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Slogan for today’s talk

Trace effect analysis can be automated soundly.

• Trace effect analysis — Present and recall analysis and give

context for the contributions of the system.

• Automation — Show an algorithm for performing the anal-

ysis, provide an implementation.

• Soundness — Prove safety result stating programs accepted

by the algorithm meet their temporal specification.
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Main contributions of thesis

Trace effect analysis can be automated soundly.

• Algorithmic safety proof

• Prototype implementation
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Outline - Part I: Overview

• Introduction to Trace effect analysis

• Approach of Algorithmic trace effect analysis
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Outline - Part II: Gritty details

• Language model λtrace

• Logical system

• Algorithmic system

• Soundness proof

• Implementation

• Digressions

• Conclusion
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Introduction to Trace effect analysis

• Example: SSL protocol

• Program correctness as temporal well-formedness

• Language-based Approach

• Static Analysis
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Example: Secure Socket Layer (SSL)

For a program sending and receiving data over an SSL socket,

e.g. a web browser that supports https, the relevant events are

opening and closing of sockets, and reading and writing of data

packets.

An example event trace produced by a program run could be:

ssl_open("snork.cs.jhu.edu",socket_1);
ssl_hs_begin(socket_1);
ssl_hs_success(socket_1);
ssl_put(socket_1);
ssl_get(socket_1);
ssl_open("moo.cs.uvm.edu",socket_2);
ssl_hs_begin(socket_1);
ssl_put(socket_2);
ssl_close(socket_1);
ssl_close(socket_2)
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Correctness as temporal well-formedness

Many program correctness properties are expressible as proper-

ties of program event traces.

• Security handshake protocols, eg. SSL

• File open before read

• Allocate before use

• Access control: privilege activation before privileged action

Well-formedness of traces expressible and enforceable as program

monitors or checks in program logics, i.e. at runtime.
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Fundamental abstraction: event traces

Trace effect analysis is a language-based approach, integrated
the necessary abstractions into a programming language λtrace

so that a programmer can articulate temporal properties.

The language is endowed with notions of events and checks.

• An event is an abstract program action, parameterized by
a static constant. They are inserted by the programmer or
compiler.

• A check is a predicate, expressed in a temporal logic, over
possibly inifinite sequences of events called a trace.
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Benefits of a static analysis

The program logic, aka type system, is designed such that if the

program is well-typed, then all inserted checks will succeed.

Static enforcement of temporal specifications leads to:

• Formal guarantees about the behaviour of all possible pro-

gram executions

• Earlier error detection (compile-time v. run-time)

• The elimination of all run time checks and maintainence of

trace information during executiion.
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Approach of Algorithmic trace effect analysis

Our approach is a synthesis of software verification methods.

We use a type analysis with a rich notion of program safety

to represent program abstractions. The abstractions are then

model checked for verfication.

A type and effect inference system automatically extracts a pro-

gram abstraction conservatively approximating the events and

assertions that will arise at run-time. Such an abstraction can

then be model-checked to obtain a static verification of these

temporal program logics for higher-order programs.
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Part II: Gritty Details
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Language model λtrace

• Syntax

• Semantics (enforcing trace properties dynamically)

• Stuck expressions

• Operational semantics example
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Language syntax

constants
c ∈ C

booleans
b ::= true | false

values
v ::= x | λzx.e | c | b | ¬ | ∨ | ∧ | ()

expressions
e ::= v | e e | ev(e) | φ(e) | if e then e else e | let x = v in e

traces
η ::= ε | ev(c) | η; η

evaluation contexts
E ::= [ ] | v E | E e | ev(E) | φ(E) | ifE then e else e
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Enforcing well-formedness of traces (dynamic)

Event traces are a semantic configuration component that main-
tain order of events at run-time.

η ::= ε | ev(c) | η; η

Program evaluation is defined as a small-step reduction relation
on a pair consisting of an event trace η and a program expres-
sion.

η, (λzx.e)v → η, e[v/x][λzx.e/z]

η,¬true → η, false

η, if true then e1 else e2 → η, e1
η, ev(c) → η; ev(c), ()

η, φ(c) → η; evφ(c), () if Π(φ(c), η̂ evφ(c))

η,E[e] → η′, E[e′] if η, e→ η′, e′
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Stuck expressions

Definition 1 A configuration η, e is stuck iff e is not a value and

there does not exist η′ and e′ such that η, e→ η′, e′. If ε, e→? η, e′

and η, e′ is stuck, then e is said to go wrong.
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Operational semantics example

Example 1

f , λzx.ifx then ev1(c) else (ev2(c); z(true))

In the operational semantics:

ε, f(false) →? ev2(c); ev1(c), ()

ε, f(false) → ε, if false then ev1(c) else (ev2(c); f(true))

→ ε, ev2(c); f(true)

→ ev2(c), f(true)

→ ev2(c), if true then ev1(c) else (ev2(c); f(true))

→ ev2(c), ev1(c)

→ ev2(c); ev1(c), ()

Masters thesis defense, University of Vermont 29 March 2006



Algorithmic Trace Effect Analysis

Logical system

• Static approximations of traces

• Trace effect interpretation

• Type syntax

• Typing rules

• Trace approximation and Type safety
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Static approximation of traces

We now turn to the problem of approximating the set of possible

traces a program may have.

We use a trace effect to approximate a trace:

H ::= ε | ev(c) | H;H | H|H | µh.H

Trace effect are interpreted as non-deterministic programming

language or labeled transition system. The interpretation of an

effect H, denoted JHK, is the set of traces H may generate.
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Trace effect interpretation

Definition 2 The interpretation of trace effects is defined via

strings, possibly terminated by ↓, (called traces) denoted θ, over

the following alphabet:

s ::= ev(c) | ε | s s
a ::= s | s↓

Definition 3 (Trace effect transition relation)

ev(c)
ev(c)−−−→ ε H1|H2

ε−→ H1 H1|H2
ε−→ H2

µh.H
ε−→ H[µh.H/h] ε;H

ε−→ H H1;H2
a−→ H ′

1;H2 if H1
a−→ H ′

1
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Definition 4 (Trace effect interpretation)

JHK = {a1 · · · an | H
a1−→ · · · an−→ H ′} ∪ {a1 · · · an↓ | H

a1−→ · · · an−→ ε}

Definition 5 A trace effect H is valid iff for all θevφ(c) ∈ JHK it

is the case that:

Π(φ(c), θevφ(c))

holds.

We now turn to a type system for λtrace that incorporates trace

effects into the type language.
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Type syntax

δ ∈ Vs, t ∈ Vτ , h ∈ VH , α, β ∈ Vs ∪ Vτ ∪ VH variables

s ::= δ | c singletons

τ ::= t | {s} | τ H−→ τ | bool | unit | s | H types

σ ::= ∀ᾱ.τ type schemes

H ::= ε | h | ev(s) | H;H | H|H | µh.H trace effects

Γ ::= ∅ | Γ;x : σ type environments

fv(τ) denotes the set of free variables in τ .
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Logical typing rules
Event

Γ, H ` e : {s}
Γ, H; ev(s) ` ev(e) : unit

Weaken
Γ, H ` e : τ H 4 H ′

Γ, H ′ ` e : τ

If
Γ, H1 ` e1 : bool Γ, H2 ` e2 : τ Γ, H2 ` e3 : τ

Γ, H1;H2 ` if e1 then e2 else e3 : τ

Abs

Γ;x : τ1; z : τ1
H−→ τ2, H ` e : τ2

Γ, ε ` λzx.e : τ1
H−→ τ2

App

Γ, H1 ` e1 : τ ′
H3−→ τ Γ, H2 ` e2 : τ ′

Γ, H1;H2;H3 ` e1e2 : τ

Let
Γ, ε ` v : τ ′ ᾱ ∩ fv(Γ) = ∅ Γ;x : ∀ᾱ.τ ′, H ` e : τ

Γ, H ` let x = v in e : τ
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Weakening

Weakening relies on trace effect containment relation:

Definition 6 (Trace effect containment) H 4 H ′ iff Jρ(H)K ⊆
Jρ(H ′)K for all interpretations ρ.

Where ρ is any mapping of effect variables to closed effects.

Example 2

ifx then ev(c1) else ev(c2)
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Trace approximation and Logical type safety

Theorem 1 (Trace approximation) If Γ, H ` e : τ is derivable

for closed e and ε, e→? η, e′ then η̂ ∈ JHK.

Definition 7 A type judgment Γ, H ` e : τ is valid iff it is deriv-

able and H is valid.

Theorem 2 (Type safety) If Γ, H ` e : τ is valid for closed e

then e does not go wrong.
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Algorithmic system

• Type and effect constraints

• Algorithmic typing rules

• Relating algorithmic and logical judgements

• Constraint solution algorithm
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Type and effect constraints

C ::= true | τ v τ | C ∧ C type and effect constraints

k ::= τ/C constrained types

ς ::= ∀ᾱ.k constrained type schemes

Judgements:

Γ, H `V e : τ/C
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Algorithmic rules
Var

Γ(x) = ∀ᾱ.k
Γ, ε `ᾱ x : k[ᾱ′/ᾱ]

Const

Γ, ε `∅ c : {c}/true

Event
Γ, H `V e : τ/C

Γ, H; ev(δ) `V∪{δ} ev(e) : unit/C ∧ τ v {δ}

Check
Γ, H `V e : τ/C

Γ, H; evφ(δ) `V∪{δ} φ(e) : unit/C ∧ τ v {δ}

If
Γ, H1 `V1

e1 : τ1/C1

Γ, H2 `V2
e2 : τ2/C2 Γ, H3 `V3

e3 : τ3/C3 V1]V2]V3

Γ, H1;H2|H3 `V1∪V2∪V3∪{t} if e1 then e2 else e3 : t/C1,2,3 ∧ τ1 v bool ∧ τ2 v t ∧ τ3 v t
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Algorithmic rules (cont.)
App
Γ, H1 `V1

e1 : τ1/C1 Γ, H2 `V2
e2 : τ2/C2 V1]V2

Γ, H1;H2;h `V1∪V2∪{t,h} e1 e2 : t/C1,2 ∧ τ1 v τ2
h−→ t

Fix

Γ;x : t; z : t
h−→ t′, H `V e : τ/C

Γ, ε `V∪{t,t′,h} λzx.e : t
h−→ t′/C ∧ τ v t′ ∧H v h

Let
Γ, ε `V1

v : τ ′/C ′

Γ;x : ∀ᾱ.τ ′/C ′, H `V2
e : τ/C ᾱ = fv(τ ′, C ′)− fv(Γ) V1]V2

Γ, H `V1∪V2
let x = v in e : τ/C ∧ C ′

Definition 8 (Canonical judgment) A canonical judgment is

a judgment having distinct bound variables in the type environ-

ment.
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Relating logical and algorithmic judgements

Definition 9 (Substitution) A substitution ψ : V → T is a well-

kinded, finite mapping from type variables to types.

Definition 10 (Solution) A substitution ψ is a solution to a

constraint C, written ψ ` C, iff it is derivable according to the

following rules:

ψ ` true

ψ(τ1) 4 ψ(τ2)

ψ ` τ1 v τ2

ψ ` C1 ψ ` C2

ψ ` C1 ∧ C2
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Relating logical and algorithmic judgements

Definition 11 (Most general solution) If ψ and ψ′ are solu-

tions of C, the ψ is more general than ψ′ iff there exists a sub-

stitutions ψ′′ such that ψ′ = ψ′′ ◦ ψ. A substitution is a most

general solution (MGS) of C iff ψ is a solution of C and is more

general than any other solution of C.

Definition 12 (Satisfiable) A canonical derivable judgment J
is satisfiable iff there exists ψ, such that ψ solves the conjunction

of all the contraints in the judgement, written ψ ` J .
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Relating logical and algorithmic judgements

Definition 13 (Solved form*) Given a derivable judgment J ,

satisfied under ψ, the logical judgment ψ(J ) is a solved form of

J .

Well, not quite. . . More precisely:

J , x1 : ∀ᾱ1.τ1/C1; . . . ;xn : ∀ᾱn.τn/Cn, H `W e : τ0/C0

J ′ , x1 : ∀ᾱ′1.ψ(τ1); . . . ;xn : ∀ᾱ′n.ψ(τn), ψ(H) ` e : ψ(τ0)

Where ᾱ′i are the truly quantifiable variables in ψ(τi). Everything

you always wanted to know about solved forms but were afraid

to ask is in the thesis.
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Constraint solution algorithm

Although trace equivalence is undecidable in general, the infer-

ence algorithm maintains a form on constraints such that con-

straint satisfaction is decidable.

Namely, (equality) constraints between (non-trace effect) types

contain only trace effect variables. Eg:

τ1
h1−−→ τ ′1 v τ2

h2−−→ τ ′2

Constraints between trace effects are always variable in the upper

bound.

H v h
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Constraint solution algorithm

So, unification can solve type constraints.

Trace effect constraints can be solved by exploiting system of

lower bounds. For example, if

C , H1 v h ∧H2 v h ∧ . . . ∧Hn v h

Then:

[(µh.H1|H2| . . . |Hn)/h] ` C

Because:

Hi 4 µh.H1|H2| . . . |Hn

NB: µ needed since h may appear in Hi.
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Constraint solution algorithm

MGS(C) = let ψ1 = U (C \ C′) in MGSH(ψ1(C
′)) ◦ ψ1

where C′ =
{
H v H ′ | H v H ′ ∈ C

}

bounds(h,C) = H1| · · · |Hn where {H1, . . . , Hn} = {H | H v h ∈ C}

MGSH(∅) = ∅
MGSH(C) = let ψ = [h′|µh.bounds(h,C)/h] in

MGSH(ψ(C \ {H v h | H v h ∈ C})) ◦ ψ
where h′ fresh

Where U is the standard unification algorithm.
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Constraint solution algorithm

Lemma 1 (Correctness of MGS) For any friendly C, MGS(C)

is a most general solution of C.

Where friendly refers to the invariant on constraints maintained

by inference.

Proof of the friendliness invariant is a straightforward induction

on derivations.
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Soundness proof

• Main lemma

• Soundness of inference

• Algorithmic type safety
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Main lemma

Lemma 2 If Γ, H `W e : τ/C is derivable, then so is any most

general solved form of Γ, H `W e : τ/C∧CG, where CG is arbitrary.

Proof. By induction on the derivation of J , Γ, H `W e : τ/C,

reasoning by case analysis on the last rule used in the derivation.

In each case, a logical judgment is constructed such that it is a

most general solved form of Γ, H `W e : τ/C ∧ CG under ψ and

then is shown to be logically derivable. ut
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Exemplary case: Fix

By inversion of the inference relation, e = λzx.e′, τ = t
h−→ t′,

H = ε, and there exists a judgment:

J1 , Γ;x : t; z : t
h−→ t′, H ′ `W e′ : τ ′/C′

Where:

C = C′ ∧ τ ′ v t′ ∧H ′ v h

CG∧C′∧τ ′ v t′∧H ′ v h has a solution, so the inductive hypothesis

applies to the judgment Γ;x : t; z : t
h−→ t′, H ′ ` e′ : τ ′/CG∧C′∧τ ′ v

t′ ∧H ′ v h, which therefore has a derivable most general solved

form under ψ, namely Γ′;x : ψ(t); z : ψ(t
h−→ t′), ψ(H ′) ` e′ : ψ(τ ′).

Note that ψ(t
h−→ t′) = ψ(t)

ψ(h)−−−→ ψ(t′).
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Exemplary case: Fix

Therefore, the following derivation can be constructed using the

logical rules Weaken and Fix:

Γ′;x : ψ(t); z : ψ(t)
ψ(h)−−−→ ψ(t′), ψ(H ′) ` e′ : ψ(t′) ψ(H ′) 4 ψ(h)

Γ′;x : ψ(t); z : ψ(t)
ψ(h)−−−→ ψ(t′), ψ(h) ` e′ : ψ(t′)

Γ′, ε ` λzx.e′ : ψ(t)
ψ(h)−−−→ ψ(t′)

Which shows a most general solved form of Γ, H ` e : τ is deriv-

able. So the case holds.

NB: Cases Var and Let are not so easy. . .
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Corollaries

Theorem 3 (Soundness of inference) If ∅, H `W e : τ/C is

satisfiable, then ∅, ψ(H) ` e : ψ(τ) is derivable where ψ =

MGS(C).

Proof. Immediate from main lemma and Correctness of MGS .

ut

Theorem 4 (Algorithmic Type Safety) If Γ, H `W e : τ/C is

valid for closed e, then e does not go wrong.

Proof. Immediate from Soundness of inference and Logical

type safety. ut
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Implementation

A prototype implementation is available online.

It implements all the algorithms I’ve discussed today.

Written in OCaml.

Proved valuable when doing the theoretical development (pro-

viding counterexamples and a testable framework).

Inlcudes many features not covered today: subtyping, trace ef-

fect transformations, direct inference rules.
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Digressions

• Trace effect transformations

• Direct inference rules

• Most generality
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Effect transformations for Flexibility

Trace effects can be post-processed to analyze variations to the core language.

• Simplification

Traces may be simplified in a semantic-preserving way in order to improve

model checking efficiency.

• Stack-based analysis

In a stack trace model, event occuing during function execution are

forgotten when the function returns. Function activations annotated

with events; function return erases event.

• Exceptions

“Pre-effect” constructs allow us to add exceptions to the language with

a trivial extension to the algorithm.
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Conclusion

Many program correctness properties are expressible as proper-

ties of program event traces.

Trace Effect Analysis allows for the static verification of temporal

properties of higher-order programs.

Algorithmic Trace Effect Analysis allows for the automatic, static

verification of these properties.

Trace effect analysis can be automated soundly.
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The End

Thank you.
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