What Program Analysis
Can and Cannot Do for You

David Van Horn 61ERN U

with support from NSF, CRA, Google. ?’

LVX
VERITAg
VIRTVS

Q)
D§Z* iﬂo
o
2
)

FOUNDEDI(|[IAD 89

by
O/V K

A Formulae-as-Types Notion of Control

Timothy G. Grifin*
Department of Computer Science

Rice University
Houston, TX 77251-1892

Abstract

The programming language Scheme contains the con-
trol construct call/cc that allows access to the cur-
rent continuation (the current control context). This,
in effect, provides Scheme with first-class labels and
jumps. We show that the well-known formulae-as-
types correspondence, which relates a constructive
proof of a formula o to a program of type a, can
be extended to a typed Idealized Scheme. What is
surprising about this correspondence is that it relates
classical proofs to typed programs. The existence of
computationally interesting “classical programs” —
programs of type «, where a holds classically, but
not constructively — is illustrated by the definition
of conjunctive, disjunctive, and existential types us-
ing standard classical definitions. We also prove that

in general, classical proofs lack computational con-
tent. This paper shows, however, that the formulae-
as-types correspondence can be extended to classi-
cal logic in a computationally interesting way. It is
shown that classical proofs posses computational con-
tent when the notion of computation is extended to
include explicit access to the current control context.

This notion of computation is found in the pro-
gramming language Scheme [16], which contains the
control construct call/cc! that provides access to
the current continuation (the current control con-
text). This, in effect, provides Scheme with first-
class labels and jumps, and allows for programs that
are more efficient than purely functional programs.
The formulae-as-types correspondence presented in
this paper is based on a typed version of [dealized
Scheme — a typed ISWIM containing an operator

a
T
B
- |
-
@

St Bdve Swift Bive

LBE_BHL it B e

r - -

classical proofs to typed programs. The existence of
computationally interesting “classical programs” —
programs of type «, where a holds classically, but
not constructively — is illustrated by the definition
of conjunctive, disjunctive, and existential types us-
ing standard classical definitions. We also prove that

(,'.-__'
!‘(,*.’ B
By

0

LT -

VLT VUMLLITLIV LWVIIUVIMUAQUIWVIL L BLIT CULITUL CULILEWL LUl
text). This, in effect, provides Scheme with first-
class labels and jumps, and allows for programs that
are more efficient than purely functional programs.
The formulae-as-types correspondence presented in
this paper is based on a typed version of [dealized
Scheme — a typed ISWIM containing an operator

Sentt Bive St Bova - Swt Bva

‘ Oran M Robwety

r - -

classical proofs to typed programs. The existence of
computationally interesting “classical programs” —
programs of type «, where a holds classically, but
not constructively — is illustrated by the definition
of conjunctive, disjunctive, and existential types us-
ing standard classical definitions. We also prove that

—p m e — e e — - -

Pars

S g o

VLT VUMLLITLIV LWVIIUVIMUAQUIWVIL L BLIT CULITUL CULILEWL LUl
text). This, in effect, provides Scheme with first-
class labels and jumps, and allows for programs that
are more efficient than purely functional programs.
The formulae-as-types correspondence presented in
this paper is based on a typed version of [dealized
Scheme — a typed ISWIM containing an operator

What Program Analysis
Can and Cannot Do for You

David Van Horn 61ERN U

with support from NSF, CRA, Google. ?’

LVX
VERITAg
VIRTVS

Q)
D§Z* iﬂo
o
2
)

FOUNDEDI(|[IAD 89

by
O/V 3

Higher-order

Program Analysis
Is Dead.

(I should know, I killed it.)

it's hard to write
it's slow

it’'s imprecise
it's awful

Higher-order

Program Analysis
Is Alive and Well.

(I have a way forward.)

it's easy to write
it's fast

it's precise
it's great

So what?

Modern software is

higher-order.

We need reasonable

software.

So you should care.

Modern software is

higher-order.

Modern software is

higher-order.

Q: What are higher-order languages?

Modern software is

higher-order.

Q: What are higher-order languages?

A: Languages in which computations are values.

Modern software is

higher-order.

(R - R) - (R = R)
def deriv(f):
def fp(x):
return ((f(x+e) - f£(x-e)) / (2*e));
return fp

Modern software is

higher-order.

// (R - R) - (R — R)
public Func<Double, Double>
deriv(final Func<Double, Double> f) {
return new Func<Double,Double>() {
public Double apply(Double x) {

return ((f.apply(x+€) - f.apply(x-€)) / (2*€));

}
b

Modern software is

higher-order.

// (R > R) > (R — R)

static Func<double, double>
deriv(Func<double, double> f) {
return (X)

=> (f(x+€) - f(x-€)) / (2*€);

Modern software is

higher-order.

// (R > R) > (R — R)

function deriv(f) {
return function (x) {

return (f£f(x+€) - f£(x-€)) / (2*¢€);
i
}

Modern software is
higher-order.

// (R > R) > (R — R)
def deriv(f: (Double) => Double) {
val fp = (x: Double) =>
(f£(x+&) - f£(x-€)) / (2*€);
return fp;

}

An Introduction To Programming With X10

DRAFT
Jonathan Brezin, brezin@us.ibm.com
Stephen J. Fink, sjfink@us.ibm.com
with
Bard Bloom, bardb@us.ibm.com
Cal Swart, cals@us.ibm.com

Please send comments to brezin@us.ibm. com.

public class IntRange { December 2. 2010
val low: Int;
var high: Int;
public def this(low: Int, high: Int) {

this.low = low; this.high = high;

}
public def includes(n:Int) = low <= n & & n <= high;

public static def isDigitFcn() {
val digit = new IntRange(0,9);
return (n: Int) => digit.includes(n);

1
2
3
4
5
6
/
8
9

—_
_ S

}
public def inMeTester() {

return (n: Int) => low <= n && n <= high;

==
B W DN

}

An Introduction To Programming With X10

DRAFT
Jonathan Brezin, brezin@us.ibm.com
Stephen J. Fink, sjfink@us.ibm.com
with
Bard Bloom, bardb@us.ibm.com
Cal Swart, cals@us.ibm.com

Please send comments to brezin@us.ibm. com.

public class IntRange { December 2. 2010
val low: Int;
var high: Int;
public def this(low: Int, high: Int) {

this.low = low; this.high = high;

}
public def includes(n:Int) = low <= n & & n <= high;

public static def isDigitFcn() {
val digit = new IntRange(0,9);
return (n: Int) => digit.includes(n); ”)

1
2
3
4
5
6
/
8
9

—_
_ S

}
public def inMeTester() {

return (n: Int) => low <= n && n <= high;

==
B W DN

}

= M DN Explore MDN ¥ Search MDN

MDC Doc Center DOM window.setTimeout Languages This page Site tools

window.setTimeout @ WATCH |\ EoIT

« Gecko DOM Reference
TABLE OF CONTENTS

Summary
Syntax
Compatibility
Examples
Notes

Summary

Executes a code snippet or a function after specified delay.

Syntax

The 'this' problem

var timeoutID = window.setTimeout (fune, delay, [parami, param2, ...]);: Minimum delay and timeout

var timeoutID = window.setTimeout (code, delay) ; nestmg
Specification

where & TAGS FILES

timeoutID is the ID of the timeout, which can be used later with ' Page Notifications Off
window.clearTimeout.

func is the function you want to execute after delay milliseconds.

code in the alternate syntax, is a string of code you want to execute after delay milliseconds. (Using this syntax is not
recommended for the same reasons as using eval())

delay is the number of milliseconds (thousandths of a second) that the function call should be delayed by. Note that the

actual delay may be longer, see Notes below.

= M DN Explore MDN ¥ Search MDN

MDC Doc Center DOM window.setTimeout Languages This page Site tools

window.setTimeout @ WATCH |\ EoIT

« Gecko DOM Reference
TABLE OF CONTENTS

Summary
Syntax
Compatibility
Examples
Notes

Summary

Executes a code snippet or a function after cified delay.

Syntax

The 'this' problem

var timeoutID = window.setTimeout (func, delay, [parami, param2, ...]); Minimum delay and timeout

var timeoutID = window.setTimeout (code, delay) ; nesting
Specification

where & TAGS FILES

timeoutID is the ID of the timeout, which can be used later with ' Page Notifications Off
window.clearTimeout.

func is the function you want to execute after delay milliseconds.

code in the alternate syntax, is a string of code you want to execute after delay milliseconds. (Using this syntax is not
recommended for the same reasons as using eval())

delay is the number of milliseconds (thousandths of a second) that the function call should be delayed by. Note that the

actual delay may be longer, see Notes below.

hitp://nodejs.org/

Download
Changelog

XMLHttpRequest About B
vD 4.1 docs

1. Introduction SR Evented I/O for V8 JavaScript.

This section is non-normative. An example of a web server wir~ ~ in Node which responds with "Hello

The xwuttoreguest object implements an | World" for every request.
perform HTTP client functionality, such as ¢
ECMAScript HTTP API.

W3C Candidate Recommendation

var http = require('h tp');

The name of the object is xurittprecuest f http.createServer(function (req, res) {
name is potentially misleading. First, the ot : Vi 9 '
can beugd to mgke request% over both H res.writeHead(200, {'Content-Type': 'text/plain’'});

addition to HTTP and HTTPS, but that func res.end('Hello World\n');
requests” in a broad sense of the term as }).listen(8124, "127.0.0.1");

requests or responses for the defined HTTI
console.log('Server running at http://127.0.0.1:8124/"');

Some simple code to do something wi

W3C Candidate Recommendation

function test(data) { To run the server, put the code into a file example. js and execute it with
// taking care of data

} the node program:

function handler() {
if (this.readyState == 4 && thi % node example.ijs
// so far so good
if(this.responseXML != null & Server running at http3//127000001‘8124/
// successl!
test(this.responseXML.getElCmmmreg oy R
else
test(null);
} else if (this.readyState == 4 && this.status != 200) {
// fetched the wrong page or network error...
test(null);
}
}

var client = new XMLHttpRequest();
client.onreadystatechange = handler;
client.open("GET", "unicorn.xml");
client.send();

java.util

Class Observable

java.lang.Object
L-javn.util.obtorvablo

public class Observable
extends Object

This class represents an observable object, or "data” in the model-view paradigm. It can be subclassed to represent an object
that the application wants to have observed.

An observable object can have one or more observers. An observer may be any object that implements interface obsexrver.
After an observable instance changes, an application calling the Observable's notifyObservers method causes all of its
observers to be notified of the change by a call to their update method.

The order in which notifications will be delivered is unspecified. The default implementation provided in the Observable
class will notify Observers in the order in which they registered interest, but subclasses may change this order, use no
guaranteed order, deliver notifications on separate threads, or may guarantee that their subclass follows this order, as they
choose.

Note that this notification mechanism is has nothing to do with threads and is completely separate from the wait and notify
mechanism of class Object.

When an observable object is newly created, its set of observers is empty. Two observers are considered the same if and only
if the equals method returns true for them.

Since:
JDK1.0

See Also:
notifyObservers(), notifyObservers(java.lang.0Object),Observer,
Observer.update(java.util.Observable, java.lang.Object)

7

java.util

Class Observable

java.lang.Obje

ct

L java.util.Observable

public class Observable

extends Object

This class represents an observable object, or "data” in the model-view paradigm.
that the application wants to have observed.

An observable object can have one or more observers. An observer may be any ot

.

Programming Ruby

The Pragmatic Programmer's Guide

T e P T e

Object-Oriented Design

Libraries

After an observable instance changes. an application calling the observable's not

Constructor Summary

Observable()
Construct an Observable with zero Observers.

Method Summary

void

addObserver(Observer o)
Adds an observer to the set

already in the set.

rs for this obj

protected
void

clearChanged()

Indicates that this object has no longer chan
most recent change, so that the hasChanged meth a

countObservers() Normall
Retumns the number of observers of this observabl implem:

and trat

deleteObserver(Observer o)
Deletes an observer from the set of observers of this

deleteObservers() I
Clears the observer list so that this object no longer has any obs

hasChanged()
Tests if this object has changed.

notifyObservers()
If this object has changed, as indicated by the hasChanged mett
then call the clearChanged method to indicate that this object has no

notifyObservers(Object arg)
If this object has changed, as indicated by the hasChanged mett

then call the clearchanged method to indicate that this object has no

protected
void

setChanged()
Marks this observable object as having been changed; the has

One of the interesting things about Ruby is the way it blurs the distinction
between design and implementation. Ideas that have to be expressed at the
design level in other languages can be implemented directly in Ruby.

To help in this process, Ruby has support for some design-level strategies.

« The Visitor pattern (Design Patterns,) is a way of traversing a collection
without havin e internal organization of that collection.

« Delegation i%mposing classes more flexibly and dynamically
than can be don

» The Singleton pattern is a way of ensuring that only one instantiation of a

particular class exists at a time.
» The Observer pattern implements a protocol allowing one object to notify

tandard inheritance.

Library: observer

The Observer pattern, also known as Publish/Subscribe, provides a simple
mechanism for one object to inform a set of interested third-party objects
state changes.

In the Ruby implementation, the notifying class mixes in the observable mc
which provides the methods for managing the associated observer objects

add_observer(obj) bj as an observer on this object. obj will nc

eive notifications.

Delete obj as an observer on this object. It will
longer receive notifications.

delete_observer(ob))

Modern software is
higher-order.

j [Java j [JavaScript j
Python j [Scheme j

1 s) oom)

...and many more

Modern software is

higher-order.

)

Java

Python j [Scheme j

j [X10 / Habanero j [OCam|

)

...and many more

Higher order

Modern software is
higher-order.

C++ (360) j[Java (201,211,215,310,402) j[JavaScript (327) j

[Python (140,182,327) j[Scheme (211,311) j

[C# (160,402,410,460) j[X10 / Habanero (322) j[OCaml (311,411) j

...and many more

Higher order

~N

We need reasonable

software.

We need reasonable

software.

Q: What does it mean to reason about software?

We need reasonable

software.

Q: What does it mean to reason about software?

A: It means predicting the future.

We need reasonable
software.

We need reasonable

software.

HOW DO THEY KNOW THE
LOAD LIMIT ON BRIDGES,

THEY DRIVE BIGGER AND
BIGGER TRUGS QOVER THE
BRIDGE UNTIL T BREAS

TUEN THEY WEIGH THE
LAST TRUCK AND
REBUILD THE BRIDGE

Od. 1

SHOULD'WE |

Y DEAR IF YOU
DONT KNOW
| TUE ANSHER

We need reasonable
software.

public void f(XYZ x) {
X.m();

¥

Optimizing Java compiler:
prove X is always an X, inline method definition.

We need reasonable
software.

first(x)

Puzzled ML programmer:
prove X is always a non-empty list: no problem.

We need reasonable
software.

first(x)

Puzzled ML programmer:
prove X is may be the empty list: fix.

We need reasonable
software.

checkPrivilege(R);

Security analyzer:
prove enable(R) is on the stack.

We need reasonable
software.

[Optimizing compilersj [Parallelizing compilersj [Software construction j

[Security analysis j [Program understanding j

[Static debugging j[Termination analysis j[Model checking j

...and many more

We need reasonable
software.

[Optimizing compilersj [Parallelizing compilersj [Software construction j

[Security analysis j [Program understanding j

[Static debugging j[Termination analysis j[Model checking j

...and many more

Program analysis

Higher-order
program analysis

Complexity
Maintenance
Scalability Verification
Expressivity
Modularity

Q: What is program analysis?

Q: What is program analysis?

A: Prediction of which values show up
at which program sites.

f(x+E€)

Where does data go to?

—

=\

Where does control go to?

—e

Who calls deriv?

deriv(Func<double, double> f) {

return (X)
=> (f(x+€) - f(x-€)) / (2*€);

)

To do control-tflow analysis, To do data-flow analysis,
you need data-flow analysis you need control-flow analysis

@

Why so tangled up?

Values include Computations

wutation is Code plus Data

Why so tangled up?

Values include Computations

wutation is Code plus Data

Why so tangled up?

Values include Computations

wutation is Code plus Data

Computable predictions
about run-time behavior

Why so tangled up?

Values include Computations

wutation is Code plus Data

Computable predictions
about run-time behavior

So what’s their complexity?k'

Existing analyses

and their complexity

OCFA

function app(f,x) { return f£(x); };

app(sqr,4); app(dbl,5);

OCFA

function app(f,x) { return f£(x); };

app(sqr,4); app(dbl,5);

OCFA

7

function app(f,x) { return f£(x); };

app(sqr,4); app(dbl,5);

OCFA

function app(f X) { return f(x), }s

sqr}

app(sqr,4) app(dbl,5);

OCFA

function app(f X) { return f(x), }s

// A

app(sqr,4) app(dbl,5);

OCFA

3\

function app(f,x) { return f£(x); };

N

{sqgr}

app(sqr,4); app(dbl,5);

OCFA

3\

function app(f,x) { return f£(x); };

N

{sqgr}

app(sqr,4); app(dbl,5);

isqr(4)}

OCFA

3\

function app(f,x) { return f£(x); };

N

{sqgr}

app(sqr,4); app(dbl,5);

isqr(4)}

OCFA

3\

function app(f,x) { return f£(x); };

N

\sqrj 14}

app(sqr,4); app(dbl,5);

isqr(4)}

OCFA

3\

function app(f,x) { return f£(x); };

N AN

{sqgr, dbl}

app(sqr,4); app(dbl,5);

isqr(4)}

OCFA

3\

function app(f,x) { return f£(x); };

Ny

{sqgr, dbl}

app(sqr,4); app(dbl,5);

isqr(4)}

OCFA

3\

function app(f,x) { return f£(x); };

Ny

{sqgr, dbl}

app(sqr,4); app(dbl,>5);,

isqr(4)}

OCFA

3\

function app(f,x) { return f£(x); };

Ny

{sqgr, dbl}

app(sqr,4); app(dbl,>5);,

isqgr(4), sqr(5),
dbl(4), dbl(5)}

OCFA

3\

function app(f,x) { return f£(x); };

Ny

{sqgr, dbl}

app(sqr,4); app(dbl,>5);,

isqgr(4), sqr(5),
dbl(4), dbl(5)}

OCFA

m
A

function app() { return f£(x); };

X
A /) \
\

Theorem: OCFA is complete for PTIME. 14,5}

1/))

app(sqr,4) app(dbl,>5);,

4

isqr(4), sqr(5),
dbl(4), dbl(5)}

UOISIDRIY

O0CFA
Simple closure

c
O
0
O
CI)
| -
an

Simple closure

3\

function app(f,x) { return f£(x); };

Ny

{sqgr, dbl}

app(sqr,4); app(dbl,>5);,

isqgr(4), sqr(5),
dbl(4), dbl(5)}

Simple closure

)

function app(f,x) { return f£(x); };

Ny

{sqgr, dbl}

app(sqr,4); app(dbl,>);,

(ff,/’

isqgr(4), sqr(5),
dbl(4), dbl(5)}

Simple closure

function app(f X) { return f(x), }s

X /\

app (sqr 4) app(dbl, 5),

{sqr(4), sgr(>),
dbl(4), dbl(5)}

Simple closure

function app({ return f£(x); };
/ r A

Theorem: Simple closure is complete for PTIME.

SR

app(sqr,4) app(dbl, 5),

isqr(4), sqr(5),
dbl(4), dbl(5)}

O0CFA
Simple closure

c
O
0
O
CI)
| -
an

O0CFA
Simple closure

SubOCFA

c
O
0
O
CI)
| -
an

SubOCFA

3\

function app(f,x) { return f£(x); };

N

{sqgr}

app(sqr,4); app(dbl,5);

isqr(4)}

SubOCFA

3\

function app(f,x) { return f£(x); };

N

\sqrj 14}

app(sqr,4); app(dbl,5);

isqr(4)}

SubOCFA

3\

function app(f,x) { return f£(x); };

app(sqr,4); app(dbl,5);

isqr(4)}

SubOCFA

3\

function app(f,x) { return f£(x); };

app(sqr,4); app(dbl,5);

isqr(4)}

SubOCFA

3\

function app(f,x) { return f£(x); };

app(sqr,4); app(dbl,>5);,

isqr(4)}

SubOCFA

3\

function app(f,x) { return f£(x); };

app(sqr,4); app(dbl,>5);,

?

SubOCFA

3\

function app(f,x) { return f£(x); };

app(sqr,4); app(dbl,>5);,

?

SubOCFA

function app({ return f£(x); };

X
A /) \

4

f
A

Theorem: SubOCFA is complete for PTIME.

/// R

app(sqr,4) app(dbl,>5);,

?

O0CFA
Simple closure

SubOCFA

c
O
0
O
CI)
| -
an

O0CFA
Simple closure

SubOCFA

c
O
0
O
CI)
| -
an

Whatever

3\

function app(f,x) { return f£(x); };

app(sqr,4); app(dbl,>5);,

?

Whatever

function app(f,

{ return f£(x); };

X
A /) \

f
A

Theorem: They're all complete for PTIME.

/// R

app(sqr,4) app(dbl,>5);,

?

O0CFA
Simple closure

SubOCFA

c
O
0
O
CI)
| -
an

1CFA
O0CFA

Simple closure
SubOCFA

c
Q
L
O
D
| -
al

1CFA

3\

function app(f,x) { return f£(x); };

N

{sqgr}

app(sqr,4); app(dbl,5);

isqr(4)}

1CFA

7

function app(f,x) { return f£(x); };

N

\sqrj 14}

app(sqr,4); app(dbl,5);

isqr(4)}

1CFA

7

function app(f,x) { return f£(x); };

/

tsqr} | |\ 14}
v

tdbl} {5]

app(sqr,4); app(dbl,5);

isqr(4)}

1CFA

7

function app(f,x)

app(sqr,4); app(dbl,S);\y

1sqr(4)] 1dbl(5)]

1CFA

7

function app(f,x)

app(sqr,4); app(dbl,S);\y

1sqr(4)] 1dbl(5)]

1CFA _ICFP0S

5/77;”:—_—==<§\x
A

function app() { return f£(x); };

X
A / NN

4

Theorem: 1CFA is complete for EXPTIME.

/// R

app(sqr,4) app(dbl,S);\\\

1sqr(4)] 1dbl(5)]

1CFA
O0CFA

Simple closure
SubOCFA

c
Q
L
O
D
| -
al

c
Q
L
O
D
| -
al

kCFA

1CFA
O0CFA
Simple closure

SubOCFA

kCFA

7

function app(f,x)

app(sqr,4); app(dbl,S);\y

1sqr(4)] 1dbl(5)]

kCFA _ICFP0S

5/77;”:—_—==<§\x
A

function app() { return f£(x); };

X
A / NN

4

Theorem: KCFA is complete for EXPTIME.

/// R

app(sqr,4) app(dbl,S);\\\

1sqr(4)] 1dbl(5)]

c
Q
L
O
D
| -
al

kCFA

1CFA
O0CFA
Simple closure

SubOCFA

c
O
0
O
CI)
| -
an

Simple closure
SubOCFA

c
O
0
O
CI)
| -
an

Simple closure
SubOCFA

/\

EXPTIME

Rigor (mortis) of

existing analyses

FLEMMING NIELSON
HANNE RIIS NIELSON
CHRIS HANKIN

Principles
of Program
»_Analysis

/
/
,// A

@ Springer

the Semantic Gap

Pnncuples
of Program
Analysns

(C,7) = c* always

(C,7) = =* iff plz) € C(O)

(C,7) = (fn z => eo)* iff {fn z => e} C C(¢£)

(€,7) k= (fun f z => eo)! iff {fun f z => eo} C C(¢)

€7 E @t t3*)"
if (C,p)Et A (€ ,P) 13 A

(V(£n z => t&) € C(&) :
K@h@A
C(tz) € p(z) A C(%) € C(0) A

(V(fun f z =>) € C(4y) :
&ﬂh*A
C(£) C p(z) A C() € C(e) A
{tun f z => 15’} C A(f))

€, 7 E (if 1e° then t{* else t3?)*
iff (c P E tf,° A
(C P EH A (C,ﬁ) =32 A
C(&) € (o) A C&2) cC(o)

(lef] (C,7)E (let z = t in t;’)‘
iff (c ii)l:t“ A (c,a);=:‘= A
C(6) Cpz) A C(&) C C(t)

of) CAEE opt?)if C2)E A (Ch) LS

Table 3.1: Abstract Control Flow Analysis (Subsections 3.1.1 and 3.1.2).

the Semantic Gap

R
——— e —

Principles
of Program
s Analysis

jooel (CR ¢ W
i EARSERNCUN
N LAriewoal e a)sln
o Rt ol {2 fz =) S TO
ool ER U G]
N TN T
Wits 2 =) ¢ City)
KArEA
) C An) » i) S A
(Wites £ 2= €6 Sey)
CAREA
<) S R A Sie) S T A
{fm f 2=) S RN
(€5 b (12 6 then € alee)
o KAmEA
RAw A CArGA
s o A s Cin
CAmQnz=d ag)
a CArd Al ;‘,.-i- A
}u.)c o Ao
Rardwdye Cand AChrg

Absteaet Contaoll Flow Analysls [Scheections 3.1.1 and 3170

R vy

| CAanSegncln
I~ CPApeoa)Eiteon)t &
o PRt fae el {tea fz=a)sln

CHmif g
e Cakd ACapga
Mraz= Q)6 (T
(ﬂ [t:o A
u yC Am » St ¢ Cio A
ites fa e)6 8ty :
CAréa
éu)G AN A Sk ¢ S A
{f= f 2 4’)&5‘]:5
(S, b (42 € wnen © aloe)
w KAmEa
RArG A EArPA
s Cfr ity c n

the Semantic Gap

[var]
[fn]

[fun]

pkzt = vt if z € dom(p) and v = p(z)

pF (fn z => eg)t = (close (fn z => ;) in pg)*
where pg = p | FV(fn z =>)

pF (fun f z => eg)? = (close (fun f z => ¢p) in po)’
where pg = p | FV(fun f z => ¢)

p ke = ie}

Principles
of Program
Analysns

CAmlez (u/;
a gln--’ i‘l(’l [appl]

l)caw\(nr
Rk wdye Card s Corg

pt (iey ieg)t — (ie] iep)t

Table 3.1 Absteanct Contaol Flow Analysls (Scbeections 3.1.1 and 31 30

pties = ie,
pF (vi deg)t = (v ieh)t

(app,)

l[apps] pF ((close (fn z => e;) in py)& v2)t =
(bind py[z — 2] in e;)*

[apPsn] P F ((close (fun f z => e)) in p1)* v3?)! -
(bind pa[z + v2] in €;)*
where p; = p;[f > close (fun f z => ¢;) in p]

p1 Fiep — e}
pt (bind p; in ie;)? — (bind p; in ie})?

[bind 1]

[bind2] pF (bind py in vi*)¢ — vf

Table 3.2: The Structural Operational Semantics of FUN (part 1).

the Semantic Gap

Principles
of Program
p TRy pr— ¢ Analysis
CarSexnctio

CArltrem) it a)slin

(ER e (ten £ 3 o5 e I {tun £z => 0} S TUO)

CHmin g
N AN T
Witsz = &) ¢ City) -
NG A
) G Aoy » i) S TN A
(it £ 2= 4 6 808,):
g
) G Re) A Sike) € Cio A
(= fz = @) SHM
(S5 b (42 € ten © alne)
w EAmga
Ar A SArGA
16) & T A L) < G
CHApfnz=q 1ag)
- i{.ﬂm{' ACANEA
) G R A AL SO

[AR owdye CArd A Chrg
Table 3.1: Abstenct Contaol Flow Analysls [Scheections 3.1.1 and 3130

prh2f ' if 2@ domip) and & = p(z)

P (ta z => 25)° —+ (close (fn x »> &) in m)"
where po w o | FV[8 2 => o)

"'(‘“!"’“)“'(Cl“‘(fﬂl!,.}a) i= p)!
wheee po = p | FV{fus [2 => e)

ey - ich

P (bey fe3)! — (fe] sey)t
gk fey = ie)

P"(ﬁj)‘ -0(.{‘)y

[eppa] ot ((clese (f2 2 => &) fa)" &) o
(bind py[x -+ vy 1n &)

[4pppan] 2F ((close (fun f x »>) 12)" of*)'
(bind oz ~+ vy) n)
where gy = py[f »+ close (fu2 [2 => ¢;) 42 p;)
b dey -0 ie)
pr (biad gy 40 ie;) — (bind p; 1a ie})¢

[binds] > (bind gy snef')t - of

[bind,]

Table 3.2: The Strectural Operatiosal Semastics of Fuxn (past 1).

joonl (C3) b & Wlwapy

i EARSEHDCUN

N Akt a)fimitnesa) o

o (ER e (ten S 3o co)f M {2 f x> e} S TUO

ol S G
e KA AaCHAmda
Wits 2 =) ¢ City)
EArga
) C An » i) S 2
ites fa e)6 8ty :
ChAm l:' A
ity S A A ko) G 80 A
{fm f 2=) S RN
M EDe G e i)
w KAmEa
({,)’] A CAm {.’A
e s Tn A s in

o CAWOerz=d ag)
a EApd A :(';‘.o-?‘ A
) G #a) A L) SO

o RArEowdye CAand sChrg

the Semantic Gap

Principles
of Program

¢ Analysis
p k- ieq — e} :
pF (if iep then e; else e3)! — (if ie) then e; else e3)’

F (if truef then t* else t£2)! — ¢
P 1 2 1
p b (if false’ then ti' else t?)! — t

pFie; —ie]
plk (let z = ie; in e3)! — (let z = ie} in ey)’

Table 3.1: Abstenct Contaol Flow Analyvs [Scbeections 3.1.1 & [leh]

pt (let z = v™ in e3)* = (bind po[z + v] in ep)"
where po = p | FV(e2)
ptiey — i€}
pF (iey op iez)’ — (ie] op iez)

[op1]

pties — i€,
pk ('uf‘ op ies)t — (vfl op iey)*

[op,)

ops] pF (v op vi2)t o vt if v =v; op v,
3 1 2

Table 3.3: The Structural Operational Semantics of FUN (part 2).

o (v i) — (v i)

[pps] ot ((clese (f2 2 => &) Sa)" r;’)‘ -
(bind [z »+ vy) 1n e

[appan] 2 ((close (fun f x > ¢;) 12)" o§*)
(bind pyfx »+ vy 1n)
where gy = py[f »4 close (fu2 [2 => ;) 42 o)
M ey - ie)
pr (biad gy in ey)’ —+ (bind p; 1n 4e))¢
[dinds] p* (bind gy in wf')f —» of

[bind,]

Table 3.2: The Strectural Operatiosal Semastics of Fuxn (past 1).

R v

Carsagnctio

R ltaew el if{tara)sln
ER e (ten S xw ef ¥ e £ = o)} S 84O

CHei gy
e RAed ARl a
Mits z =) 6 City) -

Arg A
) G A~ Sike) G T A

ites faw)68ty
Arga
) G #) A Stk S 8o A
(= fz = @) SHM

(.5 b= (12 6 then ' aloe)
w EAmEa
Ar A SArEA
() S Un A e g

Chw(erz=e 12)
a Eard utm-in
(AT RN AT

RArwdye Cand sChmrg

Table 3.1 Adstenct Contaol Flow Analysls [Scheections 3.1.1 and 3130

phzf v if 2 ¢ domip) and & = p(2)
pF (fa x> eg)" —+ (close (fn x »> eg) 1n m)"
where po = o | FV(fn = => o)

pF (tun f x »> eg)* ~» (close (fun f = => &) 1= py)’
whese po = p | FV{fuz [z >)
p ey - e}
P (bey te3)! = (ie] sey)t
phiey = ie)
pF(v]* ie)! = (v i)

o ((clese (f2 2 => ;) 42 o)" o)t
(bind gz -+ vy) 1n &)

ek ((close (fun f x »> ;) 13)" +§*)
(bind oz »+ vy) 1n ey)

where 3 = py[f »4 close (fu=2 [2 => ¢;) 2 p;)

b dey - ie)
[bindy] pr (bind gy 40 bey)! — (D4nd p; 13 4e;)¢

[binds] p* (bind gy fnw]')! - of

the Semantic Gap

p g = icg
P (81 icg thes ¢; else e3)" < (1f ic) then ¢, else &3)°
P (41 true®™ then t]' else t)') —» tf
P (Af talae®™ then tf else)]
"‘i‘| -"‘l
pr(let = = iey 12 3)¢ < (let = = je] fney)f
ph (Lot = = o in e5)! < (bizd py[z vo o] 12 &5)°
where pp = p | FV(ez)
'}'“g -“4
P (iey op fea)t =+ (1] op teg)!
pFie; - icy
[omal ph (o] op i)t = (v]" op ie})¢
[ops] ¥ (o' epef’)' = ¢ Hv=wopw

Table 3.2: The Strectural Operatiosal Semastics of Fux (past 1).

Table $.3: The Structural Opesaticasl Semastics of Fux (part 2).

Principles
of Program
¢ Analysis

the Semantic Gap

b et b

Principles
of Program
¢ Analysis

fool (3 b ¢ wway

vl EARSERDCUN

N Carmroa/Eineoa)clo
o Rt faw) (e f 2o e} STUO
ool ER U)

(C,7) k=, c* always
e & .7 e o (eaﬁ) F=l zt iﬂﬁ(z) Q 6(0
Nta- ’:i.é,l((‘.;‘IT %

ltn.lﬂ:i:-. k) G 1en A (a,ﬁ) h. (fn T => eo)‘
ites fa e)6 8ty :

écl'hi:;;:u' [ATUE iﬂ {En z=> eO} Q E(l) A
(C»ﬁ) |=s €o
ey tn A iy s Gin

{t= f 2=) S R
M 5 e (12 € then ' alee)
w KAmEa
v CAWQez= tag) (C’b) '=' (fun 'f s eo)t ~
gl 1PN A iff {fun fz=>ep} C C(€) A
(C,P) Es €0 A {fun f z =>eo} C p(f)

RArG A EArPA

R Carodre Card rChrg

Table 3.1 Absteanct Contaol Flow Analysls (Scbeections 3.1.1 and 31 30

€. [(8 t2)* :
iff (cvﬁ) ’=l t:‘ A (C,ﬁ) '=l t;’ A

(Vitnz => tg) € C(&r) : i

C(&2) C A=) A Cllo) € C(6)) A
(V(fun f z=>t°) € C(ly):

C(é2) C p(z) A C() € C(9))

(E,ﬁ) E, (1f tf,° then tf‘ else t;’ ¢

phef ' Uzade

ph(ta x> e) (¢
where py

pF (tun f x »> eg)* -
whese po

by - il

if (Co)Fate A
Co et A C) s 13 A
C(l) < CO A Cl) o)

o et (lef] (C,P) s (Let z =t in t2)t

ol S b iff (C,7) k.t A (C.7) .l tf? A
C(&) € (=) A C(&2) € C(O)
[appan] 2F ((close (fun f 2.

L& e ((ColE (B i (C . A G EA

pr (biad p; 4o de;)f -
[bind;] p > (bind gy dnef)f -

(Q’pl pF((clese (fa 2 >y
(b1

[bind,]

Table 3.5: Syntax directed Control Flow Analysis.

Table 3.2: The Strectural Operatiosal Semastics of Fuxn (past 1).

the Semantic Gap

Principles
of Program
(it s + Analysis

€. o, o W H2) G 0

jodl (R vy
i EARSEHNCUO b
N CArltsro el iEitnewa)sln a’:“(:::::::)iaﬁﬁ
o (ER e (ten fx oo o M ftun f x> e} S TUO (€5 v o
ool B) .7 e, (ten f x> 0p)'
e CARE A RANEA M (ten f 2= e} G 3O A
Mua-’én):‘.m: CA e n (tenfroa) CHN
A
gfmcm » Site) G Euen A 3 b (6] &)
(vitun £ 2 € 6 QL) o CArGACAHPGA
Aeda Ve z =) e St)
) G) A i) ¢ 8o A Lta) ¢ #=) A Cks) 5 TN A
(= fz = @) SHM (Viten £ 2= &) € 208y)
o (a,,,..(u(éb...‘\.;..qy ita) S) A Cita) < T
L J

FI G A
gm-gucm- A (Cm:u(rtg:-d';mér

L) S n At e LT T
a RARD A LA) G &0 A Ct) 6 20
A A B
gfmcm At(l.)cim ‘z'”'?i"“;'n&“f ,é.ﬂ b 6 A
[AR owdye CArd A Chrg) C 3 A Sty) € 80

CAmG od) & CAr G A Car.q

Table 3.1 Adstenct Contaol Flow Analysls [Scheections 3.1.1 and 3130

Table 3.5 Systax direcsed Contrel Flow Analysis.

ph2f v if 2@ domip) and & = p2) p i ieo = idh
oF (.5 % &)’ —+ (close (a2 = op) 12 &) pF (i icg then ¢; elae e3)" 4 (1 ic} then ¢; alse &)
where po = g | FV(fn 2 => eo) P (4 true®™ then ¢ olse t]')! - o]

P (tun f x »> eg)’ ~+ (close (fun f = «> &) 1= py)’ : . o
wheee po = p | FV{fuz f 7 =>) ph(Af false®™ then] else) o}
phiey < ie)

- fey ~» iel — -
2 TSI PF (et 7= e 43 62)f =+ (1ot 2 = 1] 18 &3)f

o fey - ic phr(let z =™ uq)“.-o(bug[z—oduq)‘
(oop;) P"('{"’I)“'('{'MY '.'bﬂ!: p| FV(e)
phrie =
R iy e o i) = i T
plie; -+ icy
[4PPan] 2F ((close (tun f 2 > ;) 13 p)" of*)' (ops] P (o0 op ies)t = (v op icg)

(bind i
mh-;f/“:e?lu(;f/:-n,)uhl [ops] o (ef* op o3*) > o Hv=wopw

.
(binds] pr (biad :&n‘)c::(ﬁup, 13 40y)0 Table $.3: The Structural Opesaticasl Semastics of Fux (part 2).

[binds] o (bind gy o e') - of

Table 3.2: The Strectural Operatiosal Semastics of Fux (past 1).

(.5 . & sdvaps

ol (ER - v
i EARSEANCUN

N LAkl imitnea)cln

€. o, o W H2) G 0

(Ci)h.(hrﬁﬂ)‘
taz=> e} SO A

o ER e (ten Sl ftea fx e} S TUO (€5 v o

ol EH 0 Q)

e Cakd AR v-_u:'n

Meaz=)6

Ak (’A
) G A~ Sike) G T A
(it £ 2= 4 6 804,)

Arga

) S #n) A Cik) G 80 A
(= f 2= @) S RN

M EHeE el aise)
w EaAmga

S Un A e

bod) ﬂ.l’bﬂ“l‘(‘ 1a)
g.m-d* A ERw
4G Ha) A St

[AR wdyE CAard A CARg

gm-? ALArGA

9 b, (ten £ 2= o)
W (ten £ 2= 0} G 3O A
A e At frwa) CHN

€5 b (6)
i (tm-.c'- ACAP.GA
(Wenz = e)s [TAR
Lts) ¢) A ko) 5 8 A
(Viten £ 2= &) € 208y)
Citz) C #a) A Ci) € Ceoy

(C.J)r-.(ud'mu"omé)‘
£ A,
Akt A C AW A
-)cam) G S0

@m-.rm--t"m,*r
0 m-.ﬂ'agm-.t:'a
1) € #e) A Ci6) € E0

Table 3.1 Adstenct Contaol Flow Analyss (Scheections 3.1.1 and 3130

CAMEG od) & CAkG A CAr.G

the Semantic Gap

Principles
of Program

Table 3.5 Systax direcsed Contrel Flow Analysis.

phzf o if 2 ¢ domip) and e = p(z)

P (fn z => e5)° —+ (close (fn x > &) in m)"
where po = p | FV(fa 2 =>)

pF (tun f x > eg)* ~+ (close (fun f = =>) 1= py)’
whese po = p | FV{fuz [7 => e)

- fey ~» iel
P F (iey fes) "z-‘:l“ap

phfey - i
lwr.) o (v]* ies) — (v]* icg)

[eppm] pF ((close (fa 2 > ;) fa)" o7) =
(bind pyfx »+ vy) 1n &)

[4PPan] 2F ((close (tun f 2 > ;) 13 p)" of*)'
(vind pafz ~+ vy] 1n €)'
where 3 = py[f »4 close (T2 [2 => ;) 42 o)
b ey = id
ndi] Toind r tn 4er)? = (knd 7 1a 1

[binds] o (bind gy o e') - of

Table 3.2: The Strectural Operatiosal Semastics of Fus (past 1).

Gl =0
Cul=] = {r(2) G C(O}
Clitn x> &)f] = “l:l’o e} € C(0)}

C.[(tea f z => eo)f] -(lﬂlls-> e} CC(O)
Cufee] U {{fea f 2 »> &) S r(/)}

a4 =clrlvelgl
U {{t} € C(6) = C(f) (=)
|t=(fnx = t') € Term,}
U {{t} € C(6) = Clk) € C(O)
|t =(tn z = &) € Torm, }
U {{e} € C(&) = C(&s) € r(2)
|t =(tun f z => &) € Term,)}
u {(') € C(4) = Clk) € C(9
|t =(fun f z => £g’) € Term,)

C.l(42 ¢ than ' alse)] = C[EJUC UGG

U {C(4) € <O}
v{C(e) € <L)

Col(tet z = ¢ 10 62)] =G0 UG
% uiCit) -(ﬁu {C(es) € €}

Gl op)] =CIUCIE]

Table 3.6: Coastralnt based Control Flow Analysis.

pliee = ieg
pF (41 ieg then ¢; else e3)f <4 (1f ic) then ¢; else &3)°

P (4 true®™ then ¢ olse t]')! - o]

ph (41 falae®™ then ¢ else) <+ tf
phiey < ie)

ph(let =z =ie; 1263)" = (let 2 = ie} fney)’

ph(let 2 = o™ 12 eg) < (bisd py[z v o 12)"
where oo = p | FV(e3)

phiey - i)
P+ (iey op feg)t — (ie] op teg)’
l.h] ”"-‘"’5
P epien)t =+ (v op i)t
[ops] o+ (of* opef) = o* Hv=wnopw

Table $.3: The Structural Opesaticasl Semastics of Fux (part 2).

My challenge to
ICFP:

Develop a program analysis for reasoning about:

Space-consumption in a lazy language

State and control in a language with effects

Security in a language with stack inspection

Blame in a language with behavioral contracts

Safe parallelism in a language with futures

My cl
ICFP:

Develop a progr

Spac

Stat
Secu
Blan
Safe

B-2 - Cody Enterprise - Monday, August 16, 2010

SPORTS/OUTDOORS

Rough ride

Jt:

age

th effects
nspection
‘al contracts

SRR) futures

Geoff Marolda of Houston, Texas, is thrown off a bronc as he comes out of
the chute during bareback riding recently at the Cody Nite Rodeo.

Modularity of

existing analyses

Three approaches:

Three approaches:

Do nothing (analyze whole programs only)

Three approaches:

Do nothing (analyze whole programs only)

Hemorrhage precision (black hole approach)

Three approaches:

Do nothing (analyze whole programs only)

Hemorrhage precision (black hole approach)

Do something really complicated

Modular Set-Based Analysis from Contracts

Philippe Meunier

College of Computer and Information
Science, Northeastern University

meunier@ccs.neu.edu

Abstract

In PLT Scheme, programs consist of modules with contracts. The
latter describe the inputs and outputs of functions and objects
via predicates. A run-time system enforces these predicates; if
a predicate fails, the enforcer raises an exception that blames a
specific module with an explanation of the fault.

In this paper, we show how to use such module contracts to turn
set-based analysis into a fully modular parameterized analysis. Us-
ing this analysis, a static debugger can indicate for any given con-
tract check whether the corresponding predicate is always satisfied,
partially satisfied, or (potentially) completely violated. The static
debugger can also predict the source of potential errors, i.e., it is
sound with respect to the blame assignment of the contract system.

Categories and Subject Descriptors F.3.2 [Semantics of Pro-
gramming Languages]: Program analysis; D.2.4 [Software / Pro-
gram Verification]: Programming by contract

General Terms Languages, Reliability, Verification.

Keywords Static Debugging, Set-based Analysis, Modular Anal-
ysis, Runtime Contracts.

1. Modules, Contracts, and Static Debugging

A static debugger helps programmers find errors via program anal-
yses. It uses the invariants of the programming language to analyze
the program and determines whether the program may violate one
of them during execution. For example, a static debugger can find
expressions that may dereference null pointers. Some static debug-
gers use lightweight analyses, e.g., Flanagan et al.’s MrSpidey [11]
relies on a variant of set-based analysis [10, 16, 21]; others use a
deep abstract interpretation, e.g., Bourdoncle’s Syntox [4]; and yet
others employ theorem proving, e.g., Detlefs et al.’s ESC [7].

Experience with static debuggers shows that they work well for
reasonably small programs. Using MrSpidey, we have routinely
debugged or re-engineered programs of 2,000 to 5,000 lines of code
in PLT Scheme. Flanagan has successfully analyzed the core of
the interpreter, dubbed MrEd [13], a 40,000 line program. Existing
static debuggers, however, suffer from a monolithic approach to
program analysis. Because their analyses require the availability
of the entire program, programmers cannot analyze their programs
until they have everyone else’s modules.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’06 January 11-13, 2006, Charleston, South Carolina, USA.

Copyright © 2006 ACM 1-59593-027-2/06/0001. .. $5.00.

Robert Bruce Findler

Department of Computer Science,
University of Chicago

robby@cs.uchicago.edu

Matthias Felleisen

College of Computer and Information
Science, Northeastern University

matthias@ccs.neu.edu

Over the past few years, we have added a first-order module
system to PLT Scheme [12] and have equipped the module system
with a contract system [8]. A contract is roughly a predicate on
the inputs and outputs of (exported) functions, including object
methods and higher-order functions. The contract system monitors
the contracts during program execution. If a module violates a
contract, the contract system pinpoints the guilty party and issues
an explanatory message.

This paper makes five contributions to static debugging and
software contracts. First, it explains how to construct a modular
static debugger for programs with contracts, using those contracts
in a dual role: one as a source of abstract values and one as a
sink for abstract values. Second, we prove that our contract-based,
whole-program analysis computes its results in a modular manner.
That is, our contract-aware set-based analysis produces the same
predictions for a given point in the program regardless of whether
it analyzes the whole program or just the surrounding module.
Third, for any given contract check, the system indicates whether
the corresponding predicate is always satisfied, partially satisfied,
or completely violated. Fourth, the static debugger can also predict
the source of potential errors, i.e., it is sound with respect to the
blame assignment of the contract system. Fifth, the analysis is
parameterized over both a predicate approximation relation and a
predicate domain function.

2. Overview

The paper presents a model of a modular static debugger. The
model consists of two parts: a runtime contract system and a set-
based analysis for modules with contracts. A correctness theorem
ties the two parts together. Figure 1 provides an overview of these
three pieces in graphical form. The vertical column on the left rep-
resents the runtime contract system. A contract compiler translates
a collection of modules and a main expression into a suitably an-
notated form. During execution, which we naturally model via a
reduction system, the contract system keeps track of the contract
obligations; if something goes wrong it blames a specific module.

The first horizontal row of Figure 1 depicts the analysis process,
which consists of three stages. First, it partitions the program into
module-like pieces by lifting expressions with contract annotations
out of the main program. Second, the resulting collection of pro-
gram pieces is analyzed with a parameterized set-based analysis.
This step yields both sets of abstract values and sets of potential er-
rors, including explanations that blame the guilty party; we call the
latter blame sets. Third, the former are summarized as set-of-values
descriptions, dubbed fypes.

The rest of the grid in Figure 1 explains our proof technique for
the correctness theorem. Since each reduction step creates a com-
plete program, the correctness proof can proceed via subject reduc-
tion. We re-apply the analysis after each reduction step. The proof
then shows that the reductions preserve the types and the blame

+ — — —
Source\ Sink (...es 1nt€ b >£ ts i ¢ (..es anye o= >£ 45

v . ”j}ggz)} = (1 O}t {:}g%)} = (O} C(t5)

Zes
+

Philippe Me imffl . {eYCo(ty) = {(h, 0)} Cep(£y) {(eFYCopts) = {(h, O)} Cp(es)
e o (oooerind GG tcelts >} = {(h, O)} C(65) “iﬁfg >} = {(h, O} (45

meunier@ccs.n el Z €5

E=
1

0res _ _
any,” {1} Colts) = {(h. O)} Cuty)
In PLT Scheme, program: €1 z €5
a predicate fails, the enfi { } () () ()
0} Cop(ly) = p(0) Co(ly
set-based analysis into a f
partially satisfied, or (pot e1... Z (159
Categories and Subject (Cg f) f3 3 + +
- {t31Cw(ls) = e(l5)Ce
Cop
General Terms Languag +£, £+£ £+£ £+£7 -

_ + - - + -
ooy g {7} Cols) = {(h, R)} Cop(¢5) ey Co(t:) B

! °7 b = {(h,O)}Cu(ty)

latter describe the inputs

specific module with an e:

ing this analysis, a static « {ék} < 80(65_) } = {<h O>} - 1#(57)

’ = 5
debugger can also predici
gramming Languages]: Pi
£
Keywords Static Debug; (- €3 (Cg b —c f 2)f > {E;,_} g SO(‘€5)

Abstract (... e1 any f >
via predicates. A run-tin {EA} C 90() = @(€+) 90(/8)
In this paper, we show (Axﬁeg)g? {f}\}ggo(ﬂg) = {(h,R>}Qw(€g)
tract check whether the co
sound with respect to the | Eiréf + Ve {€+} - @(6) = {<h
ram Verification]: Progrz — —
gram terationk: Fros {FYCelts) = {(h R} Co(ts) {tI1Colt;) = o(t3)
ysis, Runtime Contracts. z
€3 L €5

1. Modules, Contr

A static debugger helps p1 + = + — + + —
yses. It uses the invariants S()urce\Sink (e£5 eeﬁ)Ea (C€7 ﬁ f E)e e (. e5 (c e e)E e >£ é

the program and determin 7 L
of them during execution _ _

expressions that may dere ’I’Le?m {gn}g¢(£5) = {<A7R>}g¢(£a) {EW}QSD(KE)) = {<h7R>}gw(£5)
gers use lightweight analy + Vi
relies on a variant of set- int.t 1
deep abstract interpretatio -
others employ theorem pr

e
. - : .. int,' 1) 2 _ _
oaerience wih staie S -)i {71 Co(ts) = {(NR)} S (ta) {7 Ce(ty) = {(h RY}Co(t5)

debugged or re-engineerec any fl 1

in PLT Scheme. Flanagai £+£ é é,
the interpreter, dubbed M1 ...e1 any >

static debuggers, howeve f

program analysis. Becaus {€,}C gp(ﬁf) = go(£+) Cp(B)

of the entire program, pro

until they have everyone € ()\mﬁ 66)6/\ {ﬂ)\} g @(65) = (p(fﬁ) g (p(f))) {E)\} C QO() = SO(E) C So(g)
s o e i thelb) = el cel) thcelts)} = {{(h, O)} Co(£5)

classroom use is granted without 61 e z 65
for profit or commercial advantag
on the first page. To copy otherw

lolists,requiresi)riorspaciﬁcpe! E*Fé* + £+£* | {E;—gi—} g(p(gf)_) = {<h7 O>} gw(fg)
POPL’06 January 11-13, 2006 (c 171 o272) 33
Copyright © 2006 ACM 1-5959 9 f N _ {g;’} C g0(€5_) = (p([?l—) C (p(ﬂl_)
{431 Cw(ls) = w(ls) Cp(£y) (EF) Co(6) = o(6F) Co(6)
o e N el o {03 C(ts) = o(t3) Co(ta) R N 2y
(-..e3 (Cg —c?)P) {631 Ce(ly)

eslLes

= {(h, O)} Co(£5)

Table 1. Constraints creation for source-sink pairs.

+ — — —
Source\ Sink (...es 1nt€ b >£ ts i ¢ (..es anye o= >£ 45

v . {Z}ggz)} = (1 O}t {:}g%)} = (O} C(t5)

.Les
N int 1 ‘1) Celty) = {{h.O)} Cu(t5) () Colts) = {(hO)) Culty)

College of Computer ai +p— ptp— £+ Cop(l- £+ Co(ls
Osciince’N(‘)rtEeaS[er <. el intil el >§2 62 { 1 } = 80(5) = {<h,, O)} gw(ég) { 1 } = SO(5) = {<h7 O>} g ’([}(65_)
meunier@ccs.n el ,Z es el z €5

E=
1

e _ _
any,” {1} Colts) = {(h. O)} Cuty)
In PLT Scheme, program: €1 Z €5
a predicate fails, the enfi { } () () ()
0} Cop(ly) = p(0) Co(ly
set-based analysis into a f
partially satisfied, or (pot e1... Z (159
Categories and Subject (Cg f) f3 3 + +
- {t31Cw(ls) = e(l5)Ce
Cop
General Terms Languag +¢- £+ /= EJF f £+ é, -

_ + - - + -
ooy g {7} Cols) = {(h, R)} Cop(¢5) ey Co(t:) B

! °7 b = {(h,O)}Cu(ty)

latter describe the inputs

specific module with an e:

ing this analysis, a static « {ék} < 80(65_) } = {<h O>} - 1#(57)

’ = 5
debugger can also predici
gramming Languages]: Pi
4]
Keywords Static Debug; (- €3 (Cg b —c f 2)f > {E;,_} g SO(‘€5)

Abstract (... e1 any f >
via predicates. A run-tin {EA} - 90() = @(€+) 90(/8)
In this paper, we show ()\xﬁee)é {f}\}ggo(ﬂg) = {(h,R>}Qw(€g)
tract check whether the co
sound with respect to the | Eiréf + Ve {€+} - gp(ﬂ) = {<h
ram Verification]: Progrz — —
gram terationk: Fros {FYCelts) = {(h R} Co(ts) {tI1Colt;) = o(t3)
ysis, Runtime Contracts. z
€3 L €5

1. Modules, Contr

A static debugger helps p1 + /- E= = F T =
yses. It uses the invariants Source\ Sink (6£5 GEG)EQ (Cf7£ f E)e e (. e5 (C e e)E é >£ e

the program and determin

of them during execution J4 _ _
expressions that may dere ’I’Le?m {gn}g¢(£5) = {<)‘7R>}g¢(£a) {EW}QSD(KE)) = {<h7R>}gw(£5)
gers use lightweight analy + Vi
relies on a variant of set- int.t 1
deep abstract interpretatio f 5= / \
others employ theorem pr . tg 1 L 1 > 2 Lo !

Experience with static R f

o il s ., dl trrcets) = (R} Cuta) (e} Colls) = {(h R} Cu(ty)

debugged or re-engineerec any fl 1 .\ /
in PLT Scheme. Flanagai £+£ é é,

the interpreter, dubbed M1 ...e1 any >

static debuggers, howeve f

program analysis. Becaus {€,}C gp(ff) = go(£+) Cp(B)

of the entire program, pro

until they have everyone € ()\mﬁ 66)6/\ {ﬂ)\} g @(65) = (p(fﬁ) g (p(f))) {E)\} C QO() = SO(E) C So(g)
s o e i thelb) = el cel) thcelts)} = {{(h, O)} Co(£5)

classroom use is granted without 61 e z 65
for profit or commercial advantag
on the first page. To copy otherw

lolists,requiresi)riorspaciﬁcpe! E*Fé* + €+£* | {61—3’—} g(p(ef)_) = {<h7 O>} gw(gg)
POPL’06 January 11-13, 2006 (c 171 o272) 33
Copyright © 2006 ACM 1-5959 9 f N _ {é;} C g0(€5_) = (p([?l—) C (p(ﬂl_)
{431 Cw(ls) = w(ls) Cp(£y) (EF) Co(6) = o(6F) Co(6)
foo oty ey oter || (G Cels) = () Cella) R N
(-..e3 (Cg —c?)P) {631 Ce(ly)

eslLes

= {(h, O)} Co(£5)

Table 1. Constraints creation for source-sink pairs.

Higher-order

Program Analysis
Is Alive and Well.

(I have a way forward.)

A Way

Forward

Scalability

Complexity
Maintenance
Verification
Expressivity
Modularity

Key insight:

analysis is a kind of
evaluation

Every variable occurs once.

ICFP'07

Every variable occurs once.

Every variable occurs once.

Every variable occurs once.

Datalog-style programming with analysis.

ICFP'08

kCFA EXPTIME Eval

ICFP'08

kCFA EXPTIME Eval

PLDI'10

mCFA PTIME

Similar precision, better performance

PLDI'10

/\

EXPTIME

c
RS
B2
O
D
| -
al

SubOCFA
Simple closure

PLDI'10

T T~ T

1CFA 1CFA EAPTIME

kCFA mCFA

c
RS
B2
O
D
| -
al

SubOCFA
Simple closure

A Systematic
Approach to

Program Analysis
Design

Anaiysis

ICFP'10/CACM'11

[— —

Anaiysis

ICFP'10/CACM'11

[— ——

Analysis

Analysis machine

| —— S

e

l

SQ =P S1 =P S ===P G3 == Gy =——]

Analysis machine

| —— S

e

l

SQ =P S1 =P S === G3 === Gy =——)

Analysis machine

— S

e

l

SQ =P S =P S === G3 === Gy =——]

Analysis machine

| —— S

e

l

SQ =P S1 =P S === G3 === Gy =——)

Analysis machine

| —— S

e

l

SQ =P S1 =P S === G3 === Gy =——)

Analysis machine

— S

e

l

SQ =P S1 =P S === G3 === Gy =——)

Analysis machine

T— el

e

l

SO =P S| =P S === G3 === G, =—)

®

Theorem: simulates the machine.

Key idea:

Deterministic state transition system

with an infinite state space.

Non-deterministic state transition system
with a finite state space.

ICFP'10/CACM'11

Key idea:

Deterministic state transition system

with an infinite state space.

Non-deterministic state transition system
with a finite state space.

Program analysis...

Infinite state-space

Program analysis...

Finite state-space

Infinite state-space

...Is bounded graph search.

...Is bounded graph search.

Finite state-space

Semantics

A Closer Look

——

Machine

Reduction semantics:

Syntax: e ::— N | T | (e+€)

(n+tm) — n+m
Reduction:

r — n where p(x) =n

Eval. Contexts: E:=[]]| (E+e) | (n+E)

Reduction semantics:

E[(3+4)]

/ N\

search

P//

Reduction semantics:

Syntax: e ::— N | T | (e+€)

(n+tm) — n+m
Reduction:

r — n where p(x) =n

Eval. Contexts: E:=[]]| (E+e) | (n+E)

Reduction semantics:

Syntax: e ::— N | T | (e+€)

(n+tm) — n+m
Reduction:

r — n where p(x) =n

Eval. Contexts: I — H ‘ (E+e) ‘ (n+FE)

Continuations: C = (;O 1y (Ve, C) | c;(n, C')

100

Stack machine:

Correctness:

P —"n < (P,cq) =" (n,co)

e:=n| x| (ete)

(n+m) — n+m

r — n where p(z) =n

E =[] (E+e) | (n+E) A Closer Look

Syntax:

c ::= num | str | bool | undefined | null
v =c | func(¥) {returne } | {str.v...}
p = S8tr:e

ex=x|v|{p}|let (x=¢e)e|e(e)
- ele] | ele] =e|del elel

let (x =v) e = |v/xl]e

Reductions:) B
(func () { returne }) (@) — [v/7]e

{...str;.v... }Lstr;] — v

stry & (stry...)
{ stry.vq... Y[str,] — undefined

{...str;.v;... }lstr;l =v—{...str;.v... }

stry & (stry...)
{stry.v1... }Ylstrpl =v —>{ str,.v,stry.v1...}

del {...str;.v;... ylstr;] —{...}

stry & (stry...)
del{strl.vl...}[strm] —>{StT1.U1...}

Eval. Contexts: Continuations:
=[] C ::

let (x=F) e

E(€)

v(ie...E,v...)

{str:v...str:E,p}

FE'le.

vIE]

Ele] =€

vIE] =€

vivl] = F

del F [e]

del v[FE]

o, C) where o(p(x)) = ¢
e, plx — al),ola— ¢|,C) where a is fresh
e, p|x — dl),old— co...cpc],C') where @ are fresh
0,C)
undefined, g, C) where str, & (stry...

..striy.c... },0,C)

{ strm c, strl c1...+,0,C) where str, & (stry ...
{...},o,C)
{

strl c1...+,0,C) where str, & (stry ...

Machine:

p),0,C)

(x, c,
¢, o, cz(x e, p,C)) (
c, o, c4(<func(:c) { returne } P)sCn ... Coy,yp,C)) (
(stri,p),o,cr({...stri.c;...},C)) C
(stry, p),o,cr({ stri.cq... 3}, C)

c,0,c10({...str;.c;...

C, O, ClO({ St?"l C1.

<st7“z,p> o,c12({ . .st'ri.ci...

(stry, p),o,c12({ stri.cy .

c,0,cz(ee, p,C)) (e, p),0, c4(c,,é',p,)

(e, p),0,C)

{ str:c, q 7},C)

(e1,p),0,c5(stry, str:cq, p, p, C))
(e0.p), 0, Ca(ze1,p, C))

(e, p),0,C)

C > o, 03(66 p,C))

{ },o0C)

< y O, c5(8t7“0,,p,p, C)

((e1,,C)

(05 08(617627[%0»

{ ,0,¢11(e1, p, C))

¢, 0, C5<8tr Q77p7 C)>
c,0,cs(str, q, stry:e1p, p, C))

<1et (x =eg) e1,p),0,C)
e0,p),0,C)

(o (e€), p),0,C)

{ },p),0,C)

({ stro:eqp’ }, p),0,C)
{eo Le1l, p),0,C)
(eg[e1] = eq, p),0,C)
(del egleq], p),0,C)

N o e A A

<
<
(
<
(
<
<
<
E
((func () { returne },p),o,cs(,p’,C)
(
<
<
<
<
(
<
(
<
<

<
<
<
<
<
(L.
<
<
<
(
<
(
<
<
<
<
(
<
(
<
<

W
=
s
>
I
5
RS
<

O
-

(€, P

Semantics

A Closer Look

——

Machine

A Closer Look

' ‘

Machine

Analysis

Key idea:

Deterministic state transition system

with an infinite state space.

Non-Deterministic state transition system
with a finite state space.

(e, p,a,C)

Move continuations into heap.

Step 1: Var—Addr Addr—Value4Cont

Step 2: Var— Addr Addr—¢(Value+Cont

ICFP'10/CACM'11

Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt

ICFP'10/CACM'11

— e ——

Analysis of:
First-class control
Exceptions
Mutation

Base values

Matitvas Follsisan. Robert Bruve Findier, and Matihew Flan

Analysis

ICFP’'10/CACM'11
— ——

James Gosling * Bill Joy « Guy Steele « Gilad Bracha

Semanti

The Java' Language
Specification,
Third Edition

...from the Source Je;\—/a

Sem:

T

The Java Language
Specification,
1hird Edition

‘?\’

(

ICFP'10/CACM’11

—

Analysis

— ICFP'10/CACM'11

The Java Language J— ———
Specification,

Third Ediion Static verification of security
A2 ~via stack inspection

Analysis

Abstract Models of Memory Management*

Greg Morrisett
Carnegie Mellon

Matthias Felleisen
Rice University

Robert Harper
Carnegie Mellon

jegmorris@cs.cmu.edu matthias@cs.rice.edu rwh@cs.cmu.edu

Abstract

Most specifications of garbage collectors concentrate on the
low-level algorithmic details of how to find and preserve ac-
cessible objects. Often, they focus on bit-level manipula-
tions such as “scanning stack frames,” “marking objects,”
“tagging data,” etc. While these details are important in
some contexts, they often obscure the more fundamental as-
pects of memory management: what objects are garbage and
why?

We develop a series of calculi that are just low-level
enough that we can express allocation and garbage collec-
tion, yet are sufficiently abstract that we may formally prove
the correctness of various memory management strategies.
By making the heap of a program syntactically apparent, we
can specify memory actions as rewriting rules that allocate
values on the heap and automatically dereference pointers
to such objects when needed. This formulation permits the
specification of garbage collection as a relation that removes
portions of the heap without affecting the outcome of the
evaluation.

Our high-level approach allows us to specify in a compact
manner a wide variety of memory management techniques,
including standard trace-based garbage collection (i.e., the
family of copying and mark/sweep collection algorithms),
generational collection, and type-based, tag-free collection.
Furthermore, since the definition of garbage is based on the
semantics of the underlying language instead of the conser-
vative approximation of inaccessibility, we are able to specify
and prove the idea that type inference can be used to collect
some objects that are accessible but never used.

*This work was sponsored in part by the Advanced Research
Projects Agency (ARPA), CSTO, under the title “The Fox Project:
Advanced Development of Systems Software,” ARPA Order No. 8313,
issued by ESD/AVS under Contract No. F19628-91-C-0168, Wright
Laboratory, Aeronautical Systems Center, Air Force Materiel Com-
mand, USAF, and ARPA grant No. F33615-93-1-1330. Views and
conclusions contained in this document are those of the authors and
should not be interpreted as necessarily representing official policies
or endorsements, either expressed or implied, of Wright Laboratory
or the United States Government.

Permussion to make digital/hard copies of alf or part of this matenal with-
out fee is granted provided that the coptes are not made or distnbuted

for profit or commercial advantage, the ACM copyright/server

notice, lhe_ title of the publication and its date appear, and notice 1s given
that copyright is by permission of the Association for Computing M;chinery
Inc. (ACM). To copy otherwise, to republish,to post on servers or to ’
redistribute to lists, requires specific permission and/or fes.

FPCA '95 La Jolla, CA USA® 1995 ACM 0-89791-7/95/0006...53.50

1 Memory Safety

Advanced programming languages manage memory alloca-
tion and deallocation automatically. Automatic memory
managers, or garbage collectors, significantly facilitate the
programming process because programmers can rely on the
language implementation for the delicate tasks of finding
and freeing unneeded objects. Indeed, the presence of a
garbage collector ensures memory safety in the same way
that a type system guarantees type safety: no program writ-
ten in an advanced programming language will crash due
to dangling pointer problems while allocation, access, and
deallocation are transparent. However, in contrast to type
systems, memory management strategies and particularly
garbage collectors rarely come with a compact formulation
and a formal proof of soundness. Since garbage collectors
work on the machine representations of abstract values, the
very idea of providing a proof of memory safety sounds unre-
alistic given the lack of simple models of memory operations.

The recently developed syntactic approaches to the spec-
ification of language semantics by Felleisen and Hieb [11]
and Mason and Talcott {18, 19] are the first execution mod-
els that are intensional enough to permit the specification
of memory management actions and yet are sufficiently ab-
stract to permit compact proofs of important properties.
Starting from the A,-S calculus of Felleisen and Hieb, we
design compact specifications of a number of memory man-
agement ideas and prove several correctness theorems.

The basic idea underlying the development of our gar-
bage collection calculi is the representation of a program’s
run-time memory as a global series of syntactic declarations.
The program evaluation rules allocate large objects in the
global declaration, which represents the heap, and automat-
ically dereference pointers to such objects when needed. As
a result, garbage collection can be specified as any relation
that removes portions of the current heap without affecting
the result of a program’s execution.

In Section 2, we present a small functional programming
language, Agc, with a rewriting semantics that makes allo-
cation explicit. We define a semantic notion of garbage col-
lection for Agc and prove that there is no optimal collection
strategy that is computable. In Section 3, we specify the
“free-variable” garbage collection rule which models trace-
based collectors including mark/sweep and copying collec-
tors. We prove that the free-variable rule is correct and
provide two “implementations” at the syntactic level: the
first corresponds to a copying collector, the second to a gen-
erational one.

In Section 4, we formalize so-called “tag-free” collec-
tion algorithms for explicitly-typed, monomorphic languages
such as Pascal and Algol [7, 29, 8]. We show how to recover

ICFP'10/CACM'11

Abstract Models of Memory Management*

Greg Morisett Matthias Felleisen ~ Robert Harper
Carnegie Mellon Rice University ~ Carnegie Mellon
a ice.edu ruhe @

Abstract

Mostspecifications of gutbage colltorsconcntrse o the
lowlevel algorithmic details of how to find and preserve ac-
camible bjets. Often, thy fous an bitewe manipal.
tions sch 20 “Scaming stz ‘marking objects,”

“tagging i While thes el are importan in
o eoetn they chen hncur the more andmmental

‘o develop a series of calcull that are just lowlovel
oot ot e e eepre llotion s s e
tion,ye are suffienly abstact that wo may formaly

the correctness emory mauagemet rviagies
By maling he heap of pmmm Syntactically

can epecity memary acions o rewriing rles Cat allocate

1 Memory Safety

Advanced programming languages manage memory alloca-
tion and denlocaion utomaically. Automatic memry

s, or garage collconn, dgpifcanly fciats the
DropraTiing proces becouse pogsammers ¢an rl on the
Eonpuage implementation for fhe delicte taoks of fnlng
and freeing unneeded objects. Indeed, the presence of a
Barbage collector ensures memory safety in the same vay

systems, memor
bage collclors ey com iih 3 ompact ormulation
‘and a formal proof of sounduess. Since garbage collectors.
work n the mackine ovemiatiorn of s e, the

i and zulumauolly decisenco pinters
o s1eh bjects whea eeded T mits the
specfcationof g oetion s oo s
ot o the heap without afecring the outcome of the

ot W level approach alows us o specty n soompact
‘anner a wide variety of memory management techai
a ebased

semantics of the underlying language instead of the conser-

amd rove th e that ype infrence can b e 0 collect
some objects that are accessible but never used.

et e CARRRS CST0,

e, v, s o I, of W LAy

e e the ack of simple el o memory operations.
recently doveloped syntactic approaches o
ifeation of lmguage semantics by Tolasen and b (1]
and Talcott [18, 19] are the first ex:

Stating trom 4 calculus of Felleisen and Hil
design compct specications of & mumber of munm'y man-
agement deas and prove several the
2 vadinlying the dovopmist u[o g
bage cnlk:(unn caleuli is the re
ory as a global
The p
obal delaration, which epresens the hap, and automat.
laly e ponir o och oty when e Ax
result, garbage colloction can be ‘any relation
it removes prdons “f the current haap without afecting
result of a program’s exceution
ection 2, we present smal functional programming.

S B TS T TR 0s 5250

Corresponds 0 & copying collctor, th second to 8 gen-
sational one.
I Section 4, we formalize so-called “tag-free” callec-

such as Pascal and Algol[7, 20, 8. We show how to recover

ICFP'10/CACM'11

[—

——

ICFP'10/CACM'11

T — ——

Abstract Models of Memory Management*

Greg Morrisett Matthias Felleisen Robert Harper n n
Carnegie Mellon Rice University Carnegie Mellon

1 Memory Safety

Abstract

o s of s sl ot Al i g s e o
S etk A i A g u]]
g e e e oy o
g 82 o g e b o L
i b e o R o oni
S et S o e e e
ey
T T

s
ten in il rach. due
t© ,nK\.n! ,w.,.w problems whi alocaion, acces, and

transparent. Howover, in contrast to type

by
Wo dovelop o serie of calui that. s just lov-love
cnongh tht we can exprs allcation and ollec
tion,yetare uficinlyatract um we may formally prove
et s
m..g e heap of & program symiachcaly

Stating trom 4
e ot speciicacion o i

semantisofth undelying angings insead of he consr- agment des g p

amd rove th e that ype infrence can b e 0 collect
Some objects that are accessible but never used.
rojece Sy TARFA) GST0, e e e o P T
col
hrat reshoves porions of the carens hap wihout aleting
the result of a progeam’s execution.
ecion 2wt present sl fnctional progranming

e, v, s o I, of W LAy

e s mm,«@"“”wmm”""‘“ oo Eret comeaponds 0 & copying eolictor, th second to 5 gon.

S B TS T TR 0s 5250 erational one.
I Section 4, we formalize so-called “tagfree” collec

such as Pascal and Algol[7, 20, 8. We show how to recover

ICFP'10/CACM'11

T —— T

Effects of abstract GC

ICFP'10/CACM'11

T — ——

Effects of abstract GC

ICFP'10/CACM'11

—— T

Effects of abstract GC

My challenge to
ICFP:

Develop a program analysis for reasoning about:

JSpace—consumption in a lazy language

State and control in a language with effects

JSecurity in a language with stack inspection

JBIame in a language with behavioral contracts

@]Safe parallelism in a language with futures

JSpace—consumption in a lazy language

State and control in a language with effects

JSecurity in a language with stack inspection

JBIame in a language with behavioral contracts
@]Safe parallelism in a language with futures

jGarbage collection

ﬁa May happen in parallel for threads

Complexity and

Modularity

On the Cubic Bottleneck in
Subtyping and Flow Analysis

Nevin Heintze*

Abstract

We prove that certain data-flow and control-flow prob-
lems are 2NPDA-complete. This means that these problems
are in the class 2NPDA and that they are hard for that class.
The fact that they are in 2NPDA demonstrates the richness
of the class. The fact that they are hard for 2NPDA can be
interpreted as evidence they can not be solved in sub-cubic
time — the cubic time decision procedure for an arbitrary
2NPDA problem has not been improved since its discovery
in 1968.

1. Introduction

Cubic time complexity has become a common feature
of algorithms for the automated analysis of computer pro-
grams. There is a general feeling that many of these algo-
rithms are inherently cubic time — no sub-cubic procedure
has been found. Such cubic time algorithms include Shivers’
control flow analysis [17], the Palsberg and O’Keefe method
of determining typability in the Amadio-Cardelli type sys-
tem [15, 1], and various set-based analyses [5, 10, 11]. At
an intuitive level the inherent cubic complexity in all these
problems arises from the need to compute a dynamic tran-
sitive closure — one must compute the transitive closure of
a directed graph while adding edges to the input graph as
a consequence of edges derived for the output graph. Not
only do these problems all seem inherently cubic, they all
seem structurally similar and inherently cubic for the same
reason.

In order to better understand the “cubic bottleneck” in
flow analysis, Melski and Reps have investigated a sim-
ple data-flow reachability problem [13].! They relate this

*Bell Labs, 600 Mountain Ave, Murray Hill, NJ 07974, nch@bell-
labs.com.

TAT&T Labs, 600 Mountain Ave, Murray Hill, NJ 07974,
dmac@research.att.com.

IFollowing Heintze and Jaffar [4], Melski and Reps formulate this data-
flow reachability problem as a set-constraint problem. We use the data-flow
formulation here because it seems closer to applications.

1043-6871/97 $10.00 © 1997 IEEE

David McAllestert

data-flow reachability problem to the problem of context-
free-language reachability (CFL-reachability). An instance
of the CFL-reachability problem consists of a context free
grammar and a directed graph where each arc is labeled with
a symbol from the terminal alphabet. The problem is to de-
termine whether there is a path between two given nodes
such that the sequence of labels on the arcs in that path is a
string in the language generated by the given grammar. The
CFL-reachability problem can be solved in O(|G|n?) time
where |G| is the size of the grammar (the number of produc-
tions in a Chomsky normal form grammar) and n is the num-
ber of nodes in the graph. Melski and Reps give a linear time
reduction from data-flow reachability to CFL-reachability.
This reduction produces a grammar of size n, so the reduc-
tion appears to yield an O(n*) method of solving data-flow
reachability. However, Melski and Reps show that the re-
duction produces problems with special structure and that
the overall running time of solving a data-flow problem by
reduction to CFL-reachability is O(n*). More significantly,
Melski and Reps give a reduction of CFL-reachability to
data-flow reachability which runs in O(|G|n) time. For a
fixed grammar this reduction is linear time. If the data-flow
reachability problem could be solved in sub-cubic time then
the CFL-reachability problem over a fixed grammar could
also be solved in sub-cubic time.

Here we investigate the cubic bottleneck by relating it
to the class 2NPDA. 2NPDA is the class of languages (or
problems) definable by a two way nondeterministic push-
down automata. In 1968 it was shown that any problem
in the class 2NPDA can be solved in cubic time [2]. But
no sub-cubic procedure for an arbitrary 2NPDA problem is
known. Neal has shown that a certain 2NPDA problem —
ground monadic rewriting reachability (GMR-reachability)
—is 2NPDA complete [14].2 In other words, this problem is
both in the class 2NPDA and is 2NPDA-hard, i.e., if GMR-
reachability can be solved in sub-cubic time then all 2NPDA
problems can be solved in sub-cubic time. We review
Neal’s result here. We also show that data-flow reachability,
control-flow reachability, and the complement of Amadio-

2Neal uses a “monotone closure” formulation of GMR-problem. We
find the GMR formulation more natural.

HOSC'11

®

|IK LOC

131

Anaolysis

...of whole programs

Semantics ‘<

Anaolysis

Ana.lysis

Anaolysis

...of partial programs

Semantics ‘<

Anaolysis

arX|v 1103.1362

...of partial programs

Semantics ‘<

...of partial programs

Anaolysis

\\\\\\\\\\;H

f:int->1int

|

[

|

[

j —
]

:E_ :::_:_,_E_

f:int->int

\\\\\\\‘\\»

f:int->int

f — (int-»int)

f — (int-»int)
(1nt-»>1nt)(5) — 1int

v | x| (et+e)

n | int

Reduction:

(m+n) — m

(int+v) — int
(v+int) — int

Eval. Contexts: E:=[]|| (E+e) | (v+E)

e :=... | (if0Oeee)

Reduction: (if0 (O €1 62) — €1

(ifOn e; e3) — e5 where n # 0

Eval. Contexts:
E:=[]|| (BF+e) | (w+tE) | (if0 E e e)

e :=... | (if0Oeee)

Reduction: (if0 0 ey e5) — €4
(ifOn e; e3) — e5 where n # 0

(1if0 int eq e9) — €4

(if0 int e €9) — €9

Eval. Contexts:
E:=[]|| (BF+e) | (w+tE) | (if0 E e e)

Key idea:

Non-deterministic state transition system

with an infinite state space.

Non-deterministic state transition system
with a finite state space.

Scales to higher-order

behavioral contracts

f:prime?-»>1int

Scales to higher-order

behavioral contracts

\\\\\\\\\\»

f:prime?-»>1int

Scales to higher-order

behavioral contracts

prime?-»int

Scales to higher-order

behavioral contracts

prime?-»int

f — (prime?-1int)

Scales to higher-order

behavioral contracts

prime?-»int

f — (prime?-1int)
(prime?-int) (5) —* int

A Way

Forward

Scalability

Complexity
Maintenance
Verification
Expressivity
Modularity

Past

Complexity:

- [ICFP'07: PTIME of context-insensitive CFA
- SAS'08: PTIME of sub- 0OCFAs

- ICFP'08: EXPTIME of context-sensitive

- HOSC'11: Subcubic bottleneck broken

A Way Forward

Expressive, maintainable, verifiable, modular, performant:

- ICFP'10, CACM'11: Systematic approach analysis
- PLDI'10: Object-oriented, functional bridge
- SFP’'10: Pushdown machine analysis

- 2011 (in prep): Modular reduction for modular analysis

Future

Compositional

Componential
Scalability Modular

Parallel
Applied

Compositional

Composing analyses for mutual benefit

Componential analyses for separate analysis
Modular

Beyond types and contracts as specifications

Parallel

May happen in parallel for H.O. 4+ threads

Futures and imperative H.O. languages

Context-sensitive analysis on a GPU
Applied

Scripts to programs via analysis
Analysis of the Racket Machine, X10
Contract verification of .5MLOC

“®) Understand higher-order program analysis

“D Systematic approach that scales

“D Systematic approach that scales

vision

Tools for reasoning about large-scale | “{i)

software written in expressive,
modern languages.

vISION
Tools for reasoning about large-scale | “{)

software written in expressive,
modern languages.

Thank you

