
Algorithmic Trace Effect Analysis

Masters thesis defense

University of Vermont

29 March 2006

David Van Horn

<dvanhorn@cs.uvm.edu>

http://www.cs.uvm.edu/~dvanhorn/

Algorithmic Trace Effect Analysis

ignore

Masters thesis defense, University of Vermont 29 March 2006

Algorithmic Trace Effect Analysis

Slogan for today’s talk

Trace effect analysis can be automated soundly.

Masters thesis defense, University of Vermont 29 March 2006

Algorithmic Trace Effect Analysis

Slogan for today’s talk

Trace effect analysis can be automated soundly.

• Trace effect analysis — Present and recall analysis and give

context for the contributions of the system.

Masters thesis defense, University of Vermont 29 March 2006

Algorithmic Trace Effect Analysis

Slogan for today’s talk

Trace effect analysis can be automated soundly.

• Trace effect analysis — Present and recall analysis and give

context for the contributions of the system.

• Automation — Show an algorithm for performing the anal-

ysis, provide an implementation.

Masters thesis defense, University of Vermont 29 March 2006

Algorithmic Trace Effect Analysis

Slogan for today’s talk

Trace effect analysis can be automated soundly.

• Trace effect analysis — Present and recall analysis and give

context for the contributions of the system.

• Automation — Show an algorithm for performing the anal-

ysis, provide an implementation.

• Soundness — Prove safety result stating programs accepted

by the algorithm meet their temporal specification.

Masters thesis defense, University of Vermont 29 March 2006

Algorithmic Trace Effect Analysis

Main contributions of thesis

Trace effect analysis can be automated soundly.

• Algorithmic safety proof

• Prototype implementation

Masters thesis defense, University of Vermont 29 March 2006

Algorithmic Trace Effect Analysis

Outline - Part I: Overview

• Introduction to Trace effect analysis

• Approach of Algorithmic trace effect analysis

Masters thesis defense, University of Vermont 29 March 2006

Algorithmic Trace Effect Analysis

Outline - Part II: Gritty details

• Language model λtrace

• Logical system

• Algorithmic system

• Soundness proof

• Implementation

• Digressions

• Conclusion

Masters thesis defense, University of Vermont 29 March 2006

Algorithmic Trace Effect Analysis

Introduction to Trace effect analysis

• Example: SSL protocol

• Program correctness as temporal well-formedness

• Language-based Approach

• Static Analysis

Masters thesis defense, University of Vermont 29 March 2006

Algorithmic Trace Effect Analysis

Example: Secure Socket Layer (SSL)

For a program sending and receiving data over an SSL socket,

e.g. a web browser that supports https, the relevant events are

opening and closing of sockets, and reading and writing of data

packets.

An example event trace produced by a program run could be:

ssl_open("snork.cs.jhu.edu",socket_1);
ssl_hs_begin(socket_1);
ssl_hs_success(socket_1);
ssl_put(socket_1);
ssl_get(socket_1);
ssl_open("moo.cs.uvm.edu",socket_2);
ssl_hs_begin(socket_1);
ssl_put(socket_2);
ssl_close(socket_1);
ssl_close(socket_2)

Masters thesis defense, University of Vermont 29 March 2006

Algorithmic Trace Effect Analysis

Correctness as temporal well-formedness

Many program correctness properties are expressible as proper-

ties of program event traces.

• Security handshake protocols, eg. SSL

• File open before read

• Allocate before use

• Access control: privilege activation before privileged action

Well-formedness of traces expressible and enforceable as program

monitors or checks in program logics, i.e. at runtime.

Masters thesis defense, University of Vermont 29 March 2006

Algorithmic Trace Effect Analysis

Fundamental abstraction: event traces

Trace effect analysis is a language-based approach, integrated
the necessary abstractions into a programming language λtrace

so that a programmer can articulate temporal properties.

The language is endowed with notions of events and checks.

• An event is an abstract program action, parameterized by
a static constant. They are inserted by the programmer or
compiler.

• A check is a predicate, expressed in a temporal logic, over
possibly inifinite sequences of events called a trace.

Masters thesis defense, University of Vermont 29 March 2006

Algorithmic Trace Effect Analysis

Benefits of a static analysis

The program logic, aka type system, is designed such that if the

program is well-typed, then all inserted checks will succeed.

Static enforcement of temporal specifications leads to:

• Formal guarantees about the behaviour of all possible pro-

gram executions

• Earlier error detection (compile-time v. run-time)

• The elimination of all run time checks and maintainence of

trace information during executiion.

Masters thesis defense, University of Vermont 29 March 2006

Algorithmic Trace Effect Analysis

Approach of Algorithmic trace effect analysis

Our approach is a synthesis of software verification methods.

We use a type analysis with a rich notion of program safety

to represent program abstractions. The abstractions are then

model checked for verfication.

A type and effect inference system automatically extracts a pro-

gram abstraction conservatively approximating the events and

assertions that will arise at run-time. Such an abstraction can

then be model-checked to obtain a static verification of these

temporal program logics for higher-order programs.

Masters thesis defense, University of Vermont 29 March 2006

Algorithmic Trace Effect Analysis

Part II: Gritty Details

Masters thesis defense, University of Vermont 29 March 2006

Algorithmic Trace Effect Analysis

Language model λtrace

• Syntax

• Semantics (enforcing trace properties dynamically)

• Stuck expressions

• Operational semantics example

Masters thesis defense, University of Vermont 29 March 2006

Algorithmic Trace Effect Analysis

Language syntax

constants
c ∈ C

booleans
b ::= true | false

values
v ::= x | λzx.e | c | b | ¬ | ∨ | ∧ | ()

expressions
e ::= v | e e | ev(e) | φ(e) | if e then e else e | let x = v in e

traces
η ::= ε | ev(c) | η; η

evaluation contexts
E ::= [] | v E | E e | ev(E) | φ(E) | ifE then e else e

Masters thesis defense, University of Vermont 29 March 2006

Algorithmic Trace Effect Analysis

Enforcing well-formedness of traces (dynamic)

Event traces are a semantic configuration component that main-
tain order of events at run-time.

η ::= ε | ev(c) | η; η

Program evaluation is defined as a small-step reduction relation
on a pair consisting of an event trace η and a program expres-
sion.

η, (λzx.e)v → η, e[v/x][λzx.e/z]

η,¬true → η, false

η, if true then e1 else e2 → η, e1
η, ev(c) → η; ev(c), ()

η, φ(c) → η; evφ(c), () if Π(φ(c), η̂ evφ(c))

η,E[e] → η′, E[e′] if η, e→ η′, e′

Masters thesis defense, University of Vermont 29 March 2006

Algorithmic Trace Effect Analysis

Stuck expressions

Definition 1 A configuration η, e is stuck iff e is not a value and

there does not exist η′ and e′ such that η, e→ η′, e′. If ε, e→? η, e′

and η, e′ is stuck, then e is said to go wrong.

Masters thesis defense, University of Vermont 29 March 2006

Algorithmic Trace Effect Analysis

Operational semantics example

Example 1

f , λzx.ifx then ev1(c) else (ev2(c); z(true))

In the operational semantics:

ε, f(false) →? ev2(c); ev1(c), ()

ε, f(false) → ε, if false then ev1(c) else (ev2(c); f(true))

→ ε, ev2(c); f(true)

→ ev2(c), f(true)

→ ev2(c), if true then ev1(c) else (ev2(c); f(true))

→ ev2(c), ev1(c)

→ ev2(c); ev1(c), ()

Masters thesis defense, University of Vermont 29 March 2006

Algorithmic Trace Effect Analysis

Logical system

• Static approximations of traces

• Trace effect interpretation

• Type syntax

• Typing rules

• Trace approximation and Type safety

Masters thesis defense, University of Vermont 29 March 2006

Algorithmic Trace Effect Analysis

Static approximation of traces

We now turn to the problem of approximating the set of possible

traces a program may have.

We use a trace effect to approximate a trace:

H ::= ε | ev(c) | H;H | H|H | µh.H

Trace effect are interpreted as non-deterministic programming

language or labeled transition system. The interpretation of an

effect H, denoted JHK, is the set of traces H may generate.

Masters thesis defense, University of Vermont 29 March 2006

Algorithmic Trace Effect Analysis

Trace effect interpretation

Definition 2 The interpretation of trace effects is defined via

strings, possibly terminated by ↓, (called traces) denoted θ, over

the following alphabet:

s ::= ev(c) | ε | s s
a ::= s | s↓

Definition 3 (Trace effect transition relation)

ev(c)
ev(c)−−−→ ε H1|H2

ε−→ H1 H1|H2
ε−→ H2

µh.H
ε−→ H[µh.H/h] ε;H

ε−→ H H1;H2
a−→ H ′

1;H2 if H1
a−→ H ′

1

Masters thesis defense, University of Vermont 29 March 2006

Algorithmic Trace Effect Analysis

Definition 4 (Trace effect interpretation)

JHK = {a1 · · · an | H
a1−→ · · · an−→ H ′} ∪ {a1 · · · an↓ | H

a1−→ · · · an−→ ε}

Definition 5 A trace effect H is valid iff for all θevφ(c) ∈ JHK it

is the case that:

Π(φ(c), θevφ(c))

holds.

We now turn to a type system for λtrace that incorporates trace

effects into the type language.

Masters thesis defense, University of Vermont 29 March 2006

Algorithmic Trace Effect Analysis

Type syntax

δ ∈ Vs, t ∈ Vτ , h ∈ VH , α, β ∈ Vs ∪ Vτ ∪ VH variables

s ::= δ | c singletons

τ ::= t | {s} | τ H−→ τ | bool | unit | s | H types

σ ::= ∀ᾱ.τ type schemes

H ::= ε | h | ev(s) | H;H | H|H | µh.H trace effects

Γ ::= ∅ | Γ;x : σ type environments

fv(τ) denotes the set of free variables in τ .

Masters thesis defense, University of Vermont 29 March 2006

Algorithmic Trace Effect Analysis

Logical typing rules
Event

Γ, H ` e : {s}
Γ, H; ev(s) ` ev(e) : unit

Weaken
Γ, H ` e : τ H 4 H ′

Γ, H ′ ` e : τ

If
Γ, H1 ` e1 : bool Γ, H2 ` e2 : τ Γ, H2 ` e3 : τ

Γ, H1;H2 ` if e1 then e2 else e3 : τ

Abs

Γ;x : τ1; z : τ1
H−→ τ2, H ` e : τ2

Γ, ε ` λzx.e : τ1
H−→ τ2

App

Γ, H1 ` e1 : τ ′
H3−→ τ Γ, H2 ` e2 : τ ′

Γ, H1;H2;H3 ` e1e2 : τ

Let
Γ, ε ` v : τ ′ ᾱ ∩ fv(Γ) = ∅ Γ;x : ∀ᾱ.τ ′, H ` e : τ

Γ, H ` let x = v in e : τ

Masters thesis defense, University of Vermont 29 March 2006

Algorithmic Trace Effect Analysis

Weakening

Weakening relies on trace effect containment relation:

Definition 6 (Trace effect containment) H 4 H ′ iff Jρ(H)K ⊆
Jρ(H ′)K for all interpretations ρ.

Where ρ is any mapping of effect variables to closed effects.

Example 2

ifx then ev(c1) else ev(c2)

Masters thesis defense, University of Vermont 29 March 2006

Algorithmic Trace Effect Analysis

Trace approximation and Logical type safety

Theorem 1 (Trace approximation) If Γ, H ` e : τ is derivable

for closed e and ε, e→? η, e′ then η̂ ∈ JHK.

Definition 7 A type judgment Γ, H ` e : τ is valid iff it is deriv-

able and H is valid.

Theorem 2 (Type safety) If Γ, H ` e : τ is valid for closed e

then e does not go wrong.

Masters thesis defense, University of Vermont 29 March 2006

Algorithmic Trace Effect Analysis

Algorithmic system

• Type and effect constraints

• Algorithmic typing rules

• Relating algorithmic and logical judgements

• Constraint solution algorithm

Masters thesis defense, University of Vermont 29 March 2006

Algorithmic Trace Effect Analysis

Type and effect constraints

C ::= true | τ v τ | C ∧ C type and effect constraints

k ::= τ/C constrained types

ς ::= ∀ᾱ.k constrained type schemes

Judgements:

Γ, H `V e : τ/C

Masters thesis defense, University of Vermont 29 March 2006

Algorithmic Trace Effect Analysis

Algorithmic rules
Var

Γ(x) = ∀ᾱ.k
Γ, ε `ᾱ x : k[ᾱ′/ᾱ]

Const

Γ, ε `∅ c : {c}/true

Event
Γ, H `V e : τ/C

Γ, H; ev(δ) `V∪{δ} ev(e) : unit/C ∧ τ v {δ}

Check
Γ, H `V e : τ/C

Γ, H; evφ(δ) `V∪{δ} φ(e) : unit/C ∧ τ v {δ}

If
Γ, H1 `V1

e1 : τ1/C1

Γ, H2 `V2
e2 : τ2/C2 Γ, H3 `V3

e3 : τ3/C3 V1]V2]V3

Γ, H1;H2|H3 `V1∪V2∪V3∪{t} if e1 then e2 else e3 : t/C1,2,3 ∧ τ1 v bool ∧ τ2 v t ∧ τ3 v t

Masters thesis defense, University of Vermont 29 March 2006

Algorithmic Trace Effect Analysis

Algorithmic rules (cont.)
App
Γ, H1 `V1

e1 : τ1/C1 Γ, H2 `V2
e2 : τ2/C2 V1]V2

Γ, H1;H2;h `V1∪V2∪{t,h} e1 e2 : t/C1,2 ∧ τ1 v τ2
h−→ t

Fix

Γ;x : t; z : t
h−→ t′, H `V e : τ/C

Γ, ε `V∪{t,t′,h} λzx.e : t
h−→ t′/C ∧ τ v t′ ∧H v h

Let
Γ, ε `V1

v : τ ′/C ′

Γ;x : ∀ᾱ.τ ′/C ′, H `V2
e : τ/C ᾱ = fv(τ ′, C ′)− fv(Γ) V1]V2

Γ, H `V1∪V2
let x = v in e : τ/C ∧ C ′

Definition 8 (Canonical judgment) A canonical judgment is

a judgment having distinct bound variables in the type environ-

ment.

Masters thesis defense, University of Vermont 29 March 2006

Algorithmic Trace Effect Analysis

Relating logical and algorithmic judgements

Definition 9 (Substitution) A substitution ψ : V → T is a well-

kinded, finite mapping from type variables to types.

Definition 10 (Solution) A substitution ψ is a solution to a

constraint C, written ψ ` C, iff it is derivable according to the

following rules:

ψ ` true

ψ(τ1) 4 ψ(τ2)

ψ ` τ1 v τ2

ψ ` C1 ψ ` C2

ψ ` C1 ∧ C2

Masters thesis defense, University of Vermont 29 March 2006

Algorithmic Trace Effect Analysis

Relating logical and algorithmic judgements

Definition 11 (Most general solution) If ψ and ψ′ are solu-

tions of C, the ψ is more general than ψ′ iff there exists a sub-

stitutions ψ′′ such that ψ′ = ψ′′ ◦ ψ. A substitution is a most

general solution (MGS) of C iff ψ is a solution of C and is more

general than any other solution of C.

Definition 12 (Satisfiable) A canonical derivable judgment J
is satisfiable iff there exists ψ, such that ψ solves the conjunction

of all the contraints in the judgement, written ψ ` J .

Masters thesis defense, University of Vermont 29 March 2006

Algorithmic Trace Effect Analysis

Relating logical and algorithmic judgements

Definition 13 (Solved form*) Given a derivable judgment J ,

satisfied under ψ, the logical judgment ψ(J) is a solved form of

J .

Well, not quite. . . More precisely:

J , x1 : ∀ᾱ1.τ1/C1; . . . ;xn : ∀ᾱn.τn/Cn, H `W e : τ0/C0

J ′ , x1 : ∀ᾱ′1.ψ(τ1); . . . ;xn : ∀ᾱ′n.ψ(τn), ψ(H) ` e : ψ(τ0)

Where ᾱ′i are the truly quantifiable variables in ψ(τi). Everything

you always wanted to know about solved forms but were afraid

to ask is in the thesis.

Masters thesis defense, University of Vermont 29 March 2006

Algorithmic Trace Effect Analysis

Constraint solution algorithm

Although trace equivalence is undecidable in general, the infer-

ence algorithm maintains a form on constraints such that con-

straint satisfaction is decidable.

Namely, (equality) constraints between (non-trace effect) types

contain only trace effect variables. Eg:

τ1
h1−−→ τ ′1 v τ2

h2−−→ τ ′2

Constraints between trace effects are always variable in the upper

bound.

H v h

Masters thesis defense, University of Vermont 29 March 2006

Algorithmic Trace Effect Analysis

Constraint solution algorithm

So, unification can solve type constraints.

Trace effect constraints can be solved by exploiting system of

lower bounds. For example, if

C , H1 v h ∧H2 v h ∧ . . . ∧Hn v h

Then:

[(µh.H1|H2| . . . |Hn)/h] ` C

Because:

Hi 4 µh.H1|H2| . . . |Hn

NB: µ needed since h may appear in Hi.

Masters thesis defense, University of Vermont 29 March 2006

Algorithmic Trace Effect Analysis

Constraint solution algorithm

MGS(C) = let ψ1 = U (C \ C′) in MGSH(ψ1(C
′)) ◦ ψ1

where C′ =
{
H v H ′ | H v H ′ ∈ C

}

bounds(h,C) = H1| · · · |Hn where {H1, . . . , Hn} = {H | H v h ∈ C}

MGSH(∅) = ∅
MGSH(C) = let ψ = [h′|µh.bounds(h,C)/h] in

MGSH(ψ(C \ {H v h | H v h ∈ C})) ◦ ψ
where h′ fresh

Where U is the standard unification algorithm.

Masters thesis defense, University of Vermont 29 March 2006

Algorithmic Trace Effect Analysis

Constraint solution algorithm

Lemma 1 (Correctness of MGS) For any friendly C, MGS(C)

is a most general solution of C.

Where friendly refers to the invariant on constraints maintained

by inference.

Proof of the friendliness invariant is a straightforward induction

on derivations.

Masters thesis defense, University of Vermont 29 March 2006

Algorithmic Trace Effect Analysis

Soundness proof

• Main lemma

• Soundness of inference

• Algorithmic type safety

Masters thesis defense, University of Vermont 29 March 2006

Algorithmic Trace Effect Analysis

Main lemma

Lemma 2 If Γ, H `W e : τ/C is derivable, then so is any most

general solved form of Γ, H `W e : τ/C∧CG, where CG is arbitrary.

Proof. By induction on the derivation of J , Γ, H `W e : τ/C,

reasoning by case analysis on the last rule used in the derivation.

In each case, a logical judgment is constructed such that it is a

most general solved form of Γ, H `W e : τ/C ∧ CG under ψ and

then is shown to be logically derivable. ut

Masters thesis defense, University of Vermont 29 March 2006

Algorithmic Trace Effect Analysis

Exemplary case: Fix

By inversion of the inference relation, e = λzx.e′, τ = t
h−→ t′,

H = ε, and there exists a judgment:

J1 , Γ;x : t; z : t
h−→ t′, H ′ `W e′ : τ ′/C′

Where:

C = C′ ∧ τ ′ v t′ ∧H ′ v h

CG∧C′∧τ ′ v t′∧H ′ v h has a solution, so the inductive hypothesis

applies to the judgment Γ;x : t; z : t
h−→ t′, H ′ ` e′ : τ ′/CG∧C′∧τ ′ v

t′ ∧H ′ v h, which therefore has a derivable most general solved

form under ψ, namely Γ′;x : ψ(t); z : ψ(t
h−→ t′), ψ(H ′) ` e′ : ψ(τ ′).

Note that ψ(t
h−→ t′) = ψ(t)

ψ(h)−−−→ ψ(t′).

Masters thesis defense, University of Vermont 29 March 2006

Algorithmic Trace Effect Analysis

Exemplary case: Fix

Therefore, the following derivation can be constructed using the

logical rules Weaken and Fix:

Γ′;x : ψ(t); z : ψ(t)
ψ(h)−−−→ ψ(t′), ψ(H ′) ` e′ : ψ(t′) ψ(H ′) 4 ψ(h)

Γ′;x : ψ(t); z : ψ(t)
ψ(h)−−−→ ψ(t′), ψ(h) ` e′ : ψ(t′)

Γ′, ε ` λzx.e′ : ψ(t)
ψ(h)−−−→ ψ(t′)

Which shows a most general solved form of Γ, H ` e : τ is deriv-

able. So the case holds.

NB: Cases Var and Let are not so easy. . .

Masters thesis defense, University of Vermont 29 March 2006

Algorithmic Trace Effect Analysis

Corollaries

Theorem 3 (Soundness of inference) If ∅, H `W e : τ/C is

satisfiable, then ∅, ψ(H) ` e : ψ(τ) is derivable where ψ =

MGS(C).

Proof. Immediate from main lemma and Correctness of MGS .

ut

Theorem 4 (Algorithmic Type Safety) If Γ, H `W e : τ/C is

valid for closed e, then e does not go wrong.

Proof. Immediate from Soundness of inference and Logical

type safety. ut

Masters thesis defense, University of Vermont 29 March 2006

Algorithmic Trace Effect Analysis

Implementation

A prototype implementation is available online.

It implements all the algorithms I’ve discussed today.

Written in OCaml.

Proved valuable when doing the theoretical development (pro-

viding counterexamples and a testable framework).

Inlcudes many features not covered today: subtyping, trace ef-

fect transformations, direct inference rules.

Masters thesis defense, University of Vermont 29 March 2006

Algorithmic Trace Effect Analysis

Digressions

• Trace effect transformations

• Direct inference rules

• Most generality

Masters thesis defense, University of Vermont 29 March 2006

Algorithmic Trace Effect Analysis

Effect transformations for Flexibility

Trace effects can be post-processed to analyze variations to the core language.

• Simplification

Traces may be simplified in a semantic-preserving way in order to improve

model checking efficiency.

• Stack-based analysis

In a stack trace model, event occuing during function execution are

forgotten when the function returns. Function activations annotated

with events; function return erases event.

• Exceptions

“Pre-effect” constructs allow us to add exceptions to the language with

a trivial extension to the algorithm.

Masters thesis defense, University of Vermont 29 March 2006

Algorithmic Trace Effect Analysis

Conclusion

Many program correctness properties are expressible as proper-

ties of program event traces.

Trace Effect Analysis allows for the static verification of temporal

properties of higher-order programs.

Algorithmic Trace Effect Analysis allows for the automatic, static

verification of these properties.

Trace effect analysis can be automated soundly.

Masters thesis defense, University of Vermont 29 March 2006

Algorithmic Trace Effect Analysis

The End

Thank you.

Masters thesis defense, University of Vermont 29 March 2006

