may have different analysis needs. All of these
concerns point to the necessity of flexible and modular static analyzers.

Despite its importance, informative modular analysis of higher-order lan-
guages is considered a formidable research problem. Most [23,22,1] simply treat
any unanalyzed portion as a black hole with arbitrary possible behavior. To
do better, others have employed type and contract abstractions to reason about
opaque components [19,18,21]. Meunier et al., for example, uses higher-order be-
havorial contracts at module boundaries to reason modularly. Meunier’s analysis
is formulated as a constraint semantics with all contract checks at the top-level.
The static semantics engineering effort of Meunier et al. is daunting and un-
fortunately goes wrong in multiple places. Meunier’s dissertation [18] corrects
some of the errors of the conference paper [19], but even the corrected system is
? The authors are supported by a grant from the Mozilla Foundation and NSF Grant

0937060 to the CRA for the Computing Innovation Fellows Project.

unsound in its treatment of opaque modules (see Sections 4 and 5). Moreover,
the system has been abandoned; the formalism is simply too involved to verify
or scale to richer language features.

We conjecture that the fundamental weakness of Meunier’s work is that its
abstract semantics are too far from the actual dynamic semantics of programs.
The disparity introduces engineering hurdles that require effort to overcome, and
is often where both soundness and precision are compromised.

Modularity need not be such a formdidable design task if we employ static
semantics that are closely coupled with the dynamic semantics of a language. We
enable this close correspondence between static and dynamic semantics by de-
signing abstract reduction semantics that characterize the behavior of programs
with opaque modules. We then apply existing techniques for deriving semantics-
based program analyzers [24], transforming reduction semantics into their sound,
computable approximation. This simple composition of techniques yields sound,
modular, semantics-based analyzers.

Our approach scales from basic specifications in the form of simple types to
first-class contracts on higher-order functions, where specifications are computed
at run-time. Even in this setting, the correspondence between semantics and
analysis is direct.

Contributions:

– We introduce the notion of specifications as values in reduction semantics,
using both types and contracts as specifications.

– We present computable, sound, modular static analyzers for languages with
types and contracts, derived directly from the semantics of the languages.

– We prove modularity results for our analyses; that is, the analysis correctly
approximates the analyzed portion of the program regardless of what the
remainder of the program may be.

– As part of our abstract semantics for a language with contracts, we give the
first reduction semantics which maintains the same quantity of information
about contract errors as existing implementations such as Racket [13].

Organization: In Section 2, we review the systematic derivation of static an-
alyzers from reduction semantics, showing the technique for a simple language
with first-order modules. In Section 3, we equip our language with types, present
an abstract reduction semantics where types are values, and show how to de-
rive a modular analysis from the abstract semantics. In Section 4, we repeat
the derivation for a language with second-class contracts, showing an abstract
reduction semantics as well as a modular analysis; we then extend the language
to accommodate first-class contracts. In Section 5, we discuss related work, and
conclude in Section 6.

Prerequisites and notation: We assume a basic familiarity with reduction seman-
tics and abstract machines and refer the reader to Semantics Engineering with
PLT Redex [10] for background, notation, and terminology.

2 (svn 241 (2010 10 9))

2 Review: Whole-Program Analysis

In this section, we review the abstracting abstract machines technique for design-
ing whole-program analyses [24]. The technique is a semantics-based approach
to program analysis that enables a systematic derivation of whole-program ab-
stract1 interpreters from abstract2 machines, which in turn can be derived sys-
tematically from various forms of semantics such as definitional interpreters,
reduction semantics, and denotational semantics. We review this technique be-
cause this paper contributes a complimentary technique for abstract interpreta-
tion at the reduction semantics level. Composing these techniques, as we will see,
enables semantics-based modular analyses to be derived that are easily shown
to be sound and computable.

The approach of abstracting abstract machines is to first refactor an abstract
machine, such as the CEK machine [9], to store-allocate bindings and continua-
tions, and then bound the store to some finite size. This strategy ensures a finite
state-space, making analysis decidable.

Since it is also well known how to derive abstract machines from reduction se-
mantics [10,8], we see this approach as sitting at the end of a derivational pipeline
going from high-level language specifications to low-level implementations and
then to abstract interpretations. The designer focuses solely on language seman-
tics and derives sound, computable, modular abstractions systematically.

We illustrate the technique by starting with the reduction semantics for a pro-
totypical higher-order call-by-value language with modules. From the reduction
semantics, we derive a CEK-style machine, which we then refactor and abstract
to obtained an abstract interpreter parameterized by a choice of approximation.

2.1 From Reduction Semantics to Abstract Machines

The syntax of our language is:

P ::= ME
M,N ::= (module f T V)
E,F ::= x | f | V | (E E)f | (if0 E E E) | (wrongf n)
V ::= n | (λx.E)
T ::= T → T | int

A program is a sequence of modules, which we write using vector notation M ,
followed by a top-level expression E. A module consists of a single recursive
definition (modulef T V), which defines f to be the value V with type T . Module-
bound variables are in scope in all modules and the top-level expression. Without
loss of generality, we assume all module- and λ-bound variables are distinct and
often refer to modules by the name they bind. A type is either the integer type
int, or a function type T → T .

1 Abstract in the sense of being a sound, computable approximation.
2 Abstract in the sense of being an idealized low-level evaluator.

(svn 241 (2010 10 9)) 3

An expression is either a value, which includes integers n and functions
(λx.E); a variable, which is either module-bound (f , g, h) or λ-bound (x, y,
z); an application (E E); a conditional test (if0 E E E); or a wrong expression
(wrongf n), which is not written by the programmer directly, but may arise dur-
ing evaluation to indicate error states.3 In the case of our prototypical language,
errors arise only from applying non-function values (i.e., numbers).

Application expressions are annotated with the module in which they occur:
(EE)f ; we use † in place of f to indicate the application appears within the top-
level expression. When a program goes wrong, i.e., when a number is applied,
the module (or the top-level) that contains the erroneous application expression
(n V)f is reported. Anticipating our later development, we say that module f
broke its contract with the programming language and report the module at
fault and the misused value. General contracts and blame assignment are the
subject of Section 4.

Computation is characterized by the v notion of reduction:

((λx.E) V)f v [V/x]E
(n V)f v (wrongf n)

(if0 0 E1 E2) v E1

(if0 V E1 E2) v E2 if V 6= 0,

where [V/x]E denotes the capture-avoiding substitution of V for x in E. The
first case is the standard βv rule for function application. The second case han-
dles non-function application, which goes wrong—this case is included to make
explicit what is ruled out by the type system. The third and fourth cases handle
conditionals in the usual way.

We can now define single-step evaluation for programs by decomposing ex-
pressions into an evaluation context,

E ::= [] | (E E) | (V E) | (if0 E E E),

and a redex; contracting the redex according to the reduction relation; and
plugging the contractum into the context.

To handle references to module-bound variables, we define a module envi-
ronment that describes the module context M of a top-level expression:

∆M = {(f, V) | (module f T V) ∈ M}.

The module environment for a program can double as a notion of reduction and
we now define an evaluation function for our language by the union of the v and
∆M notions of reductions. Evaluation is defined as the set of reachable machine
states, giving us an intensional view of machines:

evalv(ME) = {E′ | E 7−→→v∆M
E′},

where 7−→→v∆M
is the reflexive, transitive closure of the step relation 7−→v∆M

:

E [E] 7−→v∆M
E [E′] if E v∆M E′.

3 Gray indicates indicates a grammatical production not available to the programmer.

4 (svn 241 (2010 10 9))

ς 7−→cek
v ς ′

〈V, ρ, fnf ((λx.E), ρ′, κ)〉 〈E, ρ′[x 7→ 〈V, ρ〉], κ〉
〈V, ρ, fnf (n, ρ′, κ)〉 〈(wrongf n), ρ, κ〉
〈0, ρ, if(E0, E1, ρ

′, κ)〉 〈E0, ρ
′, κ〉

〈V, ρ, if(E0, E1, ρ
′, κ)〉 〈E1, ρ

′, κ〉, if V 6= 0

〈x, ρ, κ〉 〈V, ρ′, κ〉 if ρ(x) = 〈V, ρ′〉
〈f, ρ, κ〉 〈V, ∅, κ〉, if ∆M (f) = V

〈(E0 E1)
f , ρ, κ〉 〈E0, ρ, arf (E1, ρ, κ)〉

〈V, ρ, arf (E, ρ′, κ)〉 〈E, ρ′, fnf (V, ρ, κ)〉
〈(if0 E1 E2 E3), ρ, κ〉 〈E1, ρ, if(E2, E3, ρ, κ)〉

Fig. 1. The CEK machine.

This evaluation function effectively specifies the meaning of programs in our
language, but it does not immediately admit an efficient implementation since it
must partition the whole program into an evaluation context and redex on each
step. However, more realistic abstract machines, such as the CEK machine [10],
can be derived systematically from the above reduction semantics [5].

The CEK machine is environment-based; it uses environments and closures
to model substitution. It represents evaluation contexts as continuations, an
inductive data structure that models contexts in an inside-out manner. The key
ideas of machines such as the CEK machine are that 1) the whole program need
not be traversed to find the next redex; the machine integrates the process of
plugging a contractum into a context and finding the next redex, and 2) subterms
need not be traversed to implement substitution; the machine substitutes values
for variables lazily by using an environment.

States of the CEK machine consist of a control string E, an environment ρ
that closes the control string, and a continuation κ; states are identified up
to consistent renaming of bound variables. Environments are finite maps from
variables to closures. Environment extension is written ρ[x 7→ 〈V, ρ′〉]. Evaluation
contexts E are represented (inside-out) by continuations as follows:

– mt stands for [];
– arf (E′, ρ, κ) stands for E [([] E)f] with E′ closed by ρ for E, and κ for E ;
– fnf (V ′, ρ, κ) stands for E [(V [])f] with V ′ closed by ρ for V and κ for E .

The transition system for the CEK machine is given in Figure 1. The first
four cases implement the v notion of reduction, using environments to lazily rep-
resent substitution. The next case resolves variable references, effectively forcing
the delayed substitution represented by the environment. The next case imple-
ments the ∆M notion of reduction for module references. The last three cases
implement transitions that search for the next redex.

We can define an evaluation function in terms of the machine:

evalcekv (ME) = {U(ς) | 〈E, ∅,mt〉 7−→→cek
v∆M

ς},

where U unloads a machine state to a closed term (defined in Appendix D).

(svn 241 (2010 10 9)) 5

Theorem 1 (Felleisen [9]). evalcekv = evalv.

2.2 From Abstract Machines to Abstract Abstract Machines

From the CEK machine, we can further derive machines that finitely approxi-
mate the behavior of the CEK machine (and therefore the evaluation function).
We extend the machine with a store component and refactor to:

1. store-allocate bindings, obtaining the CESK machine, and
2. store-allocate continuations, obtaining the CESK? machine.

The CESK? machine easily abstracts by bounding the store to some finite size.
To maintain soundness store updates are interpreted as joins and stores map
addresses to sets of values.

ς̂ 7−→cesk?

v ς̂ ′ where κ ∈ σ̂(a), b = alloc(ς̂ , κ)

〈V, ρ, σ̂, a〉 if κ = fnf ((λx.E), ρ′, a′) 〈E, ρ′[x 7→ b], σ̂ t [b 7→ 〈V, ρ〉], a′〉
〈V, ρ, σ̂, a〉 if κ = fnf (n, ρ′, a′) 〈(wrongf n), ρ, σ̂, a′〉
〈0, ρ, σ̂, a〉 if κ = if(E0, E1, ρ

′, a′) 〈E0, ρ, σ̂, a′〉
〈V, ρ, σ̂, a〉 if κ = if(E0, E1, ρ

′, a′) 〈E1, ρ, σ̂, a′〉 if V 6= 0

〈x, ρ, σ̂, κ〉 〈V, ρ′, σ̂, κ〉 if σ̂(ρ(x)) 3 〈V, ρ′〉)
〈f, ρ, σ̂, κ〉 〈V, ∅, σ̂, κ〉 if ∆M (f) = V

〈(E0 E1), ρ, σ̂, a〉 〈E0, ρ, σ̂ t [b 7→ arf (E1, ρ, a)], b〉
〈V, ρ, σ̂, a〉 if κ = arf (E, ρ′, a′) 〈E, ρ′, σ̂ t [b 7→ fnf (V, ρ, a′)], b〉
〈(if0 E1 E2 E3), ρ, σ̂, a〉 〈E1, ρ, σ̂ t [b 7→ if(E2, E3, ρ, a)], b〉

Fig. 2. The CESK? machine.

Figure 2 defines the CESK? machine. The transition system is parametrized
by a function, alloc, which doles out addresses when something needs to be
stored. If alloc always returns a fresh address, the machine operates in lock-step
with the CEK machine, and is therefore equivalent to the evaluation function.

The analysis function is defined as:

âvalcekv (ME) =
⋃
{Û(ς̂) | 〈E, ∅, [a0 7→ mt], a0〉 7−→→cesk?

v∆M
ς̂},

where Û unloads a machine state to a set of closed terms (defined in Ap-
pendix D).

On the other hand, if we require alloc to always allocate from some finite
set of addresses, the state-space of the machine becomes finite. In this case, we
can view each machine state of the CESK? machine as representing a set of
CEK machine states by a straightforward structural map. The bounded CESK?

computes a sound approximation to the reachable states of the CEK machine in
the sense that if a CEK machine state ς is reachable, a CESK? machine ς̂ state
is reachable such that ς is in the set of states represented by ς̂.

6 (svn 241 (2010 10 9))

To distinguish these two cases, we will write evalcesk
?

v when alloc is unbounded
and always returns fresh addresses and âvalcesk

?

v when alloc is bounded.

Theorem 2 (Van Horn and Might [24]). âvalcesk
?

v is a sound, computable
approximation of evalv.

3 Modular Analysis using Types

The approach of Section 2 is based on whole-program evaluators, and so naturally
it yields whole-program analyzers. To modularize our analysis, we take the type
specifications from modules as a specification language and develop a notion of
reduction for types when considered as values, soundly approximating opaque
modules with their types.

First, the set of values is extended with the set of types, which are a form of
abstract value—they represent the set of all values of that type:

V ::= n | (λx.E) | T

The overline T indicates abstract values, distinguishing them from other values.
Second, we define the v̂ notion of reduction, which handles the cases of applying
and testing abstract values:

((T ′→T) V)f v̂ T
(int V)f v̂ (wrongf int)

(if0 int E1 E2) v̂ E1

(if0 T E1 E2) v̂ E2

The first case handles the application of a function type to a value, which pro-
duces the abstract value T , the range of the function. The second case handles
non-function application, in particular the application of int to a value (the type
system rules this case out). Finally, the last two cases handle conditional testing
of an abstract value. Notice that if a value is abstracted by a function type, that
value cannot possibly be 0, so only the alternative branch is taken. But if a value
is abstracted by the int type, it is not possible to determine which branch should
be taken, hence they both are. Because of this, the v̂ notion of reduction, and
therefore the abstract machines derived from it, are non-deterministic.

Next, we extend the module language with opaque modules, i.e., modules
whose implementation is missing at analysis time. Such missing components are
approximated by their specification, in this case, their advertised type:

M ::= (module f T V) | (module f T •).

We extend ∆M to resolve opaque module references to their type:

∆M = {(f, V) | (module f T V) ∈ M} ∪ {(f, T) | (module f T •) ∈ M}.

(svn 241 (2010 10 9)) 7

ς 7−→cekbv ς ′

〈V, ρ, fnf ((T ′ → T), ∅, κ)〉 〈T , ∅, κ〉
〈V, ρ, fnf (int, ∅, κ)〉 〈(wrongf int), ρ, κ〉
〈int, ρ, if(E1, E2, ρ

′, κ)〉 〈E1, ρ
′, κ〉

〈T , ρ, if(E1, E2, ρ
′, κ)〉 〈E2, ρ

′, κ〉

ς̂ 7−→cesk?bv ς̂ ′ where κ ∈ σ̂(a)

〈V, ρ, σ̂, a〉 if κ = fnf ((T ′ → T), ρ′, a′) 〈T , ∅, σ̂, a′〉
〈V, ρ, σ̂, a〉 if κ = fnf (int, ρ′, a′) 〈(wrongf int), ρ, σ̂, a′〉
〈int, ρ, σ̂, a〉 if κ = if(E1, E2, ρ

′, a′) 〈E1, ρ, σ̂, a′〉
〈T , ρ, σ̂, a〉 if κ = if(E1, E2, ρ

′, a′) 〈E2, ρ, σ̂, a′〉

Fig. 3. Additional CEK and CESK? machine transitions for types-as-values.

Finally, the evaluation function is defined as:

evalbv(ME) = {E′ | E 7−→→vbv∆M
E′}.

This reduction semantics and the evaluation function4 it induces are an abstract
interpretation soundly approximating a program for all well-typed instantiations
of the opaque modules with particular implementations. However, the approxi-
mation is clearly not computable in general since the language is an extension of
a Turing-complete language. Dynamic widening [7] could be employed by selec-
tively widening a term to its type, however for the purpose of automatic program
analysis we introduce an additional abstraction that ensures computability.

To achieve modularity, soundness and computability, we simply pump the ab-
stract reduction semantics through the derivation pipeline outlined in Section 2.
This recipe yields a CEK-style machine extended with the types-as-values notion
of reduction. Just as the reduction semantics is an extension of v, the result-
ing machine includes all of the CEK machine transitions in Figure 1. Because
the syntax of evaluation contexts is unchanged, no additional search transitions
are needed. Consequently, there are only four new machine transitions: one for
each case of the v̂ notion of reduction, shown in Figure 3 (top). Store-allocating
bindings and continuations in these additional transitions then derives a CESK?

machine with types-as-values, shown in Figure 3 (bottom).
The resulting evaluator, âvalcesk

?bv , corresponds to the original evaluator. To
prove this correspondence, we first define a type indexed relation on expressions
E vT E′, which states that E′ is an approximation of E, which both have
type T . The approximation judgment is defined by a straightforward structural
induction, with the exception that any expression can be approximated by its
type and that opaque modules approximate their concrete counterparts:

Γ ` E : T

Γ ` E vT T

` E : T

(module f T E) vT (module f T •)
4 Although the bv notion of reduction is non-deterministic, eval bv is a function since it

includes all reachable states.

8 (svn 241 (2010 10 9))

The remaining cases are deferred to Appendix B. Equipped with this definition,
we can state the desired soundness theorem.

In this and subsequent theorems, we say that an abstract evaluator âval is
sound with respect to eval if every state in the concrete semantics is related by
the appropriate v to some state in the abstract semantics. We will say that âval
is a computable approximation if its possible state space is finite; this is a stronger
condition than required, but satisfied for the approximations we consider.

Theorem 3. âvalcesk
?bv is a sound, computable approximation of evalv for all

possible instantiations of opaque modules.

Proof. By Lemmas 1 and a subject reduction argument. ut

Lemma 1. If E 7−→vbv∆M
E′ and ME vT NF , then either ME′ vT NF , or

ME′ vT NF ′ and F 7−→vbv∆N
F ′.

Proof. If the terms decompose into related contexts and related redexes, the
result follows by Lemma 2. Otherwise, the redex in E must be related to an
abstract value in F , in which case the result follows by preservation of types. ut

Lemma 2. If E vv̂∆M E′ and F vv̂∆N F ′ and ME vT NF for some T ,
then ME′ vT NF ′. ut

4 Behavioral Contracts as Values

As a second example of specifications as values, we consider behavioral contracts.
Programs consist of multiple interacting components such as modules, and

these components interact based on some mutually agreed upon contract that
specifies the obligations and guarantees of values that are consumed and pro-
duced by each component. A contract system monitors the boundaries between
components and checks that all contracts are satisfied, assigning blame to the
appropriate component whenever a contract is violated.

In a first-order setting, where functions are not values, properly assessing
blame at run-time is straightforward. However, matters are complicated when
higher-order values such as functions or objects are included in the language.
Findler and Felleisen [11] have established a semantic framework for properly
assessing blame at run-time in a higher-order language, which forms the theo-
retical basis of the Racket contract system [13].

To illustrate, an example is given in Figure 4. The program consists of a
module and top-level expression. We assume even? as primitive. Module double
implements twice-iterated application on even numbers, consuming and produc-
ing functions on even numbers. The top-level expression makes use of the double
function, but incorrectly—double is applied to a function that consumes even
numbers, but produces an odd number. Contract checking and blame assignment
in a higher-order program such as this is complicated by the fact that it is not
decidable whether the argument of double is a function that consumes and pro-
duces even numbers. Higher-order contracts must instead be pushed down into

(svn 241 (2010 10 9)) 9

(module double

(((pred even?)→(pred even?))→((pred even?)→(pred even?)))
(λf.λx.f(fx)))

((double (λn.7)) 4)

the top-level broke the contract
(((pred even?)→(pred even?))→((pred even?)→(pred even?)))
on double; expected <even?>, given: 7

Fig. 4. A program with a higher-order contract failure.

delayed lower-order checks, but care must be taken to get blame right. In our
example, the top-level is blamed, and rightly so, even though it is the first-order
even? predicate that witnesses the violation when f is applied to x.

In the remainder of this section, we derive a modular program analysis that
soundly predicts contract violations and blame assignment as well as value flow,
using contracts as abstract values to represent opaque components.

4.1 Reduction Semantics for Contracts

In this section, we give a reduction semantics for a prototypical higher-order, un-
typed, call-by-value language with modules and contracts. From the reduction
semantics, we derive a CEK-style abstract machine, which we then refactor and
abstract to obtained a parametrized abstract interpreter. In the following section,
we develop a notion of reduction for contracts-as-values that leads to a modular
static analysis of higher-order behavioral software contracts.

Our language is similar that of Section 2.1 but we we use behavioral contracts
in place of types. The user-level syntax is changed as follows:

M ::= (module f C V) C ::= int | (C→C) | (pred (λx.E)).

The int contract asserts a value is an integer; any asserts nothing; (C → C ′)
asserts a value is a function accepting input satisfying C and producing values
satisfying C ′; finally, (pred (λx.E)) asserts the predicate encoded by the given
function. We write any as a shorthand for (pred (λx.0)), the contract that always
succeeds.

During reduction, we use an elaborated syntax with explicit contract checks,
written (C⇐f,g

V,f ′ E), which checks that E produces a value satisfying C with f
and g representing the two parties to the contract and f ′ as the module from
which the original contract is taken (always either f or g). Blessed contracts,
written (C 99KC ′), represent a function contract that has been partially verified,
namely that the value is a function, but it remains to check the input satisfies
C and output satisfies C ′ (in a higher-order setting, these checks must be de-
layed). Blame expressions, written (blamef

g V C V ′), represent the information
reported in the contract violation seen in Figure 4: it includes the blamed party
f , the party whose contract was broken g, the (possibly) higher-order value
that broke the contract V , the first-order contract check which fails C, and the

10 (svn 241 (2010 10 9))

P ::= ME
M, N ::= (module f C V)
L ::= (λx.E)

W ::= L | ((C 99KC)⇐f,f
V,f W)

V ::= n | W

B ::= (blamef
f V C V)

E, F ::= V | x | ff | (E E)f | (if0 E E E) | (C⇐f,f
V,f E) | B

C ::= int | (C→C) | (C 99KC) | (pred L)

Fig. 5. Syntax for programs with contracts.

(((C1 99KC2)⇐f,g
V ′,h W) V) c (C2⇐f,g

V ′,h (W (C1⇐g,f
V,h V)))

(int⇐f,g
V,f ′ n) c n

(int⇐f,g
V,f ′ W) c (blamef

f ′ V int W)

((C1→C2)⇐f,g
V,f ′ W) c ((C1 99KC2)⇐f,g

V,f ′ W)

((C1→C2)⇐f,g
V,f ′ n) c (blamef

f ′ V (C1→C2) n)

((pred L)⇐f,g
V ′,f ′ V) c (if0 (L V) V (blamef

f ′ V ′ (pred L) V))

Fig. 6. Notions of reduction for contract checking.

first-order value that witnesses the violation V ′. Previous reduction semantics
for contracts [11,19,14] have reported only the party that broke the contract,
whereas our semantics presents the same information available in production
systems. In a static analysis context, this is essential, since reporting only the
failing module hides imprecision in the analysis.

The extensions to the original grammar of modular programs are presented in
Figure 5. To support the evaluation of contracts, we require additional run-time
syntax, presented with a gray background. We require predicate contracts to be
syntactic values so as to avoid questions about when they are evaluated. In this
more general context, we can consider our earlier uses of (wrongf V) as syntactic
sugar for (blamef

Λ V λV), with Λ representing the language implementation, and
λ as the implicit contract between the programmer and the language.

Values now include “wrapped” functions W , which are either functions or
wrapped functions with a blessed arrow contract check around it. In addition
to application expressions, we annotate module references with the module in
which they appear; this is important for correctly wrapping contract checks when
resolving module references.

Figure 6 defines the notions of reduction for checking contracts. The first case
handles the application of a checked function to a value. Notice that the blessed
contract check is re-written to lower level checks on the input and output of the
application; also notice that the blame annotations are swapped on the checking
of the input. This contravariance in domain checks corresponds to the Findler
and Felleisen treatment of blame in higher-order contracts [11]. The second and
third case handle first-order checks of base values that succeed. The fourth han-
dles first-order checks that fail. The fifth and sixth case handle checking for a
function, producing a blessed contract in the case of success and blame in the
case of failure. Finally, the last case handles predicate checking by reducing to

(svn 241 (2010 10 9)) 11

a conditional testing of the predicate, branching to the checked value when it
holds and blame when it does not.

The grammar of evaluation contexts is given by:

E ::= [] | (E E) | (V E) | (if0 E E E) | (C⇐f,f
V,f E).

To handle references to module-bound variables, we define a module environ-
ment, like that in Section 2.1, that describes the module context M . Using the
module reference annotation, the environment distinguishes between self refer-
ences and external references. When an external module is referenced, its value
is wrapped in a contract check; a self-reference is resolved to its (unchecked)
value. This distinction implements the notion of “contracts as boundaries” [11]:

∆M = {(ff , V) | (module f C V) ∈ M}
∪ {(fg, (C⇐f,g

V,f V)) | (module f C V) ∈ M , f 6= g}.

An evaluation function for our language is defined as follows:

evalc(ME) = {E′ | E 7−→→vc∆M
E′}.

The grammar of evaluation contexts is just the same as in Section 2.1 with
the additional contract checking context. Hence deriving a CEK-like machine
is straightforward: we have one additional continuation form and a machine
transition that searches for a redex under a contract check and one additional
transition for each case of the c notion of reduction.

The resulting machine to be easily proved correct with respect to the reduc-
tion semantics and applying the machine refactorings and abstraction described
in Section 2.2 should yield a parametrized whole-program analysis for higher-
order behavioral software contracts.

Now we turn our attention to modularity, which we achieve by a contracts-
as-values notion of reduction to reason about opaque components using their
behavioral specification.

4.2 A Contracts-as-Values Notion of Reduction

In this section, we develop a modular analysis based on contracts by first de-
scribing how contracts behave as values. To do so, we extend the language of
values with contracts and define a non-deterministic reduction semantics. To
avoid confusion with contracts as first-class values, the subject of Section 4.4,
we maintain the convention of using an overline for abstract values.

This reduction semantics with contracts as values is again a non-computable
abstract interpretation. Computability is regained in the exactly the same man-
ner as before by deriving an abstract machine with a bounded store.

The grammar extensions (written +=) for the language with contracts are:

W+= (C→C) | (pred L) V += C

12 (svn 241 (2010 10 9))

((pred L) V)f bc any

((pred L) V)f bc (blamef?
g? V? C? V ′

?) (∗)
((C1→C2) V)f bc C2

((C1→C2) V)f bc (blamef?
g? V? C? V ′

?) (∗)
(int V)f bc (wrongf int)

(if0 C E1 E2) bc E2

(if0 int E1 E2) bc E1

(if0 (pred L) E1 E2) bc E1

(int⇐f,g
V,f ′ int) bc int

(int⇐f,g
V,f ′ (pred L)) bc int

(int⇐f,g
V,f ′ (pred L)) bc (blamef

f ′ V int (pred L))

((C1→C2)⇐f,g
V,f ′ (pred L)) bc (C1→C2)

((C1→C2)⇐f,g
V,f ′ (pred L)) bc (blamef

f ′ V (C1→C2) (pred L))

((C1→C2)⇐f,g
V,f ′ int) bc (blamef

f ′ V (C1→C2) int)

Fig. 7. Reduction with contracts as abstract values

(module f (any→(any→any)) (λx.x))
(module g ((pred (λx.x))→ int) (λx.0))
(module h any (λz.((f g) 8))
(h 0)

Fig. 8. Example of indirect blame.

Again, overlines C distinguish abstract values from other values and contracts.

Analogous to the way in which types could be considered values by notions of
reductions, we likewise can develop notions of reduction for contracts as abstract
values. The contract-as-values notion of reduction ĉ is given in Figure 7. In this
figure, f?, V?, and C? are interpreted as ranging over all modules, values, and
contracts that are not opaque.

The reduction rules marked with (∗) require explanation. They indicate that
when an unknown function, approximated by a contract, is applied, it may have
arbitrary behavior at runtime, including blaming any module in the program.
Consider the example in Figure 8. Here, if f and g are opaque, the semantics
reduces (f g) to (any→any). Applying this value to 8 reduces to the abstract
value any, but it also performs computation; in this example, that computation
blames h, but it might blame any module in the program. To represent this
possibility, we add the two rules marked with (∗).

Additionally, note that when an abstract value approximated by a predicate
contract is applied to a value ((pred L) V) the result may be any value; this
course approximation is necessary since it is possible to write a trivial predicate
that simulate any. In contrast, checking a predicate contract against a value
((pred L)⇐f,g

V ′,f ′ V) is still handled precisely by the last rule in Figure 6.

(svn 241 (2010 10 9)) 13

g v f? V v V ? C v C? V v (pred L) (C⇐f,g
V,f ′ E) v C n v int

((C1 99KC2)⇐f,g
V,f ′ E) v (C1→C2)

(module f C •) ∈ M

(blamef
g V C′ V ′) v E

Fig. 9. The v relation for contracts (excerpt).

The ∆M relation continues to implement the notion of module reference, but
now it is extended to produce abstract contract values for opaque modules.

∆M = {(fg, C) | (module f C •) ∈ M}
∪ {(ff , V) | (module f C V) ∈ M}
∪ {(fg, (C⇐f,g

V,f V)) | (module f C V) ∈ M , f 6= g}

An evaluation function is defined as follows:

evalbc(ME) = {E′ | E 7−→→vcbc∆M
E′}.

The following lemmas, which are analogous to those of Section 3, establish
the soundness of the abstract notion of reduction with respect to the v relation
defined in Figure 9 (again structural rules are deferred to Appendix C).

Lemma 3. If E 7−→vcbc∆M
E′ and ME v NF , then either ME′ v NF , or

ME′ v NF ′ and F 7−→vcbc∆N
F ′.

Proof. If the terms decompose into related contexts and related redexes, the
result follows by Lemma 4. Otherwise, the redex in E must be related to an
abstract value in F , in which case the result follows by Lemma 5.

Lemma 4. If E vv̂∆M E′, F vv̂∆N F ′, and ME v NF , then ME′ v NF ′.

Lemma 5. If E 7−→vcbc∆M
E′ and ME v NC then ME′ v NC.

4.3 Deriving An Abstract Interpretation for Blame Analysis

In this section, we derive an abstract machine for the annotated language and
prove it faithful to the reduction semantics. Continuations are represented as:

κ ::= mt | arf (E, ρ, κ) | fnf (W,ρ, κ) | ckf,f
V,f (C, κ) | if(E,E, ρ, κ)

Equipped with this definition, we extend the CEK machine with rules for
contract evaluation presented in Figure 10 as well as rules for handling abstract
values. This extension presents no complications and so for reasons of space
we defer the definition to Appendix A. Core expression evaluation and module
evaluation is unchanged, inheriting the new definition of ∆M as appropriate.

Given this machine, we can now define a corresponding evalcekbc function:

evalcekbc (ME) = {U(ς) | 〈E, ∅,mt〉 7−→→cek
vcbc∆M

ς}.

14 (svn 241 (2010 10 9))

ς 7−→cek
c ς ′

〈(C⇐f,g
V,f ′ E), ρ, κ〉 〈E, ρ, ckf,g

V,f ′(C, κ)〉
〈n, ρ, ckf,g

V,f ′(int, κ)〉 〈n, ρ, κ〉
〈W, ρ, ckf,g

V,f ′(int, κ)〉 〈(blamef
f ′ V int W), ρ, κ〉

〈W, ρ, ckf,g
V,f ′((C1→C2), κ)〉 〈((C1 99KC2)⇐f,g

V,f ′ W), ρ, κ〉
〈n, ρ, ckf,g

V,f ′((C1→C2), κ)〉 〈(blamef
f ′ V (C1→C2) n), ρ, κ〉

〈V, ρ, ckf,g
V ′,h((pred L), κ)〉 〈(L V), ρ, if(V, (blamef

h V ′ (pred L) V), ρ, κ)〉
〈V, ρ, fn(((C1 99KC2)⇐f,g

V ′,h W), ρ′, κ)〉 〈(C1⇐g,f
V,h V), ρ, fn(W, ρ′, ckf,g

V ′,h(C2, κ))〉

Fig. 10. Additional CEK machine transitions for contracts.

Given the above CEK machine, we follow the recipe presented in Section 2
to systematically transform the rules for contract evaluation into new rules for a
CESK? machine. By then bounding the store, we obtain a sound and computable
abstraction in the form of an âvalcesk

?bc . The derivation presents no complications
and so, again, for reasons of space, the machine transitions and the âvalcesk

?bc
function are omitted and given in Appendix A.

Theorem 4. âvalcesk
?bc is a sound, computable approximation of evalc for all

possible instantiations of opaque modules.

The theorem relies on the soundness of the abstract notion of reduction, estab-
lished in Lemmas 3 and 4.

4.4 First-class Contracts

The above development treats contracts purely syntactically. However, since con-
tracts are checked at run-time, they can also be computed at run-time. In fact, ex-
isting higher-order contract systems [13] make contracts first-class values which
are dynamically computed before checking. In this section, we show the simple
extensions required to express first-class contracts in our model, as well as the
changes this implies for the abstractions we have developed.

Syntax: Allowing contracts to be computed means that expressions may appear
and be evaluated inside contracts. Allowing useful programming over contracts
requires that contracts become part of the rest of the expression language. This
requires extensions as follows:

E+= (E→E) V += C E+= (E⇐f,f
V,f E) | (E→E) | (V →E),

In particular, we add a new definition of contract values. Evaluation occurs
during the construction of function contracts, and contracts are evaluated when
they appear in checks.

(svn 241 (2010 10 9)) 15

Semantics: We modify the definition of ∆M to:

∆M = {(fg, (C⇐f,g
•,f •)) | (module f C •) ∈ M}

∪ {(ff , V) | (module f C V) ∈ M}
∪ {(fg, (C⇐f,g

V,f V)) | (module f C V) ∈ M , f 6= g}

where • is a placeholder value. Opaque module references produce contract check
expressions, which then evaluate the contract.

The rules for checking values against contracts remain the same. When a
contract is checked against a placeholder, the contract transitions from a con-
crete value (representing just the contract) to an abstract value (representing
all values that may satisfy the contract). If a non-contract value is used as a
contract, the program errors since the implicit contract with the programming
language has been violated. If an abstract value is used as a contract, there are
two possibilities—it may evaluate to an unknown contract, in which case we
approximate the result as any, since we do not know what the contract ensures.
Otherwise, it may evaluate to a non-contract value, in which case it blames
the opaque module. However, since errors which blame opaque modules may be
soundly ignored by our semantics, we do not need to consider these cases.

(C⇐f,g
V,f ′ •) ĉ1 C

(V ⇐f,g
V ′′,f ′ V ′) ĉ1 (wrongf V) if V is not a contract

((pred L)⇐f,g
V,f ′ •) ĉ1 any

((pred L)⇐f,g
V ′,f ′ V) ĉ1 V

((pred L)⇐f,g
V ′,f ′ V) ĉ1 (blame

f/g
g/f V ? C? V ?)

The notation f/g indicates that in the last rule, either f or g may be blamed,
with the other as the opposite party.

An evaluation function for the language is defined as follows:

evalbc1(ME) = {E′ | E 7−→→vcbcbc1∆M
E′}.

From this, we can derive CEK and abstract CESK? machines from our ab-
stract reduction semantics (we again defer these straightforward definitions to
Appendix A for reasons of space) to produce a modular static analyzer.

Soundness: Having extended the language of expressions to include first-class
contracts, we now revisit the soundness theorem. This theorem relies on an
extension of the v relation from Section 4.2 with additional structural rules
(see Appendix C.2) to handle relations between contracts in expression as well
as relations between abstract values. The key additional rule is that C v C ′

implies C v C ′.
This gives the following extended soundness theorem:

Theorem 5. âvalcesk
?bc1 is a sound, computable approximation of evalc1 for all

possible instantiations of opaque modules.

16 (svn 241 (2010 10 9))

5 Related Work

Modular analysis of programs is a broad topic; in this section, we discuss related
work on higher-order programming languages.

Modular Analyzers: Shivers [23], Serrano [22], and Ashley and Dybvig [1]
address modularity (in the sense of open-world assumptions of missing program
components) by incorporating a notion of an external or undefined value, which
is analogous to the abstract value any in our setting. Such an abstraction can be
expressed in our setting by always using the any contract on unknown modules,
and therefore allowing more descriptive contracts can be seen as a refinement
of the abstraction on missing program components—the more we can say about
the contract of an component, the more precisely we can determine the behavior
of the program, possible failures, and whose to blame.

The most closely related work to our specification-as-values notion of reduc-
tion is Reppy’s work that presents an analysis that uses types as abstract values
in a similar fashion to our presentation [21]. Reppy develops a variant of 0CFA
that uses “a more refined representation of approximate values”, namely types.
The analysis is modular in the sense that all module imports are approximated
by their type, whereas our approach allows more refined analysis whenever com-
ponents are not opaque. Reppy’s analysis can be considered as an instance of
our framework and thus could be derived from the semantics of the language
rather than requiring custom design.

Cousot has demonstrated types are abstract interpretations in a denotational
setting [6], which bears a conceptual relation to the modular analysis using types
in Section 3, however our treatment is more syntactic: types are abstract interpre-
tations of syntactic values of that type, which are used only for opaque modules;
and our computable approximation method is based on a finite approximation
of a transition system, common in the literature on abstract interpretation [7].

Set-Based Analysis from Contracts: The second-class contract system of
Section 4 is closely related to and inspired by the modular set-based analysis from
contracts work of Meunier et al. [19,18]. Meunier takes a set-based approach in
which programs are annotated with labels and flow inequalities are generated
that relate flow sets through the program text. When solved, the analysis maps
source labels to sets of abstract values to which that expression may evaluate.

The set-based analysis is defined as a separate semantics, which must be
manually proved to correspond to the concrete semantics. This proof requires
substantial support from the reduction semantics, making it significantly and
artificially more complex by carrying additional information only used in the
proof. Despite this, the system is unsound, since it does not have analogues of
the ∗-marked rules in Figure 7. To see this, consider the example program from
Figure 8. This program reduces, in either system, to an error blaming module
h. However, Meunier et al.’s analysis does not predict an error blaming h. Both
systems approximate the result of (f g) with (the analogue of) the abstract
value (any→any); however, since their system is lacking the ∗-marked rules, the

(svn 241 (2010 10 9)) 17

application of this abstract value to 8 is predicted not to produce blame. This
unsoundness has been verified in the prototype described by Meunier et al.

Meunier’s set-based analysis is modular in the sense that the “analysis pro-
duces the same predictions for a given point in the program regardless of whether
it analyzes the whole program or just the surrounding module.” Modularity is
achieved by a whole-program transformation which lifts each module out of its
context as well as lifting each contract check.

Finally, Meunier approximates conditionals by the union of its branches’ ap-
proximation; the test is ignored. This seemingly minor point becomes significant
when considering predicate contracts. Since predicate contracts reduce to con-
ditionals, this effectively approximates all predicates as both holding and not
holding, and thus all predicate contracts may both fail and succeed.

The addition of the ∗-marked rules remedy the unsoundness of Meunier et
al.’s system, but our work also extends theirs in several ways. First, we derive
a semantics-based modular analysis, avoiding needless imprecision by simply
following the semantics for conditionals. Second, our system allows for any subset
of modules to be analyzed together, rather than analyzing each independently.
Third, our system scales to first-class contracts. Finally, we present our analysis
of contracts within a general framework for modular analysis, which applies
to specifications other than contracts. Their work discusses the use of theorem
prover to determine whether a value has already passed a stronger contract
check; we leave this to future work.

Compositional Analyzers: Another sense of the words modular and compo-
sitional is often used in the literature [20]; many authors use these (interchange-
ably) to mean that program components can be analyzed in isolation and whole
programs can be analyzed by combining these component-wise analysis results.
Banerjee and Jensen [3,2] present a type based analysis, which is modular in the
sense that there is a way to summarize all of the constraints generated from a
particular expression, allowing incrementalization of the analysis. It is not mod-
ular in the sense of our analysis. Flanagan [12] takes a similar approach in an
untyped setting (using the terminology “componential”). Lee et al. does some-
thing similar with component-wise approach to 0CFA [17]. But in our sense of
modularity, these analyses are not modular—before analysis results can be re-
ported, the whole program must be available. Consequently, these approaches
are not adequate for reasoning about opaque components.

Analyzing Contracts: Xu et al. [25] present a system for statically verifying
whether a program may fail a contract check. Their strategy is to statically
insert blame expressions, in effect expanding contract checks in place, optimizing
the program, and reporting any remaining contract checks as potential failures.
While not a program analysis, and thus in a significantly different setting than
the present work, it does have some similarities, in particular using the contract
of one function in the analysis of another. As with Meunier et al.’s work, the
user has no control over what is precisely analyzed; indeed, Xu et al. inline
all non-contracted functions. Further, their system does not attempt to track

18 (svn 241 (2010 10 9))

the possible parties to blame errors. Finally, their system greatly restricts the
language of contracts to support their static checking strategy.

Many other researchers have studied verifying first-order properties of pro-
grams expressed as contracts [4]. We could use such analyses to improve precision
for first-order predicate checks in our system.

Combining Expressions with Specifications: Giving semantics to programs
combined with specifications has a long history in the setting of program refine-
ments [15]. Our key innovations are (a) treating specifications as abstract val-
ues, rather than as programs in a more abstract language, (b) applying abstract
reduction to modular program analysis, as opposed to program derivation or
verification, and (c) the use of higher-order contracts as specifications.

Type inference and checking can be recast as a reduction semantics [16], and
doing so bears a conceptual resemblance to our types-as-values reduction. The
principal difference is that Kuan et al. are concerned with producing a type,
and so all expressions are reduced to types before being combined with other
types. Instead, we are concerned with values, and thus types and contracts are
maintained as specification values, but concrete values are not abstracted away.

6 Conclusion

Deriving static analyzers from the existing semantics of a programming language
has numerous benefits, among them simplicity and correctness by construction.
However, deriving a modular analysis in this fashion requires a notion of of mod-
ular reduction. We therefore introduce abstract reduction semantics, in which
some modules in the program are treated opaquely, with their specifications
treated as values which approximate the true behavior of the opaque module.

Our technique is applicable to multiple forms of specifications, from simple
types to complex first-class contracts. Further, our techniques provide simple
proofs of both soundness and modularity. In contrast, previous approaches re-
quired complex proofs of soundness, in which errors remained nonetheless.

We hope to extend our work to both richer type systems and richer contract
systems. While our contract language is richer than that considered in previous
analysis work, it does not yet encompass the full scope of existing contract li-
braries such as that provided by Racket. We plant to investigate extensions to
dependent contracts as well as additional contract combinators such as conjunc-
tion and disjunction, which may support improved analysis precision.

Acknowledgments: We thank Phillipe Meunier for discussions of his prior
work and providing code for the prototype implementation of his system.

References

1. Ashley, J.M., Dybvig, R.K.: A practical and flexible flow analysis for higher-order
languages. ACM Trans. Program. Lang. Syst. 20(4), 845–868 (1998)

(svn 241 (2010 10 9)) 19

2. Banerjee, A.: A modular, polyvariant and type-based closure analysis. In: Berman,
A.M. (ed.) ICFP ’97. pp. 1–10. ACM Press (1997)

3. Banerjee, A., Jensen, T.: Modular control-flow analysis with rank 2 intersection
types. Mathematical. Structures in Comp. Sci. 13(1), 87–124 (2003)

4. Barnett, M., Fähndrich, M., Leino, K.R.M., Müller, P., Schulte, W., Venter, H.:
Specification and verification: The Spec# experience. Comm. of the ACM (2010)

5. Biernacka, M., Danvy, O.: A concrete framework for environment machines. ACM
Trans. Comput. Logic 9(1), 1–30 (2007)

6. Cousot, P.: Types as abstract interpretations. In: POPL ’97. pp. 316–331. ACM
(1997)

7. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL ’77.
pp. 238–252. ACM (1977)

8. Danvy, O.: An Analytical Approach to Program as Data Objects. DSc thesis,
Department of Computer Science, Aarhus University (2006)

9. Felleisen, M.: The Calculi of Lambda-v-CS Conversion: A Syntactic Theory of
Control and State in Imperative Higher-Order Programming Languages. Ph.D.
thesis, Indiana University (1987)

10. Felleisen, M., Findler, R.B., Flatt, M.: Semantics Engineering with PLT Redex.
MIT Press (2009)

11. Findler, R.B., Felleisen, M.: Contracts for higher-order functions. In: ICFP ’02. pp.
48–59. ACM (2002)

12. Flanagan, C.: Effective Static Debugging via Componential Set-Based Analysis.
Ph.D. thesis, Rice University (1997)

13. Flatt, M., PLT: Reference: Racket. Tech. Rep. PLT-TR-2010-1, PLT Inc. (2010)
14. Greenberg, M., Pierce, B.C., Weirich, S.: Contracts made manifest. In: POPL ’10.

pp. 353–364. ACM (2010)
15. Johan, R., Akademi, A., Wright, J.V.: Refinement Calculus: A Systematic Intro-

duction. Springer-Verlag New York, Inc. (1998)
16. Kuan, G., MacQueen, D., Findler, R.B.: A rewriting semantics for type inference.

In: Nicola, R.D. (ed.) ESOP ’07. vol. 4421 (2007)
17. Lee, O., Yi, K., Paek, Y.: A proof method for the correctness of modularized 0CFA.

Information Processing Letters 81, 179–185 (2002)
18. Meunier, P.: Modular Set-Based Analysis from Contracts. Ph.D. thesis, Northeast-

ern University (2006)
19. Meunier, P., Findler, R.B., Felleisen, M.: Modular set-based analysis from con-

tracts. In: POPL ’06. pp. 218–231. ACM (2006)
20. Midtgaard, J.: Control-flow analysis of functional programs. Tech. Rep. BRICS

RS-07-18, University of Aarhus (2007)
21. Reppy, J.: Type-sensitive control-flow analysis. In: ML ’06. pp. 74–83. ACM (2006)
22. Serrano, M.: Control flow analysis: a functional languages compilation paradigm.

In: SAC ’95. pp. 118–122. ACM (1995)
23. Shivers, O.: Control-flow analysis of higher-order languages. Ph.D. thesis, Carnegie

Mellon University (1991)
24. Van Horn, D., Might, M.: Abstracting abstract machines. In: ICFP ’10. pp. 51–62.

ACM (2010)
25. Xu, D.N., Peyton Jones, S., Claessen, S.: Static contract checking for Haskell. In:

POPL ’09. pp. 41–52. ACM (2009)

20 (svn 241 (2010 10 9))

A Contract Machines

In this section we give a complete definition of the CEK machine for the language
with modules and first-class contracts.

A.1 CEK Machine for First-class Contracts

ς 7−→cek
vcbcbc1∆M

ς ′

Lambda

〈V, ρ, fnf ((λx.E), ρ′, κ)〉 〈E, ρ′[x 7→ 〈V, ρ〉], κ〉
〈V, ρ, fnf (n, ρ′, κ)〉 〈(wrongf n), ρ, κ〉
〈0, ρ, if(E0, E1, ρ

′, κ)〉 〈E0, ρ
′, κ〉

〈V, ρ, if(E0, E1, ρ
′, κ)〉 〈E1, ρ

′, κ〉, if V 6= 0

〈x, ρ, κ〉 〈V, ρ′, κ〉 if ρ(x) = 〈V, ρ′〉
〈f, ρ, κ〉 〈V, ∅, κ〉, if ∆M (f) = V

〈(E0 E1)
f , ρ, κ〉 〈E0, ρ, arf (E1, ρ, κ)〉

〈V, ρ, arf (E, ρ′, κ)〉 〈E, ρ′, fnf (V, ρ, κ)〉
〈(if0 E1 E2 E3), ρ, κ〉 〈E1, ρ, if(E2, E3, ρ, κ)〉
Contracts

〈(C⇐f,g
V,f ′ E), ρ, κ〉 〈E, ρ, ckf,g

V,f ′(C, κ)〉
〈n, ρ, ckf,g

V,f ′(int, κ)〉 〈n, ρ, κ〉
〈W, ρ, ckf,g

V,f ′(int, κ)〉 〈(blamef
f ′ V int W), ρ, κ〉

〈W, ρ, ckf,g
V,f ′((C1→C2), κ)〉 〈((C1 99KC2)⇐f,g

V,f ′ W), ρ, κ〉
〈n, ρ, ckf,g

V,f ′((C1→C2), κ)〉 〈(blamef
f ′ V (C1→C2) n), ρ, κ〉

〈V, ρ, ckf,g
V ′,h((pred L), κ)〉 〈(L V), ρ, if(V, (blamef

h V ′ (pred L) V), ρ, κ)〉
〈V, ρ, fn(((C1 99KC2)⇐f,g

V ′,h W), ρ′, κ)〉 〈(C1⇐g,f
V,h V), ρ, fn(W, ρ′, ckf,g

V ′,h(C2, κ))〉

(Rules for abstract values and first-class contracts are on the next page.)
We add the following continuation forms to handle the evaluation contexts

introduced by first-class contracts:

E += (E⇐f,f
V,f E) | (E→E) | (V →E)

κ += kcf,f
V,f (E, κ) | arl(E, κ) | arr(V, κ)

(svn 241 (2010 10 9)) 21

ς 7−→cek
vcbcbc1∆M

ς ′

Contracts as Abstract Values

〈V, ρ, fnf ((pred L), ρ′, κ)〉 〈any, ∅, κ〉
〈V, ρ, fnf ((pred L), ρ′, κ)〉 〈(blamef?

g? V? C? V ′
?), ∅, κ〉

〈V, ρ, fnf ((C1→C2), ρ
′, κ)〉 〈C2, ∅, κ〉

〈V, ρ, fnf ((C1→C2), ρ
′, κ)〉 〈(blamef?

g? V? C? V ′
?), ∅, κ〉

〈V, ρ, fnf (int, ρ′, κ)〉 〈(wrongf int), ∅, κ〉
〈C, ρ, if(E1, E2, ρ

′, κ)〉 〈E2, ρ
′, κ〉

〈int, ρ, if(E1, E2, ρ
′, κ)〉 〈E1, ρ

′, κ〉
〈(pred L), ρ, if(E1, E2, ρ

′, κ)〉 〈E1, ρ
′, κ〉

〈(pred L), ρ, ckf,g
V,f ′(int, κ)〉 〈int, ρ, κ〉

〈(pred L), ρ, ckf,g
V,f ′(int, κ)〉 〈(blamef

f ′ V int any), ∅, κ〉
〈(pred L), ρ, ckf,g

V,f ′((C1→C2), κ)〉 〈(C1→C2), ∅, κ〉
〈(pred L), ρ, ckf,g

V,f ′((C1→C2), κ)〉 〈(blamef
f ′ V (C1→C2) (pred L)), ∅, κ〉

〈int, ρ, ckf,g
V,f ′((C1→C2), κ)〉 〈(blamef

f ′ V (C1→C2) int), ∅, κ〉
First-class Contracts

〈(E1→E2), ρ, κ〉 〈E1, ρ, arl(E2, κ)〉
〈V, ρ, arl(E, κ)〉 〈E, ρ, arr(V, κ)〉
〈V, ρ, arr(V ′, κ)〉 〈(V ′→V), ρ, κ〉
〈(E1⇐f,g

V,f ′ E2), ρ, κ〉 〈E1, ρ, kcf,g
V,f ′(E2, κ)〉

〈V, ρ, kcf,g
V ′,f ′(E, κ)〉 〈E, ρ, ckf,g

V ′,f ′(V, κ)〉
〈•, ρ, ckf,g

V,f ′(C, κ)〉 〈C, ∅, κ〉
〈V ′, ρ, ckf,g

V ′′,f ′(V, κ)〉 〈(wrongf V), ∅, κ〉, if V is not a contract

〈•, ρ, ckf,g
V,f ′((pred L), κ)〉 〈any, ∅, κ〉

〈V, ρ, ckf,g
V ′,f ′((pred L), κ)〉 〈V, ρ, κ〉

〈V, ρ, ckf,g
V ′,f ′((pred L), κ)〉 〈(blame

f/g

g/f V ? C? V ?), ∅, κ〉

22 (svn 241 (2010 10 9))

A.2 CESK? Machine for First-class Contracts

ς 7−→cesk?

vcbcbc1∆M
ς ′ where κ ∈ σ̂(a), b = alloc(ς̂ , κ)

Lambda

〈V, ρ, σ̂, a〉 if κ = fnf ((λx.E), ρ′, a′) 〈E, ρ′[x 7→ b], σ̂ t [b 7→ 〈V, ρ〉], a′〉
〈V, ρ, σ̂, a〉 if κ = fnf (n, ρ′, a′) 〈(wrongf n), ρ, σ̂, a′〉
〈0, ρ, σ̂, a〉 if κ = if(E0, E1, ρ

′, a′) 〈E0, ρ, σ̂, a′〉
〈V, ρ, σ̂, a〉 if κ = if(E0, E1, ρ

′, a′) 〈E1, ρ, σ̂, a′〉 if V 6= 0

〈x, ρ, σ̂, κ〉 〈V, ρ′, σ̂, κ〉 if σ̂(ρ(x)) 3 〈V, ρ′〉)
〈f, ρ, σ̂, κ〉 〈V, ∅, σ̂, κ〉 if ∆M (f) = V

〈(E0 E1), ρ, σ̂, a〉 〈E0, ρ, σ̂ t [b 7→ arf (E1, ρ, a)], b〉
〈V, ρ, σ̂, a〉 if κ = arf (E, ρ′, a′) 〈E, ρ′, σ̂ t [b 7→ fnf (V, ρ, a′)], b〉
〈(if0 E1 E2 E3), ρ, σ̂, a〉 〈E1, ρ, σ̂ t [b 7→ if(E2, E3, ρ, a)], b〉
Contracts

〈(C⇐f,g
V,f ′ E), ρ, a, σ〉 〈E, ρ, σ[b 7→ ckf,g

V,f ′(C, a)], b〉
〈n, ρ, σ, a〉, if κ = ckf,g

V,f ′(int, a′) 〈n, ρ, σ, a′〉
〈W, ρ, σ, a〉, if κ = ckf,g

V,f ′(int, a′) 〈(blamef
f ′ V int W), ρ, σ, a′〉

〈W, ρ, σ, a〉, if κ = ckf,g
V,f ′((C1→C2), a

′) 〈((C1 99KC2)⇐f,g
V,f ′ W), ρ, σ, a′〉

〈n, ρ, σ, a〉, if κ = ckf,g
V,f ′((C1→C2), a

′) 〈(blamef
f ′ V (C1→C2) n), ρ, σ, a′〉

〈V, ρ, σ, a〉, if κ = ckf,g
V ′,h((pred L), a′) 〈(L V), ρ, σ[b 7→ if(V, (blamef

h V ′ (pred L) V), ρ, a′)], b〉
〈V, ρ, σ, a〉, if κ = fn(((C1 99KC2)⇐f,g

V ′,h W), ρ′, a′) 〈(C1⇐g,f
V,h V), ρ, σ[b 7→ fn(W, ρ′, ckf,g

V ′,h(C2, a
′))], b〉

(svn 241 (2010 10 9)) 23

ς 7−→cesk?

vcbcbc1∆M
ς ′

Contracts as Abstract Values

〈V, ρ, σ, a〉, if κ = fnf ((pred L), ρ′, a′) 〈any, ∅, σ, κ〉
〈V, ρ, σ, a〉, if κ = fnf ((pred L), ρ′, a′) 〈(blamef?

g? V? C? V ′
?), ∅, σ, κ〉

〈V, ρ, σ, a〉, if κ = fnf ((C1→C2), ρ
′, a′) 〈C2, ∅, σ, κ〉

〈V, ρ, σ, a〉, if κ = fnf ((C1→C2), ρ
′, a′) 〈(blamef?

g? V? C? V ′
?), ∅, σ, κ〉

〈V, ρ, σ, a〉, if κ = fnf (int, ρ′, a′) 〈(wrongf int), ∅, σ, κ〉
〈C, ρ, σ, a〉, if κ = if(E1, E2, ρ

′, a′) 〈E2, ρ
′, σ, a′〉

〈int, ρ, σ, a〉, if κ = if(E1, E2, ρ
′, a′) 〈E1, ρ

′, σ, a′〉
〈(pred L), ρ, σ, a〉, if κ = if(E1, E2, ρ

′, a′) 〈E1, ρ
′, σ, a′〉

〈(pred L), ρ, σ, a〉, if κ = ckf,g
V,f ′(int, κ) 〈int, ρ, σ, a′〉

〈(pred L), ρ, σ, a〉, if κ = ckf,g
V,f ′(int, κ) 〈(blamef

f ′ V int any), ∅, σ, a′〉
〈(pred L), ρ, σ, a〉, if κ = ckf,g

V,f ′((C1→C2), a
′) 〈(C1→C2), ∅, σ, a′〉

〈(pred L), ρ, σ, a〉, if κ = ckf,g
V,f ′((C1→C2), a

′) 〈(blamef
f ′ V (C1→C2) (pred L)), ∅, σ, a′〉

〈int, ρ, σ, a〉, if κ = ckf,g
V,f ′((C1→C2), a

′) 〈(blamef
f ′ V (C1→C2) int), ∅, σ, a′〉

First-class Contracts

〈(E1→E2), ρ, σ, a〉 〈E1, ρ, σ t [b 7→ arl(E2, a)], b〉
〈V, ρ, σ, a〉, if κ = arl(E, a′) 〈E, ρ, σ t [b 7→ arr(V, a′)], b〉
〈V, ρ, σ, a〉, if κ = arr(V ′, a′) 〈(V ′→V), ρ, σ, a′〉
〈(E1⇐f,g

V,f ′ E2), ρ, σ, a′〉 〈E1, ρ, σ t [b 7→ kcf,g
V,f ′(E2, a

′)], b〉
〈V, ρ, σ, a〉, if κ = kcf,g

V ′,f ′(E, a′) 〈E, ρ, σ t [b 7→ ckf,g
V ′,f ′(V, a′)], b〉

〈•, ρ, σ, a〉, if κ = ckf,g
V,f ′(C, a′) 〈C, ∅, σ, a′〉

〈V ′, ρ, σ, a〉, if κ = ckf,g
V ′′,f ′(V, a′) 〈(wrongf V), ∅, σ, a′〉, if V is not a contract

〈•, ρ, σ, a〉, if κ = ckf,g
V,f ′((pred L), a′) 〈any, ∅, σ, a′〉

〈V, ρ, σ, a〉, if κ = ckf,g
V ′,f ′((pred L), a′) 〈V, ρ, σ, a′〉

〈V, ρ, σ, a〉, if κ = ckf,g
V ′,f ′((pred L), a′) 〈(blame

f/g

g/f V ? C? V ?), ∅, σ, a′〉

24 (svn 241 (2010 10 9))

B Type and approximation judgments

B.1 Typing

The typing judgment for programs is defined as follows:

∀(module f T V) ∈ M .ΓM ` V : T ΓM ` E : T ′

ME : T ′ ,

where

ΓM = {(f, T) | (module f T E) ∈ M} ∪ {(f, T) | (module f T •) ∈ M}.

The typing judgment for expressions is just simple typing defined as usual with
the exception of the last case, which assigns a type to a type value:

Γ (x) = T

Γ ` x : T

Γ (f) = T

Γ ` f : T
Γ ` n : int

Γ ` E1 : T Γ ` E2 : T ′ Γ ` E3 : T ′

Γ ` (if0 E1 E2 E3) : T ′
Γ ;x : T ` E : T ′

Γ ` (λx.E) : T → T ′

Γ ` E : T ′ → T Γ ` E′ : T ′

Γ ` (E E′) : T
Γ ` T : T

B.2 Approximation of Typed Programs

The approximation judgment is defined by transitive closure of the rules below.

Abstract Values

Γ ` E : T

Γ ` E vT T

Structural Rules

M0 v N0 . . . Mn v Nn ΓM0...Mn ` E vT E′

M0 . . .MnE vT N0 . . . NnE′

(module f T V) v (module f T •) M v M
Γ ` E : T

E vT E

Γ ` E0 vT ′→T E′
0 Γ ` E1 vT ′ E′

1

Γ ` (E0 E1) vT (E′
0 E′

1)
Γ ;x : T ` E vT ′ E′

Γ ` (λx.E) vT→T ′ (λx.E′)

Γ ` E0 vT E′
0 Γ ` E1 vT ′ E′

1 Γ ` E2 vT ′ E′
2

Γ ` (if0 E0 E1 E2) vT ′ (if0 E′
0 E′

1 E′
2)

(svn 241 (2010 10 9)) 25

C Contract approximation judgments

Again, we take the transitive closure of the rules.

C.1 Second-class contracts

Abstract Values

n v int V v any V v (pred L) (C⇐f,g
V,f ′ E) v C

((C1 99KC2)⇐f,g
V,f ′ E) v (C1→C2)

Placeholders

g v f? V v V ? C v C?

Modules

(module f C •) ∈ M

(blamef
g V C ′ V ′) v E

(module f T V) v (module f T •)

Structural Rules

E v E
E v E′

(λx.E) v (λx.E′)
E0 v E′

0 E1 v E′
1

(E0 E1) v (E′
0 E′

1)

E0 v E′
0 E1 v E′

1 E2 v E′
2

(if0 E0 E1 E2) v (if0 E′
0 E′

1 E′
2)

E v E′ V v V ′

(C⇐f,g
V,f ′ E) v (C⇐f,g

V ′,f ′ E
′)

f v f ′ g v g′ C v C ′ V1 v V1
′ V2 v V2

′

(blamef
g V1 C V2) v (blamef ′

g′ V ′
1 C ′ V ′

2)

M0 v N0 . . . Mn v Nn ΓM0...Mn
` E v E′

M0 . . .MnE v N0 . . . NnE′ M v M

C.2 First-class contracts

The below rules are used in addition to the rules above for second-class contracts.

C v C ′

C v C ′

L v L′

(pred L) v (pred L′)
E1 v E1

′ E2 v E2
′

(E1→E2) v (E′
1→E′

2)

E v E′ V v V ′ C v C ′

(C⇐f,g
V,f ′ E) v (C ′⇐f,g

V ′,f ′ E
′)

26 (svn 241 (2010 10 9))

D Unload Functions

U(〈E, ρ, κ〉) = E [close(E, ρ)]

where E = unwind(κ).

close(E, {x 7→ 〈V ,ρ〉}) = [close(V ,ρ)/x]E

unwind(mt) = []
unwind(arf (E, ρ, κ)) = E [([] close(E, ρ))f] if E = unwind(κ)
unwind(fnf (V, ρ, κ)) = E [(close(V, ρ) [])f] if E = unwind(κ)
unwind(if(E1, E2, ρ, κ)) = E [(if0 [] close(E1, ρ) close(E2, ρ))] if E = unwind(κ)
unwind(ckf,g

V ′,h(V, κ)) = E [(V ⇐f,g
V ′,h [])] if E = unwind(κ)

unwind(kcf,g
V ′,h(E, κ)) = E [([]⇐f,g

V ′,h E)] if E = unwind(κ)
unwind(arl(E, κ)) = E [([]→E)] if E = unwind(κ)
unwind(arr(V, κ)) = E [(V → [])] if E = unwind(κ)

Û(〈E, ρ, σ, a〉) = {E [E′] | κ ∈ σ(a), E′ ∈ ĉloseσ(E, ρ), E ∈ ûnwindσ(κ)}

ĉloseσ(E, {x 7→ a}) = {[ĉloseσ(V ,ρ)/x]E | 〈V ,ρ〉 ∈ σ(a)}

ûnwindσ(mt) 3 []
ûnwindσ(arf (E, ρ, κ)) 3 E [([] ĉloseσ(E, ρ))f] if E ∈ ûnwindσ(κ)
ûnwindσ(fnf (V, ρ, κ)) 3 E [(ĉloseσ(V, ρ) [])f] if E ∈ ûnwindσ(κ)
ûnwindσ(if(E1, E2, ρ, κ)) 3 E [(if0 [] ĉloseσ(E1, ρ) ĉloseσ(E2, ρ))] if E ∈ ûnwindσ(κ)
ûnwindσ(ckf,g

V ′,h(V, κ)) 3 E [(V ⇐f,g
V ′,h [])] if E ∈ ûnwindσ(κ)

ûnwindσ(kcf,g
V ′,h(E, κ)) 3 E [([]⇐f,g

V ′,h E)] if E ∈ ûnwindσ(κ)
ûnwindσ(arl(E, κ)) 3 E [([]→E)] if E ∈ ûnwindσ(κ)
ûnwindσ(arr(V, κ)) 3 E [(V → [])] if E ∈ ûnwindσ(κ)

(svn 241 (2010 10 9)) 27

	Modular Analysis via Abstract Reduction Semantics

