
Computer Science 190 (Spring Term, 2008)
Semantics of Programming Languages

Course instructor: Harry Mairson (mairson@brandeis.edu), Volen 257, phone (781)
736-2724. Office hours Monday and Wednesday, 1–2.30pm and by arrangement. Don’t be
afraid to bug me in my office—I’m around most of the time. I especially encourage you to
communicate with me via electronic mail, for fastest and most reliable responses to your
questions. I try to read e-mail every 5 minutes, 24 hours a day.

Teaching assistant: David Van Horn (dvanhorn@brandeis.edu), Volen 136, phone
(781) 736-2728. Office hours Tuesday and Friday 12-1.30pm and by arrangement.

Time and place: Tuesday and Friday, 10.40am–12.00pm, Volen 105.

What is this course about?

The main subject of this course is semantics of programming languages—how is it that
we can give a precise, mathematical meaning to a programming language. We address this
issue from the perspective of what’s often called the Curry-Howard correspondence, named
after two of its major proponents, Haskell Curry [1900–1982] and William Howard [1926–].
The fundamental idea is that data types are theorems, and (typed) programs are proofs of
theorems. What this correspondence suggests is that programming is a good medium for
understanding logic, and vice versa.

In contrast, the study of programming language semantics has for the most part been
denotational, following Gottlob Frege [1848–1925] (and before him, George Boole [1815–
1864]). The semantics of logical expressions (or even natural language) is often modelled this
way: a piece of syntax denotes some semantic object which is invariant under “equivalent”
rewritings of the syntax. An example from computer science is the language (syntax) of
regular expressions, each of which denotes a regular set; that x∗ = ε∪xx∗ means each side of
the equation denotes the same regular set. This denotational semantics associates programs
(including higher-order ones) with functions on well-specified domains—typically (infinite)
sets with an underlying ordering on its elements. Recursion is interpreted as a limit (in the
naive calculus sense) on these sets.

Another sense of semantics had a proponent in Arend Heyting [1898–1980], who wanted
not to model the denotation, but the proofs. For example, though 27×37 = 999 has a deno-
tational sense, there is a finite computation which shows (proves) that the denotations are
the same. In other words, study the finitary dynamics. When we look at logical expressions,
rather than ask (denotationally) “is φ true?” we should ask “what is the proof of φ?” Writes
Jean-Yves Girard in the introduction to Proofs and Types, one of the books we’ll use,

By proof we understand not the syntactic formal transcript, but the inherent object
of which the written form gives only a shadowy reflection [like in Plato’s cave]. We
take the view that what we write as a proof is merely a description of something
which is already a process in itself.

λ-calculus: The programming language we’ll use as a lingua franca in this course is the
λ-calculus, which is just a kind of mathematically idealized Scheme. (It’s the blueprint

1



prototype from which functional programming languages were built.) We’ll examine its
confluence (the Church-Rosser theorem, that evaluation order doesn’t really affect returned
answers, like in “normal” mathematical calculi), the standardization of reductions (that
anything you could compute by any evaluation order can also be computed by a canonical,
“standard” reduction), and look at the Krivine machine, a λ-calculus interpreter that is
call-by-name and computes head reductions. This machine will be important later because
it is connected to the idea of linearity.

Sequent calculus: Next, we’ll look at a logic, Gerhard Gentzen’s sequent calculus for
classical logic. This calculus is an abstraction of logical reasoning via formal proofs, and
we’ll prove Gentzen’s cut-elimination theorem—that the so-called cut rule, which logically
represents much of what we think of as a procedure call, can be eliminated from the cal-
culus without changing theoremhood (what is a theorem). If a proof is a program, then
cut-elimination is its intepreter. We observe, however, that classical cut-elmination is not
confluent in the sense mentioned above—a bit like simplifying an arithmetic expression, and
getting two different answers. Two ways of restoring confluence are by restricting our focus
on so-called intuitionistic logic, which replaces the multiple conclusions of a classical logic
proof with a single conclusion, or by passing to linear logic, which pays special attention to
the logical rules of contraction and weakening.

Simply-typed λ-calculus: The simply-typed λ-calculus has a type system with variables,
products, and functions. Following the Curry-Howard correspondence, λ-terms in this lan-
guage represent proofs in a logic with propositional variables, conjunction, and implication;
the normalization of terms corresponds to cut elimination on the analogous proofs. We will
examine the complexity of deciding if two terms have the same normal form, and study two
theorems demonstrating that all typed terms have a normal form. The first, weak normal-
ization theorem identifies a specific reduction strategy which always yields a normal form;
the second strong normalization theorem shows that any evaluation strategy must produce
a normal form. The proof of the latter theorem is interesting in that it presents a general
technique which can be generalized to more complex type systems.

Polymorphically typed λ-calculus (System F): This typed λ-calculus generalizes the simply-
typed system by allowing quantification over type variables, which facilitates a certain type
polymorphism in programming. The Curry-Howard correspondence is to a logic allowing
universal quantification over propositional variables, or (equivalently) second-order quantifi-
cation over a first-order universe.

This calculus allows a very straightforward coding of many familiar data types and algo-
rithms for integers, lists, trees, and so on. We’ll prove a strong normalization theorem for
System F, using a clever variant of the technique used in the simply-typed case, Girard’s
candidats de reductibilité. (Via Curry-Howard, this also proves Gentzen’s cut-elimination
theorem for second-order logic.) We further show how second-order proofs that functional,
equational specifications define total functions can then be mechanically analyzed, extract-
ing (strongly normalizing) System F programs which realize the specifications. A corollary
of this realizability, and the strong normalization theorem, is a Gödel-style incompleteness
theorem that the strong normalization theorem cannot itself be proven in second-order logic,
and (by the Curry-Howard correspondence) that a System F interpreter cannot be coded as
a System F term. (Compare, in contrast, the metacircular evaluator for Scheme, coded itself
in Scheme.)

2



Linear logic: We then pass to the second option for avoiding the nonconfluence of proofs
in cut-elimination for classical logic, namely a resource conscious logic, called linear logic.
Linear logic constricts the use of contraction (that two hypotheses A are the same as one)
and weakening (that hypotheses can be added at discretion). To recover the effect of contrac-
tion and weakening, an exponential modality !A is introduced which makes their use explicit
in the logical formulas. We’ll look at sequent calculus for linear logic, as well as a variant
formulation called proofnets, examine the complexity of normalization and of parsing (the
so-called correctness criterion), show how λ-calculus is coded in this logic (again, follow-
ing Curry-Howard intuitions), and introduce a semantics of proofs, called the geometry of
interaction, that describes paths in proofs which are crucial in cut-elimination.

Classical logic intuitionistically interpreted: A famous result of Gödel (also attributed
to Kolmogorov, Kuroda, and others) shows how to compile classical sequent formulas into
intuitionistic ones, such that theoremhood is preserved. This compilation is often called the
double-negation embedding, as certain subformulas φ are replaced by ¬¬φ; note that while
A ∨ ¬A is classically but not intuitionistically provable, ¬¬(A ∨ ¬A) is intuitionistically
provable. When the Curry-Howard perspective is used to understand this result, it turns out
that the proofs produced by the compiler correspond to programs that have been converted
using continuation-passing style. Further, the introduction of control operators (like call/cc)
can be logically interpreted as the elimination of double-negation, i.e., ¬¬A → A.

Games: There is yet another logical tradition of understanding logic as a game between
a prover and a skeptic who interact via a protocol regarding the provability of formulas; a
formula is a theorem when there is a winning strategy for the prover. These games have
intuitionistic and classical variants, with different protocols. A more recent rendition on
these games is through the Curry-Howard correspondence, where the prover and skeptic are,
effectively, a program and its contextual environment. Language features such as state and
control operators can be explained by different game protocols. These games have been used
to build models of programming languages, and address the issue of so-called full abstraction.

Differential λ-calculus: Finally, we’ll conclude the course with a discussion of a differential
λ-calculus. Derivatives are linear approximations of functions, and linear logic explains what
linearity means in the context of computation. Then a partial derivative at a point can be
modelled by a linear substitution of one term in another. This approach leads to a chain rule
just as in the usual differential calculus, a Taylor theorem where λ-terms are approximated
by infinite sums of iterated derivatives, and the terms in the sum can be understood as
explaining computations made by the Krivine machine which we earlier introduced.

How hard will this course be?

The course will require no programming, but a certain mathematical maturity—it’s not
for the faint-hearted. Students should have completed (or have a strong grasp of the ideas
in) CS21b (Structure and Interpretation of Computer Programs) and CS30a (Introduction
to the Theory of Computation). A course in mathematical logic (PHIL 106b) or algebra
(MATH 30a) would also be good preparation.

Grading and homework policy

The work for the course will consist of writing a 15-20 page expository paper on a subject
from or connected to the course (in consultation with the instructor), and giving a lecture on
one of the topics in the lecture list (again, in consultation with the instructor). Understanding

3



the readings will require real mathematical maturity, so this presentation is no easy task.
Both the paper and the presentation will be evaluated on the basis of technical accuracy,
but especially on the intuitions that motivate understanding of the subject. There may also
be an occasional problem set. Class attendance is important.

Tentative syllabus

24 lectures overall. (Observe H, D, M, ? mark lectures by Harry, David Van Horn, Matt
Goldfield, or a class member.)

Introduction and survey

January 15:H Introduction, administrivia, survey of course material.

λ-calculus (4 lectures)

January 18:H λ-calculus basics, representation of data types and recursive functions; pro-
gramming via iteration (on inductive data) and unbounded recursion, Church-Rosser
theorem.

J. Roger Hindley and Jonathan P. Seldin, Introduction to Combinators and Lambda
Calculus, Cambridge University Press, 1986, pp. 1–19 and 313–322.

January 22:H Böhm’s theorem.

Jean-Louis Krivine, λ-calculus, Types and Models, Ellis Horwood, 1993, pp. 67-72.

Class notes.

January 25:? Standardization theorem.

Hendrik Barendregt, The Lambda Calculus, North-Holland, 1984, pp. 296–301.

January 29:? Krivine machine and head reduction.

Jean-Louis Krivine, A call-by-name lambda calculus machine, Higher-Order and
Symbolic Computation 20:3 (2007), pp. 199–207.

Mitchell Wand, On the correctness of the Krivine machine, Higher-Order and Sym-
bolic Computation 20:3 (2007), pp. 231-235.

Sequent calculus and Gentzen’s cut-elimination theorem
(2 lectures)

February 1:H Sequent calculus, cut-elimination theorem, non-confluence of classical logic.

Jean-Yves Girard, Yves Lafont, and Paul Taylor, Proofs and Types, Cambridge
University Press, 1989, pp. 28–32, 104–112, and 149–151.

February 5:H Hauptsatz in more detail, with bounds on normalization.

Jean-Yves Girard, Proof Theory and Logical Complexity, Bibliopolis, 1987, pp.
105–112.

Class notes.

4



Simply-typed λ-calculus (3 lectures)

February 8:? Terms, types, reduction. Curry-Howard correspondence, weak normalization
theorem (ω2 ordinal proof).

Morton Heine Sørensen and Pawel Urzyczyn, Lectures on the Curry-Howard Iso-
morphism, North-Holland, 2006, pp. 55-67 and 67–69.

Proofs and Types, pp. 14-21.

February 12:? Statman’s theorem on decidability of equality of normal forms.

Harry Mairson, A simple proof of a theorem of Statman, Theoretical Computer
Science 103:2 (1992), pp. 387–394.

February 15:H Strong normalization (Tait reducibility method).

Introduction to Combinators and Lambda Calculus, pp. 323–327.

Proofs and Types, pp. 22–27.

System F: λ-calculus with polymorphic types (4 lectures)

February 26:M Terms, types, reduction, representation of recursive functions.

Proofs and Types, pp. 81–93.

February 29:? Weak normalization.

Andre Scedrov, Normalization revisited, Categories in Computer Science and
Logic (American Mathematical Society Contemporary Mathematics, vol. 92), pp. 357–
370.

March 4:H Strong normalization: Girard’s candidats de reductibilité.

Lectures on the Curry-Howard Isomorphism, pp. 287–290.

March 7:D Realizability of recursive functions (Curry-Howard), Dialectica interpretation,
and a Gödel-style incompleteness.

Daniel Leivant, Contracting proofs to programs, Logic and Computer Science (ed.
P. Odifreddi), Academic Press, 1990, pp. 279–328.

Linear logic (4 lectures)

March 11:H Introduction to linear logic.

Jean-Yves Girard, Linear logic: its syntax and semantics
Proceedings of the Workshop on Advances in Linear Logic, Cambridge Uni-
versity Press, 1995, pp. 1–42. (Read first half—the syntax part.)

March 14:H Proofnets for linear logic. Danos-Regnier correctness criterion for proofnets.
Complexity of deciding correctness.

Yves Lafont, From proofnets to interaction nets, Proceedings of the Workshop on
Advances in Linear Logic, Cambridge University Press, 1995, pp. 225–247.

5



March 18:H Multiplicative linear logic and circuits, complexity of normalization.

Harry Mairson, MLL normalization and transitive closure: circuits, complexity, and
Euler tours, GEOCAL (Geometry of Calculation): Implicit Computational
Complexity, 2006. (Slides, paper copies not distributed.)

March 25:H Decomposition of function space construction, coding of lambda calculus, Ge-
ometry of Interaction.

Harry Mairson. From Hilbert space to Dilbert space: context semantics made simple
Conference on Foundations of Software Technology and Theoretical Com-
puter Science, Kanpur, 2002. Lecture Notes in Computer Science 2556, pp. 2–17.

Classical logic intuitionistically interpreted, and control
operators (2 lectures)

March 28:? Double-negation translations.

Dirk van Dalen, Logic and Structure (third edition), Springer, 1991, pp. 155–164.

April 1:D Classical logic and control operators. λµ-calculus.

Lectures on the Curry-Howard Isomorphism, pp. 127–144.

Harry Mairson and David Van Horn.
Proofnets and paths in constructive classical logic: too old, too new. GEOCAL (Ge-
ometry of Calculation): Geometry of Interaction, 2006. (Slides, paper copies
not distributed.)

Games (4 lectures)

April 4:? Intuitionistic and classical prover-skeptic dialogues.

Lectures on the Curry-Howard Isomorphism, pp. 89–96 and 144–150.

April 11:H Lorenzen dialogues.

Lectures on the Curry-Howard Isomorphism, pp. 181–194.

April 15, 18:?M Game semantics for programming with computable functions.

Samson Abramsky and Guy McCusker, Game semantics, Computational Logic 165
(NATO Science Series, Series F: Computer and Systems Sciences), Springer 1999, pp.
1–55. (Read sections 1 and 2.)

Differential λ-calculus (1 lecture)

May 2:H Differential λ-calculus, linear approximations, and Taylor’s theorem reinterpreted.

Thomas Ehrhard and Laurent Regnier, The Differential Lambda Calculus. Theoretical
Computer Science 309:1, pp. 1–41.

6



Reading

Samson Abramsky and Guy McCusker
Game semantics.
In Computational Logic, vol. 165, pp. 1–55.
NATO Science Series, Series F: Computer and Systems Sciences.
Springer-Verlag, Berlin, Germany, 1999.

Hendrik Barendregt
The Lambda Calculus.
North-Holland, 1984.

Dirk van Dalen
Logic and Structure. (Third edition)
Springer, 1991.

Thomas Ehrhard and Laurent Regnier
The Differential Lambda Calculus.
Theoretical Computer Science, vol. 309, no. 1, pp. 1–41.
Elsevier Science Publishers Ltd., Essex, UK, 2003.

Jean-Yves Girard
Proof Theory and Logical Complexity.
Bibliopolis, 1987.

Jean-Yves Girard, Yves Lafont, and Paul Taylor
Proofs and Types.
Cambridge University Press, 1989.
http://www.monad.me.uk/stable/Proofs+Types.html

http://iml.univ-mrs.fr/~lafont/pub/prot.pdf.gz

Jean-Yves Girard
Linear logic: its syntax and semantics.
Proceedings of the workshop on Advances in linear logic, pp. 1–42.
Cambridge University Press, 1995.

J. Roger Hindley and Jonathan P. Seldin
Introduction to Combinators and Lambda Calculus.
Cambridge University Press, New York, NY, 1986.

Jean-Louis Krivine
λ-calculus, Types and Models.
Ellis Horwood, 1993

Jean-Louis Krivine
A call-by-name lambda calculus machine.
Higher-Order and Symbolic Computation 20:3 (2007), pp. 199–207.

7



Yves Lafont
From proofnets to interaction nets.
Proceedings of the workshop on Advances in linear logic, pp. 225–247.
Cambridge University Press, New York, NY, 1995.

Daniel Leivant
Contracting proofs to programs.
Logic and Computer Science (ed. P. Odifreddi), Academic Press, 1990, pp.
279–328.

Harry Mairson
From Hilbert space to Dilbert space: context semantics made simple.
Foundations of Software Technology and Theoretical Computer
Science, Kanpur, 2002. Lecture Notes in Computer Science 2556, pp. 2–17.

Harry Mairson
A simple proof of a theorem of Statman.
Theoretical Computer Science 103:2 (1992), pp. 387–394.

Andre Scedrov
Normalization revisited.
Categories in Computer Science and Logic (American Mathematical
Society Contemporary Mathematics, vol. 92), pp. 357–370.

Morton Heine Sørensen and Pawel Urzyczyn
Lectures on the Curry-Howard Isomorphism.
North-Holland, 2006.

Mitchell Wand
On the correctness of the Krivine machine.
Higher-Order and Symbolic Computation 20:3 (2007), pp. 231-235.

8


