
1

David Van Horn

What Program Analysis
Can and Cannot Do for You

with support from NSF, CRA, Google.

2

A Formulae-as-Types Notion of Control

Timothy G. Griffin*
Department of Computer Science

Rice University
Houston, TX 77251-1892

Abstract
The programming language Scheme contains the con-
trol construct call/cc that allows access to the cur-
rent continuation (the current control context). This,
in effect, provides Scheme with first-class labels and
jumps. We show that the well-known formulae-as-
types correspondence, which relates a constructive
proof of a formula a to a program of type (Y, can
be extended to a typed Idealized Scheme. What is
surprising about this correspondence is that it relates
classical proofs to typed programs. The existence of
computationally interesting “classical programs” -
programs of type (Y, where Q holds classically, but
not constructively - is illustrated by the definition
of conjunctive, disjunctive, and existential types us-
ing standard classical definitions. We also prove that
all evaluations of typed terms in Idealized Scheme are
finite.

1 Introduction
The formulae-as-types correspondence [10,18,8], also
referred to as the propositions-as-types correspon-
dence and as the Curry/Howard isomorphism, relates
a constructive proof of a formula Q to a program of
type cr. This correspondence has been restricted to
constructive logic because it is widely believed that,

*This work was supported in part by DARPA grant CCR-
87-20277. The author’s current address: Departamento de
Cie’ncia da Computagio, IMECC - UNICAMP, Caiza Postal
6065, 13801 Campinas SP, Brazil. email: grifIin@bruc.ansp.br

Permission to copy without fee all or part of this matertial is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that the copying is by
permission of the Association for Computing Machinery. To copy other-
wise. or to republish, requires a fee and/or specific permission.

0 1990 ACM 089791-343-4/90/0001/0047 $1.50 47

in general, classical proofs lack computational con-
tent. This paper shows, however, that the formulae-
as-types correspondence can be extended to classi-
cal logic in a computationally interesting way. It is
shown that classical proofs posses computational con-
tent when the notion of computation is extended t.o
include explicit access to the current control context.

This notion of computation is found in the pro-
gramming language Scheme [16], which contains the
control construct call/cc’ that provides access to
the current continuation (the current control con-
text). This, in effect, provides Scheme with first-
class labels and jumps, and allows for programs that
are more efficient than purely functional programs.
The formulae-as-types correspondence presented in
this paper is based on a typed version of Idealized
Scheme - a typed ISWIM containing an operator
C similar to call/cc - deveioped by Felleisen el at
[3,2,4] for reasoning about Schetne programs.

Section 2 reviews ISWIM and its extension to Ide-
alized Scheme (IS) with the control operator C of
Felleisen ei al. Roughly speaking, the evaluation of
C(M) abandons the current control context and ap-
plies M to a procedural abstraction of this context.

A typed version of Idealized Scheme is presented
in Section 3 together with a formulae-as-types corre-
spondence between typed terms and natural deduc-
tion proofs for classical implicational logic. Types
include the type I, which corresponds to the propo-
sition “false.” The type cx -+ I is abbreviated as ~a
(“not 0”). An application of C is typed as follows.
If M is of type 7-rcr, then C(M) is of type o. This
rule corresponds to the classical inferrrence rule for
elimination of double negation.

Section 4 demonstrates that there are computation-
ally interesting typed IS programs of type 0, where u
holds classically, but not constructively. It is shown
that if conjunctive, disjunctive, and existential types
are defined using standard classical definitions, then

1 call/cc abbreviates call-with-currant-continuation.

2

A Formulae-as-Types Notion of Control

Timothy G. Griffin*
Department of Computer Science

Rice University
Houston, TX 77251-1892

Abstract
The programming language Scheme contains the con-
trol construct call/cc that allows access to the cur-
rent continuation (the current control context). This,
in effect, provides Scheme with first-class labels and
jumps. We show that the well-known formulae-as-
types correspondence, which relates a constructive
proof of a formula a to a program of type (Y, can
be extended to a typed Idealized Scheme. What is
surprising about this correspondence is that it relates
classical proofs to typed programs. The existence of
computationally interesting “classical programs” -
programs of type (Y, where Q holds classically, but
not constructively - is illustrated by the definition
of conjunctive, disjunctive, and existential types us-
ing standard classical definitions. We also prove that
all evaluations of typed terms in Idealized Scheme are
finite.

1 Introduction
The formulae-as-types correspondence [10,18,8], also
referred to as the propositions-as-types correspon-
dence and as the Curry/Howard isomorphism, relates
a constructive proof of a formula Q to a program of
type cr. This correspondence has been restricted to
constructive logic because it is widely believed that,

*This work was supported in part by DARPA grant CCR-
87-20277. The author’s current address: Departamento de
Cie’ncia da Computagio, IMECC - UNICAMP, Caiza Postal
6065, 13801 Campinas SP, Brazil. email: grifIin@bruc.ansp.br

Permission to copy without fee all or part of this matertial is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that the copying is by
permission of the Association for Computing Machinery. To copy other-
wise. or to republish, requires a fee and/or specific permission.

0 1990 ACM 089791-343-4/90/0001/0047 $1.50 47

in general, classical proofs lack computational con-
tent. This paper shows, however, that the formulae-
as-types correspondence can be extended to classi-
cal logic in a computationally interesting way. It is
shown that classical proofs posses computational con-
tent when the notion of computation is extended t.o
include explicit access to the current control context.

This notion of computation is found in the pro-
gramming language Scheme [16], which contains the
control construct call/cc’ that provides access to
the current continuation (the current control con-
text). This, in effect, provides Scheme with first-
class labels and jumps, and allows for programs that
are more efficient than purely functional programs.
The formulae-as-types correspondence presented in
this paper is based on a typed version of Idealized
Scheme - a typed ISWIM containing an operator
C similar to call/cc - deveioped by Felleisen el at
[3,2,4] for reasoning about Schetne programs.

Section 2 reviews ISWIM and its extension to Ide-
alized Scheme (IS) with the control operator C of
Felleisen ei al. Roughly speaking, the evaluation of
C(M) abandons the current control context and ap-
plies M to a procedural abstraction of this context.

A typed version of Idealized Scheme is presented
in Section 3 together with a formulae-as-types corre-
spondence between typed terms and natural deduc-
tion proofs for classical implicational logic. Types
include the type I, which corresponds to the propo-
sition “false.” The type cx -+ I is abbreviated as ~a
(“not 0”). An application of C is typed as follows.
If M is of type 7-rcr, then C(M) is of type o. This
rule corresponds to the classical inferrrence rule for
elimination of double negation.

Section 4 demonstrates that there are computation-
ally interesting typed IS programs of type 0, where u
holds classically, but not constructively. It is shown
that if conjunctive, disjunctive, and existential types
are defined using standard classical definitions, then

1 call/cc abbreviates call-with-currant-continuation.

2

A Formulae-as-Types Notion of Control

Timothy G. Griffin*
Department of Computer Science

Rice University
Houston, TX 77251-1892

Abstract
The programming language Scheme contains the con-
trol construct call/cc that allows access to the cur-
rent continuation (the current control context). This,
in effect, provides Scheme with first-class labels and
jumps. We show that the well-known formulae-as-
types correspondence, which relates a constructive
proof of a formula a to a program of type (Y, can
be extended to a typed Idealized Scheme. What is
surprising about this correspondence is that it relates
classical proofs to typed programs. The existence of
computationally interesting “classical programs” -
programs of type (Y, where Q holds classically, but
not constructively - is illustrated by the definition
of conjunctive, disjunctive, and existential types us-
ing standard classical definitions. We also prove that
all evaluations of typed terms in Idealized Scheme are
finite.

1 Introduction
The formulae-as-types correspondence [10,18,8], also
referred to as the propositions-as-types correspon-
dence and as the Curry/Howard isomorphism, relates
a constructive proof of a formula Q to a program of
type cr. This correspondence has been restricted to
constructive logic because it is widely believed that,

*This work was supported in part by DARPA grant CCR-
87-20277. The author’s current address: Departamento de
Cie’ncia da Computagio, IMECC - UNICAMP, Caiza Postal
6065, 13801 Campinas SP, Brazil. email: grifIin@bruc.ansp.br

Permission to copy without fee all or part of this matertial is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that the copying is by
permission of the Association for Computing Machinery. To copy other-
wise. or to republish, requires a fee and/or specific permission.

0 1990 ACM 089791-343-4/90/0001/0047 $1.50 47

in general, classical proofs lack computational con-
tent. This paper shows, however, that the formulae-
as-types correspondence can be extended to classi-
cal logic in a computationally interesting way. It is
shown that classical proofs posses computational con-
tent when the notion of computation is extended t.o
include explicit access to the current control context.

This notion of computation is found in the pro-
gramming language Scheme [16], which contains the
control construct call/cc’ that provides access to
the current continuation (the current control con-
text). This, in effect, provides Scheme with first-
class labels and jumps, and allows for programs that
are more efficient than purely functional programs.
The formulae-as-types correspondence presented in
this paper is based on a typed version of Idealized
Scheme - a typed ISWIM containing an operator
C similar to call/cc - deveioped by Felleisen el at
[3,2,4] for reasoning about Schetne programs.

Section 2 reviews ISWIM and its extension to Ide-
alized Scheme (IS) with the control operator C of
Felleisen ei al. Roughly speaking, the evaluation of
C(M) abandons the current control context and ap-
plies M to a procedural abstraction of this context.

A typed version of Idealized Scheme is presented
in Section 3 together with a formulae-as-types corre-
spondence between typed terms and natural deduc-
tion proofs for classical implicational logic. Types
include the type I, which corresponds to the propo-
sition “false.” The type cx -+ I is abbreviated as ~a
(“not 0”). An application of C is typed as follows.
If M is of type 7-rcr, then C(M) is of type o. This
rule corresponds to the classical inferrrence rule for
elimination of double negation.

Section 4 demonstrates that there are computation-
ally interesting typed IS programs of type 0, where u
holds classically, but not constructively. It is shown
that if conjunctive, disjunctive, and existential types
are defined using standard classical definitions, then

1 call/cc abbreviates call-with-currant-continuation.

2

3

David Van Horn

What Program Analysis
Can and Cannot Do for You

with support from NSF, CRA, Google.

4

Higher-order
Program Analysis
is Dead.
(I should know, I killed it.)

5

it’s hard to write
it’s slow
it’s imprecise
it’s awful

6

Higher-order
Program Analysis
is Alive and Well.
(I have a way forward.)

7

it’s easy to write
it’s fast
it’s precise
it’s great

8

So what?

9

Modern software is
higher-order.

10

We need reasonable
software.

11

So you should care.

12

Modern software is
higher-order.

12

Q: What are higher-order languages?

Modern software is
higher-order.

12

Q: What are higher-order languages?

A: Languages in which computations are values.

Modern software is
higher-order.

13

Python
from math import sin

e = 0.0001

(ℝ ! ℝ) ! (ℝ ! ℝ)
def deriv(f):
 def fp(x):
 return ((f(x+e) - f(x-e)) / (2*e));
 return fp

print deriv(sin)(4)

deriv.py file:///Users/dvanhorn/Documents/cv/jobs/rice/talk/progs/deriv.p...

1 of 1 2/26/11 4:08 PM

Modern software is
higher-order.

14

interface Func<X,Y> {
 Y apply(X x);
}

class Calculus {

 Double ε = 0.0001;

 // (ℝ ! ℝ) ! (ℝ ! ℝ)
 public Func<Double, Double>
 deriv(final Func<Double, Double> f) {
 return new Func<Double,Double>() {
 public Double apply(Double x) {

 return ((f.apply(x+ε) - f.apply(x-ε)) / (2*ε));
 }
 };
 }
}

class Sin implements Func<Double, Double> {
 public Double apply(Double x) {
 return Math.sin(x);
 }
}

class Main {
 public static void main(String[] args) {
 System.out.println(new Calculus().deriv(new Sin()).apply(4d));
 }
}

deriv.java file:///Users/dvanhorn/Documents/cv/jobs/rice/talk/progs/deriv.j...

1 of 1 2/26/11 2:53 PM

JavaModern software is
higher-order.

15

using System;
public class Calculus {

 static double ε = 0.0001;

 // (ℝ ! ℝ) ! (ℝ ! ℝ)
 static Func<double, double>
 deriv(Func<double, double> f) {
 return (x)

 => (f(x+ε) - f(x-ε)) / (2*ε);
 }

 static public void Main() {
 Console.WriteLine(deriv(Math.Sin)(4));
 }
}

deriv.cs file:///Users/dvanhorn/Documents/cv/jobs/rice/talk/progs/deriv.c...

1 of 1 2/26/11 2:20 PM

C#Modern software is
higher-order.

16

JavaScript

var ε = 0.001;

// (ℝ ! ℝ) ! (ℝ ! ℝ)
function deriv(f) {
 return function (x) {

 return (f(x+ε) - f(x-ε)) / (2*ε);
 };
}

deriv(Math.sin)(4);

deriv.js file:///Users/dvanhorn/Documents/cv/jobs/rice/talk/progs/deriv.js...

1 of 1 2/26/11 2:47 PM

Modern software is
higher-order.

17

X10class Calculus {
 val ε = 0.001;

 // (ℝ ! ℝ) ! (ℝ ! ℝ)
 def deriv(f: (Double) => Double) {
 val fp = (x: Double) =>
 (f(x+ε) - f(x-ε)) / (2*ε);
 return fp;
 }
}

public class Deriv {
 public static def main(args: Array[String](1)) {
 val cos = new Calculus().deriv((x: Double) => Math.sin(x));
 x10.io.Console.OUT.println(cos(4.0));
 }
}

Deriv.x10 file:///Users/dvanhorn/Documents/cv/jobs/rice/talk/progs/Deriv....

1 of 1 2/27/11 11:45 AM

Modern software is
higher-order.

18

An Introduction To Programming With X10

DRAFT
Jonathan Brezin, brezin@us.ibm.com
Stephen J. Fink, sjfink@us.ibm.com

with
Bard Bloom, bardb@us.ibm.com

Cal Swart, cals@us.ibm.com

Please send comments to brezin@us.ibm.com.

December 2, 2010

This is a draft of the Part I of the Guide. This draft focusses on core features of the X10
language and programming model. This Guide is a work-in-progress. We anticipate
that a complete draft of Part I and a substantial part of Part II will be available in early
first quarter 2011.

i

62 CHAPTER 3. A POTPOURRI OF TYPES

3.5.3 Creating Functions Dynamically

We have already seen in 1.2.3 that when you build a function at run-time, you can take

advantage of at least some of the identifiers visible to you in implementing the body of

the function. Here’s the code we had there:

1 val r = new Random();
2 val rand = () => r.nextDouble();
3 val inCircle = countPoints(N, rand);

You’ll recall that this code sat inside a loop, so every time through the loop, executing

line 2 gave us a new value of r to use with which to build a new function to assign to

rand.

The question is: what identifiers from the surrounding context are allowed in the body

of a function literal (or as it is more usually called, a “closure”) like rand?

The bad news is that you cannot use any of the method’s local identifiers that are

declared to be vars. The good news is that anything else goes. Any identifier that is

a val or is static can be used. If the closure is being declared inside an instance
method, then any instance member this.x (field or method) of the class may appear

in the literal’s body. This is okay because, even if x is a field that is a var, what is

being captured by the closure is the value of this, and this itself is a local val in the

instance method: you cannot assign a value to this itself in the body of a method, you

can only assign to the fields this references.

1 public class IntRange {
2 val low: Int;
3 var high: Int;
4 public def this(low: Int, high: Int) {
5 this.low = low; this.high = high;
6 }
7 public def includes(n:Int) = low <= n && n <= high;
8 public static def isDigitFcn() {
9 val digit = new IntRange(0,9);
10 return (n: Int) => digit.includes(n);
11 }
12 public def inMeTester() {
13 return (n: Int) => low <= n && n <= high;
14 }
15 }

lines 2-3: Here we’ve got two instance members that define the range. We made one

of them a var to make a point later about accessing vars in defining function

literals.

18

An Introduction To Programming With X10

DRAFT
Jonathan Brezin, brezin@us.ibm.com
Stephen J. Fink, sjfink@us.ibm.com

with
Bard Bloom, bardb@us.ibm.com

Cal Swart, cals@us.ibm.com

Please send comments to brezin@us.ibm.com.

December 2, 2010

This is a draft of the Part I of the Guide. This draft focusses on core features of the X10
language and programming model. This Guide is a work-in-progress. We anticipate
that a complete draft of Part I and a substantial part of Part II will be available in early
first quarter 2011.

i

62 CHAPTER 3. A POTPOURRI OF TYPES

3.5.3 Creating Functions Dynamically

We have already seen in 1.2.3 that when you build a function at run-time, you can take

advantage of at least some of the identifiers visible to you in implementing the body of

the function. Here’s the code we had there:

1 val r = new Random();
2 val rand = () => r.nextDouble();
3 val inCircle = countPoints(N, rand);

You’ll recall that this code sat inside a loop, so every time through the loop, executing

line 2 gave us a new value of r to use with which to build a new function to assign to

rand.

The question is: what identifiers from the surrounding context are allowed in the body

of a function literal (or as it is more usually called, a “closure”) like rand?

The bad news is that you cannot use any of the method’s local identifiers that are

declared to be vars. The good news is that anything else goes. Any identifier that is

a val or is static can be used. If the closure is being declared inside an instance
method, then any instance member this.x (field or method) of the class may appear

in the literal’s body. This is okay because, even if x is a field that is a var, what is

being captured by the closure is the value of this, and this itself is a local val in the

instance method: you cannot assign a value to this itself in the body of a method, you

can only assign to the fields this references.

1 public class IntRange {
2 val low: Int;
3 var high: Int;
4 public def this(low: Int, high: Int) {
5 this.low = low; this.high = high;
6 }
7 public def includes(n:Int) = low <= n && n <= high;
8 public static def isDigitFcn() {
9 val digit = new IntRange(0,9);
10 return (n: Int) => digit.includes(n);
11 }
12 public def inMeTester() {
13 return (n: Int) => low <= n && n <= high;
14 }
15 }

lines 2-3: Here we’ve got two instance members that define the range. We made one

of them a var to make a point later about accessing vars in defining function

literals.

☚

19

19

☚

Modern software is
higher-order.

20

☚
☚

Modern software is
higher-order.

21

Modern software is
higher-order.

21

☚ ☛
☛

☚

☚

22

...and many more

C++ Java

OCaml

JavaScript

SchemePython

C# X10 / Habanero

Modern software is
higher-order.

Higher order

22

...and many more

C++ Java

OCaml

JavaScript

SchemePython

C# X10 / Habanero

Modern software is
higher-order.

Higher order

23

...and many more

C++ (360) Java (201,211,215,310,402)

OCaml (311,411)

JavaScript (327)

Scheme (211,311)Python (140,182,327)

C# (160,402,410,460) X10 / Habanero (322)

Modern software is
higher-order.

24

We need reasonable
software.

24

We need reasonable
software.
Q: What does it mean to reason about software?

24

We need reasonable
software.
Q: What does it mean to reason about software?

A: It means predicting the future.

25

We need reasonable
software.

25

We need reasonable
software.

26

class Foo {

 public void f(XYZ x) {
 x.m();
 }

}

interface XYZ { void m(); }

class X implements XYZ {
 public void m() { /*...*/ }
}

class Main {
 public static void main(String[] args) {
 new Foo().f(new X());
 }
}

reason.java file:///Users/dvanhorn/Documents/cv/jobs/rice/talk/progs/reason...

1 of 1 3/6/11 9:18 PM

Optimizing Java compiler:
 prove x is always an X, inline method definition.

We need reasonable
software.

27

Puzzled ML programmer:
 prove x is always a non-empty list: no problem.

(define first(x) foo)

first.scm file:///Users/dvanhorn/Documents/cv/jobs/rice/talk/progs/first.s...

1 of 1 3/6/11 11:00 PM

We need reasonable
software.

28

Puzzled ML programmer:
 prove x is may be the empty list: fix.

(define first(x) foo)

first.scm file:///Users/dvanhorn/Documents/cv/jobs/rice/talk/progs/first.s...

1 of 1 3/6/11 11:00 PM

We need reasonable
software.

29

Security analyzer:
 prove enable(R) is on the stack.

method checkPrivilege(R);

stack.java file:///Users/dvanhorn/Documents/cv/jobs/rice/talk/progs/stack....

1 of 1 3/6/11 11:17 PM

We need reasonable
software.

...and many more

Optimizing compilers Parallelizing compilers Software construction

Static debugging

Program understandingSecurity analysis

Termination analysis Model checking

We need reasonable
software.

Program analysis
...and many more

Optimizing compilers Parallelizing compilers Software construction

Static debugging

Program understandingSecurity analysis

Termination analysis Model checking

We need reasonable
software.

31

Scalability{Complexity
Maintenance
Verification
Expressivity
Modularity

Higher-order
program analysis

32

Q: What is program analysis?

32

Q: What is program analysis?
A: Prediction of which values show up
 at which program sites.

33

using System;
public class Calculus {

 static double ε = 0.0001;

 // (ℝ ! ℝ) ! (ℝ ! ℝ)
 static Func<double, double>
 deriv(Func<double, double> f) {
 return (x)

 => (f(x+ε) - f(x-ε)) / (2*ε);
 }

 static public void Main() {
 Console.WriteLine(deriv(Math.Sin)(4));
 }
}

deriv.cs file:///Users/dvanhorn/Documents/cv/jobs/rice/talk/progs/deriv.c...

1 of 1 2/26/11 2:20 PM

Where does data go to?

☚

C#

34

using System;
public class Calculus {

 static double ε = 0.0001;

 // (ℝ ! ℝ) ! (ℝ ! ℝ)
 static Func<double, double>
 deriv(Func<double, double> f) {
 return (x)

 => (f(x+ε) - f(x-ε)) / (2*ε);
 }

 static public void Main() {
 Console.WriteLine(deriv(Math.Sin)(4));
 }
}

deriv.cs file:///Users/dvanhorn/Documents/cv/jobs/rice/talk/progs/deriv.c...

1 of 1 2/26/11 2:20 PM

☚
Where does control go to?

C#

35

using System;
public class Calculus {

 static double ε = 0.0001;

 // (ℝ ! ℝ) ! (ℝ ! ℝ)
 static Func<double, double>
 deriv(Func<double, double> f) {
 return (x)

 => (f(x+ε) - f(x-ε)) / (2*ε);
 }

 static public void Main() {
 Console.WriteLine(deriv(Math.Sin)(4));
 }
}

deriv.cs file:///Users/dvanhorn/Documents/cv/jobs/rice/talk/progs/deriv.c...

1 of 1 2/26/11 2:20 PM

Who calls deriv?

C#

☚

36

☚
To do data-flow analysis,

you need control-flow analysis☚To do control-flow analysis,
you need data-flow analysis

37

Computation is Code plus Data

Why so tangled up?

Values include Computations

38

Why so tangled up?

Computation is Code plus Data
Values include Computations

38

Why so tangled up?

Computable predictions
about run-time behavior

Computation is Code plus Data
Values include Computations

38

Why so tangled up?

Computable predictions
about run-time behavior

Computation is Code plus Data
Values include Computations

So what’s their complexity?

39

Existing analyses
and their complexity

40

function app(f,x) { return f(x); };

app(sqr,4); app(dbl,5);

0CFA

40

function app(f,x) { return f(x); };

app(sqr,4); app(dbl,5);

0CFA

40

function app(f,x) { return f(x); };

app(sqr,4); app(dbl,5);

0CFA

40

function app(f,x) { return f(x); };

app(sqr,4); app(dbl,5);

{sqr}

0CFA

40

function app(f,x) { return f(x); };

app(sqr,4); app(dbl,5);

{4}{sqr}

0CFA

40

function app(f,x) { return f(x); };

app(sqr,4); app(dbl,5);

{4}{sqr}

0CFA

40

function app(f,x) { return f(x); };

app(sqr,4); app(dbl,5);

{4}{sqr}

{sqr(4)}

0CFA

41

function app(f,x) { return f(x); };

app(sqr,4); app(dbl,5);

{4}{sqr}

{sqr(4)}

0CFA

41

function app(f,x) { return f(x); };

app(sqr,4); app(dbl,5);

{4}{sqr}

{sqr(4)}

0CFA

41

function app(f,x) { return f(x); };

app(sqr,4); app(dbl,5);

{sqr, dbl} {4}

{sqr(4)}

0CFA

41

function app(f,x) { return f(x); };

app(sqr,4); app(dbl,5);

{4,5}{sqr, dbl}

{sqr(4)}

0CFA

41

function app(f,x) { return f(x); };

app(sqr,4); app(dbl,5);

{4,5}{sqr, dbl}

{sqr(4)}

0CFA

41

function app(f,x) { return f(x); };

app(sqr,4); app(dbl,5);

{4,5}{sqr, dbl}

{sqr(4), sqr(5),
 dbl(4), dbl(5)}

0CFA

42

function app(f,x) { return f(x); };

app(sqr,4); app(dbl,5);

{4,5}{sqr, dbl}

{sqr(4), sqr(5),
 dbl(4), dbl(5)}

0CFA

42

function app(f,x) { return f(x); };

app(sqr,4); app(dbl,5);

{4,5}{sqr, dbl}

{sqr(4), sqr(5),
 dbl(4), dbl(5)}

Theorem: 0CFA is complete for PTIME.

0CFA ICFP’07

43

0CFA

Pr
ec

isi
on

43

0CFA

Pr
ec

isi
on

Simple closure

44

function app(f,x) { return f(x); };

app(sqr,4); app(dbl,5);

{4,5}{sqr, dbl}

{sqr(4), sqr(5),
 dbl(4), dbl(5)}

Simple closure

45

function app(f,x) { return f(x); };

app(sqr,4); app(dbl,5);

{4,5}{sqr, dbl}

{sqr(4), sqr(5),
 dbl(4), dbl(5)}

Simple closure

45

function app(f,x) { return f(x); };

app(sqr,4); app(dbl,5);

{4,5}{sqr, dbl}

{sqr(4), sqr(5),
 dbl(4), dbl(5)}

Simple closure

45

function app(f,x) { return f(x); };

app(sqr,4); app(dbl,5);

{4,5}{sqr, dbl}

{sqr(4), sqr(5),
 dbl(4), dbl(5)}

Simple closure

Theorem: Simple closure is complete for PTIME.

SAS’08

46

0CFA

Pr
ec

isi
on

Simple closure

46

0CFA

Pr
ec

isi
on

Simple closure
Sub0CFA

{sqr}

47

function app(f,x) { return f(x); };

app(sqr,4); app(dbl,5);

{4}

{sqr(4)}

Sub0CFA

{sqr}

47

function app(f,x) { return f(x); };

app(sqr,4); app(dbl,5);

{4}

{sqr(4)}

Sub0CFA

47

function app(f,x) { return f(x); };

app(sqr,4); app(dbl,5);

? {4}

{sqr(4)}

Sub0CFA

47

function app(f,x) { return f(x); };

app(sqr,4); app(dbl,5);

??

{sqr(4)}

Sub0CFA

47

function app(f,x) { return f(x); };

app(sqr,4); app(dbl,5);

??

{sqr(4)}

Sub0CFA

47

function app(f,x) { return f(x); };

app(sqr,4); app(dbl,5);

??

?

Sub0CFA

48

function app(f,x) { return f(x); };

app(sqr,4); app(dbl,5);

??

?

Sub0CFA

48

function app(f,x) { return f(x); };

app(sqr,4); app(dbl,5);

??

?

Sub0CFA

Theorem: Sub0CFA is complete for PTIME.

SAS’08

49

0CFA

Pr
ec

isi
on

Simple closure
Sub0CFA

49

0CFA

Pr
ec

isi
on

Simple closure
Sub0CFA

...

50

function app(f,x) { return f(x); };

app(sqr,4); app(dbl,5);

??

?

Whatever

50

function app(f,x) { return f(x); };

app(sqr,4); app(dbl,5);

??

?

Whatever

Theorem: They’re all complete for PTIME.

SAS’08

51

0CFA

Pr
ec

isi
on

Simple closure
Sub0CFA

...

51

0CFA

Pr
ec

isi
on

Simple closure
Sub0CFA

...
1CFA

52

function app(f,x) { return f(x); };

app(sqr,4); app(dbl,5);

{4}{sqr}

{sqr(4)}

1CFA

52

function app(f,x) { return f(x); };

app(sqr,4); app(dbl,5);

{4}{sqr}

{sqr(4)}

1CFA

52

function app(f,x) { return f(x); };

app(sqr,4); app(dbl,5);

{4}{sqr}

{sqr(4)}

1CFA

{dbl} {5}

52

function app(f,x) { return f(x); };

app(sqr,4); app(dbl,5);

{4}{sqr}

{sqr(4)}

1CFA

{dbl} {5}

{dbl(5)}

53

function app(f,x) { return f(x); };

app(sqr,4); app(dbl,5);

{4}{sqr}

{sqr(4)}

1CFA

{dbl} {5}

{dbl(5)}

53

function app(f,x) { return f(x); };

app(sqr,4); app(dbl,5);

{4}{sqr}

{sqr(4)}

1CFA

{dbl} {5}

{dbl(5)}

Theorem: 1CFA is complete for EXPTIME.

ICFP’08

54

0CFA

Pr
ec

isi
on

Simple closure
Sub0CFA

...
1CFA

54

0CFA

Pr
ec

isi
on

Simple closure
Sub0CFA

...
1CFA

kCFA

...

55

function app(f,x) { return f(x); };

app(sqr,4); app(dbl,5);

{4}{sqr}

{sqr(4)}

kCFA

{dbl} {5}

{dbl(5)}

55

function app(f,x) { return f(x); };

app(sqr,4); app(dbl,5);

{4}{sqr}

{sqr(4)}

kCFA

{dbl} {5}

{dbl(5)}

Theorem: kCFA is complete for EXPTIME.

ICFP’08

56

0CFA

Pr
ec

isi
on

1CFA

kCFA

Sub0CFA
Simple closure

...
...

56

0CFA

Pr
ec

isi
on

1CFA

kCFA

Sub0CFA
Simple closure

...
...

56

0CFA

Pr
ec

isi
on

1CFA

kCFA

Sub0CFA
Simple closure

...
...

EXPTIME
PTIME

57

Rigor (mortis) of
existing analyses

58

59

the Semantic Gap

59

the Semantic Gap

59

the Semantic Gap

59

the Semantic Gap

59

the Semantic Gap

59

the Semantic Gap

59

the Semantic Gap

59

the Semantic Gap

59

the Semantic Gap

Blame in a language with behavioral contracts

60

My challenge to
ICFP:
Develop a program analysis for reasoning about:

Space-consumption in a lazy language
State and control in a language with effects

Security in a language with stack inspection

Safe parallelism in a language with futures

Blame in a language with behavioral contracts

60

My challenge to
ICFP:
Develop a program analysis for reasoning about:

Space-consumption in a lazy language
State and control in a language with effects

Security in a language with stack inspection

Safe parallelism in a language with futures

61

Modularity of
existing analyses

62

Three approaches:

62

Three approaches:
Do nothing (analyze whole programs only)

62

Three approaches:
Do nothing (analyze whole programs only)

Hemorrhage precision (black hole approach)

62

Three approaches:
Do nothing (analyze whole programs only)

Hemorrhage precision (black hole approach)

Do something really complicated

63

Modular Set-Based Analysis from Contracts

Philippe Meunier
College of Computer and Information
Science, Northeastern University

meunier@ccs.neu.edu

Robert Bruce Findler
Department of Computer Science,

University of Chicago
robby@cs.uchicago.edu

Matthias Felleisen
College of Computer and Information
Science, Northeastern University

matthias@ccs.neu.edu

Abstract
In PLT Scheme, programs consist of modules with contracts. The
latter describe the inputs and outputs of functions and objects
via predicates. A run-time system enforces these predicates; if
a predicate fails, the enforcer raises an exception that blames a
specific module with an explanation of the fault.
In this paper, we show how to use such module contracts to turn

set-based analysis into a fully modular parameterized analysis. Us-
ing this analysis, a static debugger can indicate for any given con-
tract check whether the corresponding predicate is always satisfied,
partially satisfied, or (potentially) completely violated. The static
debugger can also predict the source of potential errors, i.e., it is
sound with respect to the blame assignment of the contract system.

Categories and Subject Descriptors F.3.2 [Semantics of Pro-
gramming Languages]: Program analysis; D.2.4 [Software / Pro-
gram Verification]: Programming by contract

General Terms Languages, Reliability, Verification.

Keywords Static Debugging, Set-based Analysis, Modular Anal-
ysis, Runtime Contracts.

1. Modules, Contracts, and Static Debugging
A static debugger helps programmers find errors via program anal-
yses. It uses the invariants of the programming language to analyze
the program and determines whether the program may violate one
of them during execution. For example, a static debugger can find
expressions that may dereference null pointers. Some static debug-
gers use lightweight analyses, e.g., Flanagan et al.’s MrSpidey [11]
relies on a variant of set-based analysis [10, 16, 21]; others use a
deep abstract interpretation, e.g., Bourdoncle’s Syntox [4]; and yet
others employ theorem proving, e.g., Detlefs et al.’s ESC [7].
Experience with static debuggers shows that they work well for

reasonably small programs. Using MrSpidey, we have routinely
debugged or re-engineered programs of 2,000 to 5,000 lines of code
in PLT Scheme. Flanagan has successfully analyzed the core of
the interpreter, dubbed MrEd [13], a 40,000 line program. Existing
static debuggers, however, suffer from a monolithic approach to
program analysis. Because their analyses require the availability
of the entire program, programmers cannot analyze their programs
until they have everyone else’s modules.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’06 January 11–13, 2006, Charleston, South Carolina, USA.
Copyright c© 2006 ACM 1-59593-027-2/06/0001. . . $5.00.

Over the past few years, we have added a first-order module
system to PLT Scheme [12] and have equipped the module system
with a contract system [8]. A contract is roughly a predicate on
the inputs and outputs of (exported) functions, including object
methods and higher-order functions. The contract system monitors
the contracts during program execution. If a module violates a
contract, the contract system pinpoints the guilty party and issues
an explanatory message.
This paper makes five contributions to static debugging and

software contracts. First, it explains how to construct a modular
static debugger for programs with contracts, using those contracts
in a dual role: one as a source of abstract values and one as a
sink for abstract values. Second, we prove that our contract-based,
whole-program analysis computes its results in a modular manner.
That is, our contract-aware set-based analysis produces the same
predictions for a given point in the program regardless of whether
it analyzes the whole program or just the surrounding module.
Third, for any given contract check, the system indicates whether
the corresponding predicate is always satisfied, partially satisfied,
or completely violated. Fourth, the static debugger can also predict
the source of potential errors, i.e., it is sound with respect to the
blame assignment of the contract system. Fifth, the analysis is
parameterized over both a predicate approximation relation and a
predicate domain function.

2. Overview
The paper presents a model of a modular static debugger. The
model consists of two parts: a runtime contract system and a set-
based analysis for modules with contracts. A correctness theorem
ties the two parts together. Figure 1 provides an overview of these
three pieces in graphical form. The vertical column on the left rep-
resents the runtime contract system. A contract compiler translates
a collection of modules and a main expression into a suitably an-
notated form. During execution, which we naturally model via a
reduction system, the contract system keeps track of the contract
obligations; if something goes wrong it blames a specific module.
The first horizontal row of Figure 1 depicts the analysis process,

which consists of three stages. First, it partitions the program into
module-like pieces by lifting expressions with contract annotations
out of the main program. Second, the resulting collection of pro-
gram pieces is analyzed with a parameterized set-based analysis.
This step yields both sets of abstract values and sets of potential er-
rors, including explanations that blame the guilty party; we call the
latter blame sets. Third, the former are summarized as set-of-values
descriptions, dubbed types.
The rest of the grid in Figure 1 explains our proof technique for

the correctness theorem. Since each reduction step creates a com-
plete program, the correctness proof can proceed via subject reduc-
tion. We re-apply the analysis after each reduction step. The proof
then shows that the reductions preserve the types and the blame

218

63

Modular Set-Based Analysis from Contracts

Philippe Meunier
College of Computer and Information
Science, Northeastern University

meunier@ccs.neu.edu

Robert Bruce Findler
Department of Computer Science,

University of Chicago
robby@cs.uchicago.edu

Matthias Felleisen
College of Computer and Information
Science, Northeastern University

matthias@ccs.neu.edu

Abstract
In PLT Scheme, programs consist of modules with contracts. The
latter describe the inputs and outputs of functions and objects
via predicates. A run-time system enforces these predicates; if
a predicate fails, the enforcer raises an exception that blames a
specific module with an explanation of the fault.
In this paper, we show how to use such module contracts to turn

set-based analysis into a fully modular parameterized analysis. Us-
ing this analysis, a static debugger can indicate for any given con-
tract check whether the corresponding predicate is always satisfied,
partially satisfied, or (potentially) completely violated. The static
debugger can also predict the source of potential errors, i.e., it is
sound with respect to the blame assignment of the contract system.

Categories and Subject Descriptors F.3.2 [Semantics of Pro-
gramming Languages]: Program analysis; D.2.4 [Software / Pro-
gram Verification]: Programming by contract

General Terms Languages, Reliability, Verification.

Keywords Static Debugging, Set-based Analysis, Modular Anal-
ysis, Runtime Contracts.

1. Modules, Contracts, and Static Debugging
A static debugger helps programmers find errors via program anal-
yses. It uses the invariants of the programming language to analyze
the program and determines whether the program may violate one
of them during execution. For example, a static debugger can find
expressions that may dereference null pointers. Some static debug-
gers use lightweight analyses, e.g., Flanagan et al.’s MrSpidey [11]
relies on a variant of set-based analysis [10, 16, 21]; others use a
deep abstract interpretation, e.g., Bourdoncle’s Syntox [4]; and yet
others employ theorem proving, e.g., Detlefs et al.’s ESC [7].
Experience with static debuggers shows that they work well for

reasonably small programs. Using MrSpidey, we have routinely
debugged or re-engineered programs of 2,000 to 5,000 lines of code
in PLT Scheme. Flanagan has successfully analyzed the core of
the interpreter, dubbed MrEd [13], a 40,000 line program. Existing
static debuggers, however, suffer from a monolithic approach to
program analysis. Because their analyses require the availability
of the entire program, programmers cannot analyze their programs
until they have everyone else’s modules.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’06 January 11–13, 2006, Charleston, South Carolina, USA.
Copyright c© 2006 ACM 1-59593-027-2/06/0001. . . $5.00.

Over the past few years, we have added a first-order module
system to PLT Scheme [12] and have equipped the module system
with a contract system [8]. A contract is roughly a predicate on
the inputs and outputs of (exported) functions, including object
methods and higher-order functions. The contract system monitors
the contracts during program execution. If a module violates a
contract, the contract system pinpoints the guilty party and issues
an explanatory message.
This paper makes five contributions to static debugging and

software contracts. First, it explains how to construct a modular
static debugger for programs with contracts, using those contracts
in a dual role: one as a source of abstract values and one as a
sink for abstract values. Second, we prove that our contract-based,
whole-program analysis computes its results in a modular manner.
That is, our contract-aware set-based analysis produces the same
predictions for a given point in the program regardless of whether
it analyzes the whole program or just the surrounding module.
Third, for any given contract check, the system indicates whether
the corresponding predicate is always satisfied, partially satisfied,
or completely violated. Fourth, the static debugger can also predict
the source of potential errors, i.e., it is sound with respect to the
blame assignment of the contract system. Fifth, the analysis is
parameterized over both a predicate approximation relation and a
predicate domain function.

2. Overview
The paper presents a model of a modular static debugger. The
model consists of two parts: a runtime contract system and a set-
based analysis for modules with contracts. A correctness theorem
ties the two parts together. Figure 1 provides an overview of these
three pieces in graphical form. The vertical column on the left rep-
resents the runtime contract system. A contract compiler translates
a collection of modules and a main expression into a suitably an-
notated form. During execution, which we naturally model via a
reduction system, the contract system keeps track of the contract
obligations; if something goes wrong it blames a specific module.
The first horizontal row of Figure 1 depicts the analysis process,

which consists of three stages. First, it partitions the program into
module-like pieces by lifting expressions with contract annotations
out of the main program. Second, the resulting collection of pro-
gram pieces is analyzed with a parameterized set-based analysis.
This step yields both sets of abstract values and sets of potential er-
rors, including explanations that blame the guilty party; we call the
latter blame sets. Third, the former are summarized as set-of-values
descriptions, dubbed types.
The rest of the grid in Figure 1 explains our proof technique for

the correctness theorem. Since each reduction step creates a com-
plete program, the correctness proof can proceed via subject reduc-
tion. We re-apply the analysis after each reduction step. The proof
then shows that the reductions preserve the types and the blame

218

Semantics-based analysis matters.

Source Sink int�
+
5 �

−
5

h �. . . e5 int
�+5 �−5
h ��

+
6 �−6

h any�
+
5 �−5

h �. . . e5 any
�+5 �−5
h ��

+
6 �−6

h

n�ne1...
{�n}⊆ϕ(�−5)

e1 . . . �� e5
⇒ {�h,O�}⊆ψ(�−5)

{�n}⊆ϕ(�−5)

e1 . . . �� e5
⇒ {�h,O�}⊆ψ(�−5)

int�
+
1 �−1

f {�+1 }⊆ϕ(�−5) ⇒ {�h,O�}⊆ψ(�−5) {�+1 }⊆ϕ(�−5) ⇒ {�h,O�}⊆ψ(�−5)

�. . . e1 int
�+1 �−1
f ��

+
2 �−2

f

{�+1 }⊆ϕ(�−5)

e1 �� e5
⇒ {�h,O�}⊆ψ(�−5)

{�+1 }⊆ϕ(�−5)

e1 �� e5
⇒ {�h,O�}⊆ψ(�−5)

any�
+
1 �−1

f

{�+1 }⊆ϕ(�−5) ⇒ {�h,R�}⊆ψ(�−5)

{�+1 }⊆ϕ(�−5) ⇒ {�h,O�}⊆ψ(�−5)

�. . . e1 any
�+1 �−1
f ��

+
2 �−2

f

{�+1 }⊆ϕ(�−5)

e1 �� e5
⇒ {�h,O�}⊆ψ(�−5)

(λxβ .e�)�λe1... {�λ}⊆ϕ(�−5) ⇒ {�h,R�}⊆ψ(�−5)

{�λ}⊆ϕ(�−5) ⇒ ϕ(�+5)⊆ϕ(β)

{�λ}⊆ϕ(�−5) ⇒ ϕ(�)⊆ϕ(�−5)

{�λ}⊆ϕ(�−5)

e1 . . . �� e5
⇒ {�h,O�}⊆ψ(�−5)

(c
�+1 �−1
g →c

�+2 �−2
f)

�+3 �−3
f

{�+3 }⊆ϕ(�−5) ⇒ {�h,R�}⊆ψ(�−5)

{�+3 }⊆ϕ(�−5) ⇒ {�h,O�}⊆ψ(�−5)

{�+3 }⊆ϕ(�−5) ⇒ ϕ(�+5)⊆ϕ(�−1)

{�+3 }⊆ϕ(�−5) ⇒ ϕ(�+2)⊆ϕ(�−5)

�. . . e3 (c
�+1 �−1
g →c

�+2 �
−
2

f)
�+3 �−3
f ��

+
4 �−4

f {�+3 }⊆ϕ(�−5)

e3 �� e5
⇒ {�h,O�}⊆ψ(�−5)

Source Sink (e�5 e�6)�a (c
�+7 �−7
i →c

�+8 �
−
8

h)
�+5 �−5
h �. . . e5 (c

�+7 �−7
i →c

�+8 �−8
h)

�+5 �−5
h ��

+
6 �−6

h

n�ne1... {�n}⊆ϕ(�5) ⇒ {�λ,R�}⊆ψ(�a) {�n}⊆ϕ(�−5) ⇒ {�h,R�}⊆ψ(�−5)

int�
+
1 �−1

f

{�+1 }⊆ϕ(�5) ⇒ {�λ,R�}⊆ψ(�a) {�+1 }⊆ϕ(�−5) ⇒ {�h,R�}⊆ψ(�−5)
�. . . e1 int

�+1 �
−
1

f ��
+
2 �−2

f

any�
+
1 �−1

f

�. . . e1 any
�+1 �−1
f ��

+
2 �−2

f

(λxβ .e�)�λe1...
{�λ}⊆ϕ(�5) ⇒ ϕ(�6)⊆ϕ(β)

{�λ}⊆ϕ(�5) ⇒ ϕ(�)⊆ϕ(�a)

{�λ}⊆ϕ(�−5) ⇒ ϕ(�+7)⊆ϕ(β)

{�λ}⊆ϕ(�−5) ⇒ ϕ(�)⊆ϕ(�−8)

{�λ}⊆ϕ(�−5)

e1 . . . �� e5
⇒ {�h,O�}⊆ψ(�−5)

(c
�+1 �−1
g →c

�+2 �−2
f)

�+3 �−3
f

{�+3 }⊆ϕ(�5) ⇒ ϕ(�6)⊆ϕ(�−1)

{�+3 }⊆ϕ(�5) ⇒ ϕ(�+2)⊆ϕ(�a)

{�+3 }⊆ϕ(�−5) ⇒ {�h,O�}⊆ψ(�−5)

{�+3 }⊆ϕ(�−5) ⇒ ϕ(�+7)⊆ϕ(�−1)

{�+3 }⊆ϕ(�−5) ⇒ ϕ(�+2)⊆ϕ(�−8)

�. . . e3 (c
�+1 �

−
1

g →c
�+2 �−2
f)

�+3 �
−
3

f ��
+
4 �−4

f {�+3 }⊆ϕ(�−5)

e3 �� e5
⇒ {�h,O�}⊆ψ(�−5)

Table 1. Constraints creation for source-sink pairs.

contract on the fly (with � and �� fresh) and uses it to check the do-
main and range of the function contract. For deeply nested function
contracts, the process is repeated recursively thereby creating a wit-
ness for each possible contract violation.5 In essence this process
simply makes explicit the sinks for the complex abstract values that

5 The debugger must then be careful to re-use the original any�
+
5 �−5

h contract

for both the domain and range of the new (any�
+
5 �−5

h →any�
+
5 �−5

h)��
�

h con-
tract because the use of new any contracts for the domain and range makes
the analysis fail to terminate when a function with a recursive type flows

into any�
+
5 �−5

h .

flow into any�
+
5 �

−
5

h . The analysis therefore remains sound. Here we

forsake this process and re-use the any�
+
5 �

−
5

h contract and its labels
only to simplify the soundness proof.

5.2.2 Blame Constraints
The third example explains blame assignment:

Source Sink (c
�+7 �

−
7

i →c
�+8 �

−
8

h)
�+5 �

−
5

h

int�
+
1 �

−
1

f {�+1 }⊆ϕ(�−5) ⇒ {�h,R�}⊆ψ(�−5)

225

63

Modular Set-Based Analysis from Contracts

Philippe Meunier
College of Computer and Information
Science, Northeastern University

meunier@ccs.neu.edu

Robert Bruce Findler
Department of Computer Science,

University of Chicago
robby@cs.uchicago.edu

Matthias Felleisen
College of Computer and Information
Science, Northeastern University

matthias@ccs.neu.edu

Abstract
In PLT Scheme, programs consist of modules with contracts. The
latter describe the inputs and outputs of functions and objects
via predicates. A run-time system enforces these predicates; if
a predicate fails, the enforcer raises an exception that blames a
specific module with an explanation of the fault.
In this paper, we show how to use such module contracts to turn

set-based analysis into a fully modular parameterized analysis. Us-
ing this analysis, a static debugger can indicate for any given con-
tract check whether the corresponding predicate is always satisfied,
partially satisfied, or (potentially) completely violated. The static
debugger can also predict the source of potential errors, i.e., it is
sound with respect to the blame assignment of the contract system.

Categories and Subject Descriptors F.3.2 [Semantics of Pro-
gramming Languages]: Program analysis; D.2.4 [Software / Pro-
gram Verification]: Programming by contract

General Terms Languages, Reliability, Verification.

Keywords Static Debugging, Set-based Analysis, Modular Anal-
ysis, Runtime Contracts.

1. Modules, Contracts, and Static Debugging
A static debugger helps programmers find errors via program anal-
yses. It uses the invariants of the programming language to analyze
the program and determines whether the program may violate one
of them during execution. For example, a static debugger can find
expressions that may dereference null pointers. Some static debug-
gers use lightweight analyses, e.g., Flanagan et al.’s MrSpidey [11]
relies on a variant of set-based analysis [10, 16, 21]; others use a
deep abstract interpretation, e.g., Bourdoncle’s Syntox [4]; and yet
others employ theorem proving, e.g., Detlefs et al.’s ESC [7].
Experience with static debuggers shows that they work well for

reasonably small programs. Using MrSpidey, we have routinely
debugged or re-engineered programs of 2,000 to 5,000 lines of code
in PLT Scheme. Flanagan has successfully analyzed the core of
the interpreter, dubbed MrEd [13], a 40,000 line program. Existing
static debuggers, however, suffer from a monolithic approach to
program analysis. Because their analyses require the availability
of the entire program, programmers cannot analyze their programs
until they have everyone else’s modules.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’06 January 11–13, 2006, Charleston, South Carolina, USA.
Copyright c© 2006 ACM 1-59593-027-2/06/0001. . . $5.00.

Over the past few years, we have added a first-order module
system to PLT Scheme [12] and have equipped the module system
with a contract system [8]. A contract is roughly a predicate on
the inputs and outputs of (exported) functions, including object
methods and higher-order functions. The contract system monitors
the contracts during program execution. If a module violates a
contract, the contract system pinpoints the guilty party and issues
an explanatory message.
This paper makes five contributions to static debugging and

software contracts. First, it explains how to construct a modular
static debugger for programs with contracts, using those contracts
in a dual role: one as a source of abstract values and one as a
sink for abstract values. Second, we prove that our contract-based,
whole-program analysis computes its results in a modular manner.
That is, our contract-aware set-based analysis produces the same
predictions for a given point in the program regardless of whether
it analyzes the whole program or just the surrounding module.
Third, for any given contract check, the system indicates whether
the corresponding predicate is always satisfied, partially satisfied,
or completely violated. Fourth, the static debugger can also predict
the source of potential errors, i.e., it is sound with respect to the
blame assignment of the contract system. Fifth, the analysis is
parameterized over both a predicate approximation relation and a
predicate domain function.

2. Overview
The paper presents a model of a modular static debugger. The
model consists of two parts: a runtime contract system and a set-
based analysis for modules with contracts. A correctness theorem
ties the two parts together. Figure 1 provides an overview of these
three pieces in graphical form. The vertical column on the left rep-
resents the runtime contract system. A contract compiler translates
a collection of modules and a main expression into a suitably an-
notated form. During execution, which we naturally model via a
reduction system, the contract system keeps track of the contract
obligations; if something goes wrong it blames a specific module.
The first horizontal row of Figure 1 depicts the analysis process,

which consists of three stages. First, it partitions the program into
module-like pieces by lifting expressions with contract annotations
out of the main program. Second, the resulting collection of pro-
gram pieces is analyzed with a parameterized set-based analysis.
This step yields both sets of abstract values and sets of potential er-
rors, including explanations that blame the guilty party; we call the
latter blame sets. Third, the former are summarized as set-of-values
descriptions, dubbed types.
The rest of the grid in Figure 1 explains our proof technique for

the correctness theorem. Since each reduction step creates a com-
plete program, the correctness proof can proceed via subject reduc-
tion. We re-apply the analysis after each reduction step. The proof
then shows that the reductions preserve the types and the blame

218

Semantics-based analysis matters.

Source Sink int�
+
5 �

−
5

h �. . . e5 int
�+5 �−5
h ��

+
6 �−6

h any�
+
5 �−5

h �. . . e5 any
�+5 �−5
h ��

+
6 �−6

h

n�ne1...
{�n}⊆ϕ(�−5)

e1 . . . �� e5
⇒ {�h,O�}⊆ψ(�−5)

{�n}⊆ϕ(�−5)

e1 . . . �� e5
⇒ {�h,O�}⊆ψ(�−5)

int�
+
1 �−1

f {�+1 }⊆ϕ(�−5) ⇒ {�h,O�}⊆ψ(�−5) {�+1 }⊆ϕ(�−5) ⇒ {�h,O�}⊆ψ(�−5)

�. . . e1 int
�+1 �−1
f ��

+
2 �−2

f

{�+1 }⊆ϕ(�−5)

e1 �� e5
⇒ {�h,O�}⊆ψ(�−5)

{�+1 }⊆ϕ(�−5)

e1 �� e5
⇒ {�h,O�}⊆ψ(�−5)

any�
+
1 �−1

f

{�+1 }⊆ϕ(�−5) ⇒ {�h,R�}⊆ψ(�−5)

{�+1 }⊆ϕ(�−5) ⇒ {�h,O�}⊆ψ(�−5)

�. . . e1 any
�+1 �−1
f ��

+
2 �−2

f

{�+1 }⊆ϕ(�−5)

e1 �� e5
⇒ {�h,O�}⊆ψ(�−5)

(λxβ .e�)�λe1... {�λ}⊆ϕ(�−5) ⇒ {�h,R�}⊆ψ(�−5)

{�λ}⊆ϕ(�−5) ⇒ ϕ(�+5)⊆ϕ(β)

{�λ}⊆ϕ(�−5) ⇒ ϕ(�)⊆ϕ(�−5)

{�λ}⊆ϕ(�−5)

e1 . . . �� e5
⇒ {�h,O�}⊆ψ(�−5)

(c
�+1 �−1
g →c

�+2 �−2
f)

�+3 �−3
f

{�+3 }⊆ϕ(�−5) ⇒ {�h,R�}⊆ψ(�−5)

{�+3 }⊆ϕ(�−5) ⇒ {�h,O�}⊆ψ(�−5)

{�+3 }⊆ϕ(�−5) ⇒ ϕ(�+5)⊆ϕ(�−1)

{�+3 }⊆ϕ(�−5) ⇒ ϕ(�+2)⊆ϕ(�−5)

�. . . e3 (c
�+1 �−1
g →c

�+2 �
−
2

f)
�+3 �−3
f ��

+
4 �−4

f {�+3 }⊆ϕ(�−5)

e3 �� e5
⇒ {�h,O�}⊆ψ(�−5)

Source Sink (e�5 e�6)�a (c
�+7 �−7
i →c

�+8 �
−
8

h)
�+5 �−5
h �. . . e5 (c

�+7 �−7
i →c

�+8 �−8
h)

�+5 �−5
h ��

+
6 �−6

h

n�ne1... {�n}⊆ϕ(�5) ⇒ {�λ,R�}⊆ψ(�a) {�n}⊆ϕ(�−5) ⇒ {�h,R�}⊆ψ(�−5)

int�
+
1 �−1

f

{�+1 }⊆ϕ(�5) ⇒ {�λ,R�}⊆ψ(�a) {�+1 }⊆ϕ(�−5) ⇒ {�h,R�}⊆ψ(�−5)
�. . . e1 int

�+1 �
−
1

f ��
+
2 �−2

f

any�
+
1 �−1

f

�. . . e1 any
�+1 �−1
f ��

+
2 �−2

f

(λxβ .e�)�λe1...
{�λ}⊆ϕ(�5) ⇒ ϕ(�6)⊆ϕ(β)

{�λ}⊆ϕ(�5) ⇒ ϕ(�)⊆ϕ(�a)

{�λ}⊆ϕ(�−5) ⇒ ϕ(�+7)⊆ϕ(β)

{�λ}⊆ϕ(�−5) ⇒ ϕ(�)⊆ϕ(�−8)

{�λ}⊆ϕ(�−5)

e1 . . . �� e5
⇒ {�h,O�}⊆ψ(�−5)

(c
�+1 �−1
g →c

�+2 �−2
f)

�+3 �−3
f

{�+3 }⊆ϕ(�5) ⇒ ϕ(�6)⊆ϕ(�−1)

{�+3 }⊆ϕ(�5) ⇒ ϕ(�+2)⊆ϕ(�a)

{�+3 }⊆ϕ(�−5) ⇒ {�h,O�}⊆ψ(�−5)

{�+3 }⊆ϕ(�−5) ⇒ ϕ(�+7)⊆ϕ(�−1)

{�+3 }⊆ϕ(�−5) ⇒ ϕ(�+2)⊆ϕ(�−8)

�. . . e3 (c
�+1 �

−
1

g →c
�+2 �−2
f)

�+3 �
−
3

f ��
+
4 �−4

f {�+3 }⊆ϕ(�−5)

e3 �� e5
⇒ {�h,O�}⊆ψ(�−5)

Table 1. Constraints creation for source-sink pairs.

contract on the fly (with � and �� fresh) and uses it to check the do-
main and range of the function contract. For deeply nested function
contracts, the process is repeated recursively thereby creating a wit-
ness for each possible contract violation.5 In essence this process
simply makes explicit the sinks for the complex abstract values that

5 The debugger must then be careful to re-use the original any�
+
5 �−5

h contract

for both the domain and range of the new (any�
+
5 �−5

h →any�
+
5 �−5

h)��
�

h con-
tract because the use of new any contracts for the domain and range makes
the analysis fail to terminate when a function with a recursive type flows

into any�
+
5 �−5

h .

flow into any�
+
5 �

−
5

h . The analysis therefore remains sound. Here we

forsake this process and re-use the any�
+
5 �

−
5

h contract and its labels
only to simplify the soundness proof.

5.2.2 Blame Constraints
The third example explains blame assignment:

Source Sink (c
�+7 �

−
7

i →c
�+8 �

−
8

h)
�+5 �

−
5

h

int�
+
1 �

−
1

f {�+1 }⊆ϕ(�−5) ⇒ {�h,R�}⊆ψ(�−5)

225

64

Higher-order
Program Analysis
is Alive and Well.
(I have a way forward.)

65

A Way
Forward

Scalability{Complexity
Maintenance
Verification
Expressivity
Modularity

66

66

Key insight:
analysis is a kind of
evaluation

67

Eval

Every variable occurs once.

0CFA

67

EvalPTIME0CFA

ICFP’07

68

Eval

Every variable occurs once.

0CFA

68

Eval

Every variable occurs once.

0CFA

Sub0CFA

68

Eval

Every variable occurs once.

0CFA

Sub0CFA

Simple closure

68

EvalPTIME0CFA

Sub0CFA

Simple closure

SAS’08

69

kCFA EvalkCFA

Datalog-style programming with analysis.

69

kCFA EvalkCFA EXPTIME

ICFP’08

70

kCFA EvalkCFA EXPTIME

ICFP’08

70

kCFA EvalkCFA EXPTIMEmCFA PTIME

Similar precision, better performance

PLDI’10

PTIME

71

0CFA

Pr
ec

isi
on

1CFA

kCFA

Sub0CFA
Simple closure

...
...

EXPTIME
PTIME

PLDI’10

PTIME

71

0CFA

Pr
ec

isi
on

1CFA

kCFA

Sub0CFA
Simple closure

...
...

EXPTIME
PTIME

mCFA

1CFA
...

PLDI’10

72

A Systematic
Approach to
Program Analysis
Design

73

Semantics

Analysis

73

Semantics

Analysis

ICFP’10/CACM’11

74

Semantics

Machine

Analysis

ICFP’10/CACM’11

Analysis machine

e

s0 s1 s2 s3 s4 ...

ICFP’10/CACM’11

Analysis machine

e

s0 s1 s2 s3 s4 ...

ICFP’10/CACM’11

Analysis machine

e

s0 s1 s2 s3 s4 ...

ŝ0

ICFP’10/CACM’11

Analysis machine

e

s0 s1 s2 s3 s4 ...

ŝ0 ŝ1 ŝ2 ŝ3
ŝ3.1

ICFP’10/CACM’11

Analysis machine

e

s0 s1 s2 s3 s4 ...

ŝ0 ŝ1 ŝ2 ŝ3 ŝ4
ŝ3.1

ICFP’10/CACM’11

Analysis machine

e

s0 s1 s2 s3 s4 ...

ŝ0 ŝ1 ŝ2 ŝ3 ŝ4
ŝ3.1

ICFP’10/CACM’11

Analysis machine

e

s0 s1 s2 s3 s4 ...

ŝ0 ŝ1 ŝ2 ŝ3 ŝ4
ŝ3.1

Theorem: The analysis simulates the machine.

ICFP’10/CACM’11

76

Key idea:
Deterministic state transition system
with an infinite state space.

Non-deterministic state transition system
with a finite state space.

76

Key idea:
Deterministic state transition system
with an infinite state space.

Non-deterministic state transition system
with a finite state space.

ICFP’10/CACM’11

Infinite state-space

Program analysis...

Infinite state-space

Program analysis...

Finite state-space

...is bounded graph search.

...is bounded graph search.

Finite state-space

79

Semantics

Machine

Analysis

A Closer Look

80

Reduction semantics:

Reduction:

Eval. Contexts:

Syntax:

〈〈x, ρ〉,κ〉 → 〈c,κ〉 where ρ(x) = c
〈c, c3(〈(λ (x) e), ρ〉,κ) → 〈〈e, ρ[x $→ c]〉,κ〉
〈c, c2(e, ρ,κ)〉 → 〈〈e, ρ〉, c3(c,κ)〉
〈〈(e0 e1), ρ〉,κ〉 → 〈〈e0, ρ〉, c2(e1, ρ,κ)〉

Figure 1. Environment machine for λv . (Not for paper.)

Reduction relation:

((λ (x) e) v) → [v/x]e

2.2 Machine for λv

Closures:
c ::= 〈(λ (x) e), ρ〉

Continuations:

κ ::= c1
| c2(e, ρ,κ)
| c3(c,κ)

2.3 CESK machine
The CESK machine operates on a configuration consisting
of a control string (C), which is either an expression or a de-
notable value; an environment (E) mapping free variables to
addresses, a store (S) mapping from addresses to denotable
values; and a continuation (K) representing remaining com-
putation. To retrieve the binding of a variable, the evaluator
now uses the environment to find the address where the value
can be found in the store. To bind a variable to a value, the
store is extended with a new address mapping to the value
and the environment is extended mapping the variable name
to this newly allocated address.

ς ∈ Σ = (Exp+D)× Env × Store ×Kont
d ∈ D = Lam× Env
ρ ∈ Env = Var ⇀ Addr
σ ∈ Store = Addr ⇀ D
κ ∈ Kont ::= mt | fn(d,κ) | ar(e, ρ,κ)

where Addr is an infinite set.

Evaluation contexts E are represented as follows: [] is
represented by mt; E[([] e)] is represented by ar(e, ρ,κ)
where ρ closes e and κ represents E; and E[(d [])] is
represented by fn(d,κ) where κ represents E.

Denotable values are represented with closures: a λ-term
paired with its environment. Environments are partial maps
from variables to addresses, stores are partial maps from
addresses to storeable values.

e0 e1 e2 e3 E[e′] E[e′′] e′ → e′′

e ::= n | (e+e)

(n+m) → n+m

E ::= [] | (E+e) | (n+E)

The CESK transition function is defined as:

$−→CESK

〈(λ (x) e), ρ,σ,κ〉 〈〈(λ (v) e), ρ〉, ρ,σ,κ〉

〈v, ρ,σ,κ〉 〈σ(ρ(v)), ρ,σ,κ〉

〈(e0 e1), ρ,σ,κ〉 〈e0, ρ,σ,ar(e1, ρ,κ)〉

〈d, ρ,σ,ar(e, ρ′,κ)〉 〈e, ρ′,σ, fn(d,κ)〉

〈d, ρ,σ, fn(d′,κ)〉 〈e, ρ′[v $→ a],σ[a $→ d],κ〉
where d′ = 〈(λ (v) e), ρ′〉, a /∈ dom(σ)

This presentation is what is found in textbook treatments of
the CESK machine [2, page 166].

We employ a reachable states semantics:

evalCESK (e) = {ς | 〈e, [], [],mt〉 $−→→CESK ς}

2.4 Abstract CSK machine
In this section1, we define a 0-CFA-like abstraction of the
CESK machine. The analysis is 0-CFA-like in that functions
are approximated by their code component and all values
bound to a variable are merged in the abstract semantics. As
such, we take the finite set of variable names occuring in
the program as Âddr . Since environments would map all
variable names to themself, they are eliminated from the
semantics. It is important to note that stores map locations
to sets of values and are now joined rather than extended.

ς̂ ∈ Σ̂ = (Exp+D)× Ŝtore ×Kont
d̂ ∈ D = Lam

σ̂ ∈ Ŝtore = Âddr ⇀ P(D)
κ̂ ∈ Kont ::= mt | fn(d̂, κ̂) | ar(e, κ̂)

where Âddr is a finite set.

1 A preliminary version of this section was presented in the The 2010 Work-
shop on Scheme and Functional Programming [1], which states: “Publica-
tion of a paper at this workshop is not intended to replace conference or
journal publication, and does not preclude re-publication of a more com-
plete or finished version of the paper at some later conference or in a jour-
nal.”
The preliminary presentation treated a language in ANF, while here we
make explicit the connection to direct-style and the classical CESK ma-
chine.

Pushdown Abstractions of Objects and Functions 2 2011/3/6

O(n2.9)

e ::= n | x | (e+e)

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

〈e, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈m, c2(n,C)〉 → 〈n+m,C〉
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉

1

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

〈e, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈m, c2(n,C)〉 → 〈n+m,C〉
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉

1

81

Reduction semantics:

search compute plug

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

x → 3

E[(x+y)]

E[(3+y)]

(3+y)

E[(3+[])]

y

y → 4

E[(3+4)]

(3+4)

〈e, C〉

1

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

x → 3

E[(x+y)]

E[(3+y)]

(3+y)

E[(3+[])]

y

y → 4

E[(3+4)]

(3+4) → 7

〈e, C〉

1

c2(C, 3)

(3+4) → 7

E[]

〈e, C〉

〈e, ρ,σ, C〉

〈e, ρ,σ, a〉

σ(a) = C

〈n,C〉

〈(e1+e2), ρ,σ, C〉 → 〈e1, ρ,σ, c1(C, e2)〉
〈(e1+e2), ρ,σ, a〉 → 〈e1, ρ,σ[a′ $→ c1(a, e2)], a′〉
〈(e1+e2), ρ, σ̂, a〉 → 〈e1, ρ, σ̂ % [a′ $→ c1(a, e2)], a′〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉
〈m, c2(n,C)〉 → 〈n+m,C〉

⇐⇒

⇒

P

P ′

2

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

x → 3

E[(x+y)]

E[(3+y)]

(3+y)

E[(3+[])]

y

y → 4

E[(3+4)]

〈e, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈m, c2(n,C)〉 → 〈n+m,C〉
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉

1

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

x → 3

E[(x+y)]

E[(3+y)]

(3+y)

E[(3+[])]

y

y → 4

E[(3+4)]

(3+4) → 7

E[]

1

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

x → 3

E[(x+y)]

E[(3+y)]

(3+y)

E[(3+[])]

y

y → 4

E[(3+4)]

(3+4) → 7

〈e, C〉

1

c2(C, 3)

(3+4) → 7

E[]

〈e, C〉

〈e, ρ,σ, C〉

〈e, ρ,σ, a〉

σ(a) = C

〈n,C〉

〈(e1+e2), ρ,σ, C〉 → 〈e1, ρ,σ, c1(C, e2)〉
〈(e1+e2), ρ,σ, a〉 → 〈e1, ρ,σ[a′ $→ c1(a, e2)], a′〉
〈(e1+e2), ρ, σ̂, a〉 → 〈e1, ρ, σ̂ % [a′ $→ c1(a, e2)], a′〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉
〈m, c2(n,C)〉 → 〈n+m,C〉

⇐⇒

⇒

P

P ′

2

82

c2(C, 3)

(3+4) → 7

E[]

〈e, C〉

〈e, ρ,σ, C〉

〈e, ρ,σ, a〉

σ(a) = C

〈n,C〉

〈(e1+e2), ρ,σ, C〉 → 〈e1, ρ,σ, c1(C, e2)〉
〈(e1+e2), ρ,σ, a〉 → 〈e1, ρ,σ[a′ $→ c1(a, e2)], a′〉
〈(e1+e2), ρ, σ̂, a〉 → 〈e1, ρ, σ̂ % [a′ $→ c1(a, e2)], a′〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉
〈m, c2(n,C)〉 → 〈n+m,C〉

⇐⇒

⇒

P

P ′

2

83

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

E[(x+y)]

〈e, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈m, c2(n,C)〉 → 〈n+m,C〉
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉

1

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

E[(x+y)]

〈e, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈m, c2(n,C)〉 → 〈n+m,C〉
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉

1

84

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

E[(x+y)]

〈e, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈m, c2(n,C)〉 → 〈n+m,C〉
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉

1

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

E[(x+y)]

〈e, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈m, c2(n,C)〉 → 〈n+m,C〉
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉

1

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

x → 3

E[(x+y)]

E[(3+y)]

(3+y)

E[(3+[])]

y

y → 4

E[(3+4)]

(3+4) → 7

E[]

1

85

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

x+y

E[([]+y)]

E[x+ y]

〈e, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈m, c2(n,C)〉 → 〈n+m,C〉
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉

1

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

x

E[(x+y)]

〈e, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈m, c2(n,C)〉 → 〈n+m,C〉
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉

1

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

x → 3

E[(x+y)]

〈e, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈m, c2(n,C)〉 → 〈n+m,C〉
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉

1

86

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

x+y

E[([]+y)]

E[x+ y]

〈e, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈m, c2(n,C)〉 → 〈n+m,C〉
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉

1

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

x → 3

E[(x+y)]

〈e, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈m, c2(n,C)〉 → 〈n+m,C〉
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉

1

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

x → 3

E[(x+y)]

〈e, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈m, c2(n,C)〉 → 〈n+m,C〉
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉

1

87

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

x+y

E[([]+y)]

E[x+ y]

〈e, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈m, c2(n,C)〉 → 〈n+m,C〉
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉

1

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

x → 3

E[(x+y)]

〈e, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈m, c2(n,C)〉 → 〈n+m,C〉
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉

1

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

x → 3

E[(x+y)]

〈e, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈m, c2(n,C)〉 → 〈n+m,C〉
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉

1

88

c2(C, 3)

(3+4) → 7

E[]

〈e, C〉

〈e, ρ,σ, C〉

〈e, ρ,σ, a〉

σ(a) = C

〈n,C〉

〈(e1+e2), ρ,σ, C〉 → 〈e1, ρ,σ, c1(C, e2)〉
〈(e1+e2), ρ,σ, a〉 → 〈e1, ρ,σ[a′ $→ c1(a, e2)], a′〉
〈(e1+e2), ρ, σ̂, a〉 → 〈e1, ρ, σ̂ % [a′ $→ c1(a, e2)], a′〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉
〈m, c2(n,C)〉 → 〈n+m,C〉

⇐⇒

⇒

P

P ′

2

89

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

x → 3

E[(x+y)]

E[(3+y)]

〈e, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈m, c2(n,C)〉 → 〈n+m,C〉
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉

1

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

x → 3

E[(x+y)]

E[(3+y)]

(3+y)

〈e, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈m, c2(n,C)〉 → 〈n+m,C〉
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉

1

90

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

x → 3

E[(x+y)]

E[(3+y)]

(3+y)

〈e, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈m, c2(n,C)〉 → 〈n+m,C〉
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉

1

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

x → 3

E[(x+y)]

E[(3+y)]

(3+y)

〈e, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈m, c2(n,C)〉 → 〈n+m,C〉
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉

1

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

x → 3

E[(x+y)]

E[(3+y)]

(3+y)

E[(3+[])]

y

y → 4

E[(3+4)]

(3+4) → 7

E[]

1

91

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

x → 3

E[(x+y)]

E[(3+y)]

(3+y)

E[(3+[])]

〈e, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈m, c2(n,C)〉 → 〈n+m,C〉
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉

1

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

x → 3

E[(x+y)]

E[(3+y)]

(3+y)

E[(3+[])]

y

〈e, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈m, c2(n,C)〉 → 〈n+m,C〉
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉

1

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

x → 3

E[(x+y)]

E[(3+y)]

(3+y)

E[(3+[])]

y

y → 4

〈e, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈m, c2(n,C)〉 → 〈n+m,C〉
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉

1

92

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

x → 3

E[(x+y)]

E[(3+y)]

(3+y)

E[(3+[])]

〈e, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈m, c2(n,C)〉 → 〈n+m,C〉
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉

1

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

x → 3

E[(x+y)]

E[(3+y)]

(3+y)

E[(3+[])]

y

y → 4

〈e, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈m, c2(n,C)〉 → 〈n+m,C〉
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉

1

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

x → 3

E[(x+y)]

E[(3+y)]

(3+y)

E[(3+[])]

y

y → 4

〈e, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈m, c2(n,C)〉 → 〈n+m,C〉
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉

1

93

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

x → 3

E[(x+y)]

E[(3+y)]

(3+y)

E[(3+[])]

〈e, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈m, c2(n,C)〉 → 〈n+m,C〉
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉

1

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

x → 3

E[(x+y)]

E[(3+y)]

(3+y)

E[(3+[])]

y

y → 4

〈e, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈m, c2(n,C)〉 → 〈n+m,C〉
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉

1

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

x → 3

E[(x+y)]

E[(3+y)]

(3+y)

E[(3+[])]

y

y → 4

〈e, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈m, c2(n,C)〉 → 〈n+m,C〉
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉

1

94

c2(C, 3)

(3+4) → 7

E[]

〈e, C〉

〈e, ρ,σ, C〉

〈e, ρ,σ, a〉

σ(a) = C

〈n,C〉

〈(e1+e2), ρ,σ, C〉 → 〈e1, ρ,σ, c1(C, e2)〉
〈(e1+e2), ρ,σ, a〉 → 〈e1, ρ,σ[a′ $→ c1(a, e2)], a′〉
〈(e1+e2), ρ, σ̂, a〉 → 〈e1, ρ, σ̂ % [a′ $→ c1(a, e2)], a′〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉
〈m, c2(n,C)〉 → 〈n+m,C〉

⇐⇒

⇒

P

P ′

P ′′

2

95

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

x → 3

E[(x+y)]

E[(3+y)]

(3+y)

E[(3+[])]

y

y → 4

E[(3+4)]

〈e, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈m, c2(n,C)〉 → 〈n+m,C〉
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉

1

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

x → 3

E[(x+y)]

E[(3+y)]

(3+y)

E[(3+[])]

y

y → 4

E[(3+4)]

(3+4)

〈e, C〉

1

96

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

x → 3

E[(x+y)]

E[(3+y)]

(3+y)

E[(3+[])]

y

y → 4

E[(3+4)]

(3+4) → 7

〈e, C〉

1

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

x → 3

E[(x+y)]

E[(3+y)]

(3+y)

E[(3+[])]

y

y → 4

E[(3+4)]

(3+4) → 7

E[]

1

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

x → 3

E[(x+y)]

E[(3+y)]

(3+y)

E[(3+[])]

y

y → 4

E[(3+4)]

(3+4)

〈e, C〉

1

97

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

x → 3

E[(x+y)]

E[(3+y)]

(3+y)

E[(3+[])]

y

y → 4

E[(3+4)]

(3+4) → 7

〈e, C〉

1

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

x → 3

E[(x+y)]

E[(3+y)]

(3+y)

E[(3+[])]

y

y → 4

E[(3+4)]

(3+4) → 7

〈e, C〉

1

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

x → 3

E[(x+y)]

E[(3+y)]

(3+y)

E[(3+[])]

y

y → 4

E[(3+4)]

(3+4) → 7

E[]

1

98

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

x → 3

E[(x+y)]

E[(3+y)]

(3+y)

E[(3+[])]

y

y → 4

E[(3+4)]

(3+4) → 7

〈e, C〉

1

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

x → 3

E[(x+y)]

E[(3+y)]

(3+y)

E[(3+[])]

y

y → 4

E[(3+4)]

(3+4) → 7

E[]

1

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

x → 3

E[(x+y)]

E[(3+y)]

(3+y)

E[(3+[])]

y

y → 4

E[(3+4)]

(3+4) → 7

〈e, C〉

1

99

Reduction semantics:

Reduction:

Eval. Contexts:

Syntax:

〈〈x, ρ〉,κ〉 → 〈c,κ〉 where ρ(x) = c
〈c, c3(〈(λ (x) e), ρ〉,κ) → 〈〈e, ρ[x $→ c]〉,κ〉
〈c, c2(e, ρ,κ)〉 → 〈〈e, ρ〉, c3(c,κ)〉
〈〈(e0 e1), ρ〉,κ〉 → 〈〈e0, ρ〉, c2(e1, ρ,κ)〉

Figure 1. Environment machine for λv . (Not for paper.)

Reduction relation:

((λ (x) e) v) → [v/x]e

2.2 Machine for λv

Closures:
c ::= 〈(λ (x) e), ρ〉

Continuations:

κ ::= c1
| c2(e, ρ,κ)
| c3(c,κ)

2.3 CESK machine
The CESK machine operates on a configuration consisting
of a control string (C), which is either an expression or a de-
notable value; an environment (E) mapping free variables to
addresses, a store (S) mapping from addresses to denotable
values; and a continuation (K) representing remaining com-
putation. To retrieve the binding of a variable, the evaluator
now uses the environment to find the address where the value
can be found in the store. To bind a variable to a value, the
store is extended with a new address mapping to the value
and the environment is extended mapping the variable name
to this newly allocated address.

ς ∈ Σ = (Exp+D)× Env × Store ×Kont
d ∈ D = Lam× Env
ρ ∈ Env = Var ⇀ Addr
σ ∈ Store = Addr ⇀ D
κ ∈ Kont ::= mt | fn(d,κ) | ar(e, ρ,κ)

where Addr is an infinite set.

Evaluation contexts E are represented as follows: [] is
represented by mt; E[([] e)] is represented by ar(e, ρ,κ)
where ρ closes e and κ represents E; and E[(d [])] is
represented by fn(d,κ) where κ represents E.

Denotable values are represented with closures: a λ-term
paired with its environment. Environments are partial maps
from variables to addresses, stores are partial maps from
addresses to storeable values.

e0 e1 e2 e3 E[e′] E[e′′] e′ → e′′

e ::= n | (e+e)

(n+m) → n+m

E ::= [] | (E+e) | (n+E)

The CESK transition function is defined as:

$−→CESK

〈(λ (x) e), ρ,σ,κ〉 〈〈(λ (v) e), ρ〉, ρ,σ,κ〉

〈v, ρ,σ,κ〉 〈σ(ρ(v)), ρ,σ,κ〉

〈(e0 e1), ρ,σ,κ〉 〈e0, ρ,σ,ar(e1, ρ,κ)〉

〈d, ρ,σ,ar(e, ρ′,κ)〉 〈e, ρ′,σ, fn(d,κ)〉

〈d, ρ,σ, fn(d′,κ)〉 〈e, ρ′[v $→ a],σ[a $→ d],κ〉
where d′ = 〈(λ (v) e), ρ′〉, a /∈ dom(σ)

This presentation is what is found in textbook treatments of
the CESK machine [2, page 166].

We employ a reachable states semantics:

evalCESK (e) = {ς | 〈e, [], [],mt〉 $−→→CESK ς}

2.4 Abstract CSK machine
In this section1, we define a 0-CFA-like abstraction of the
CESK machine. The analysis is 0-CFA-like in that functions
are approximated by their code component and all values
bound to a variable are merged in the abstract semantics. As
such, we take the finite set of variable names occuring in
the program as Âddr . Since environments would map all
variable names to themself, they are eliminated from the
semantics. It is important to note that stores map locations
to sets of values and are now joined rather than extended.

ς̂ ∈ Σ̂ = (Exp+D)× Ŝtore ×Kont
d̂ ∈ D = Lam

σ̂ ∈ Ŝtore = Âddr ⇀ P(D)
κ̂ ∈ Kont ::= mt | fn(d̂, κ̂) | ar(e, κ̂)

where Âddr is a finite set.

1 A preliminary version of this section was presented in the The 2010 Work-
shop on Scheme and Functional Programming [1], which states: “Publica-
tion of a paper at this workshop is not intended to replace conference or
journal publication, and does not preclude re-publication of a more com-
plete or finished version of the paper at some later conference or in a jour-
nal.”
The preliminary presentation treated a language in ANF, while here we
make explicit the connection to direct-style and the classical CESK ma-
chine.

Pushdown Abstractions of Objects and Functions 2 2011/3/6

O(n2.9)

e ::= n | x | (e+e)

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

〈e, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈m, c2(n,C)〉 → 〈n+m,C〉
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉

1

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

〈e, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈m, c2(n,C)〉 → 〈n+m,C〉
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉

1

100

Reduction semantics:

Reduction:

Eval. Contexts:

Syntax:
〈〈x, ρ〉,κ〉 → 〈c,κ〉 where ρ(x) = c
〈c, c3(〈(λ (x) e), ρ〉,κ) → 〈〈e, ρ[x $→ c]〉,κ〉
〈c, c2(e, ρ,κ)〉 → 〈〈e, ρ〉, c3(c,κ)〉
〈〈(e0 e1), ρ〉,κ〉 → 〈〈e0, ρ〉, c2(e1, ρ,κ)〉

Figure 1. Environment machine for λv . (Not for paper.)

Reduction relation:

((λ (x) e) v) → [v/x]e

2.2 Machine for λv

Closures:
c ::= 〈(λ (x) e), ρ〉

Continuations:

κ ::= c1
| c2(e, ρ,κ)
| c3(c,κ)

2.3 CESK machine
The CESK machine operates on a configuration consisting
of a control string (C), which is either an expression or a de-
notable value; an environment (E) mapping free variables to
addresses, a store (S) mapping from addresses to denotable
values; and a continuation (K) representing remaining com-
putation. To retrieve the binding of a variable, the evaluator
now uses the environment to find the address where the value
can be found in the store. To bind a variable to a value, the
store is extended with a new address mapping to the value
and the environment is extended mapping the variable name
to this newly allocated address.

ς ∈ Σ = (Exp+D)× Env × Store ×Kont
d ∈ D = Lam× Env
ρ ∈ Env = Var ⇀ Addr
σ ∈ Store = Addr ⇀ D
κ ∈ Kont ::= mt | fn(d,κ) | ar(e, ρ,κ)

where Addr is an infinite set.

Evaluation contexts E are represented as follows: [] is
represented by mt; E[([] e)] is represented by ar(e, ρ,κ)
where ρ closes e and κ represents E; and E[(d [])] is
represented by fn(d,κ) where κ represents E.

Denotable values are represented with closures: a λ-term
paired with its environment. Environments are partial maps
from variables to addresses, stores are partial maps from
addresses to storeable values.

e0 e1 e2 e3 E[e′] E[e′′] e′ → e′′

e ::= n | (e+e)

(n+m) → n+m

E ::= [] | (E+e) | (n+E)

The CESK transition function is defined as:

$−→CESK

〈(λ (x) e), ρ,σ,κ〉 〈〈(λ (v) e), ρ〉, ρ,σ,κ〉

〈v, ρ,σ,κ〉 〈σ(ρ(v)), ρ,σ,κ〉

〈(e0 e1), ρ,σ,κ〉 〈e0, ρ,σ,ar(e1, ρ,κ)〉

〈d, ρ,σ,ar(e, ρ′,κ)〉 〈e, ρ′,σ, fn(d,κ)〉

〈d, ρ,σ, fn(d′,κ)〉 〈e, ρ′[v $→ a],σ[a $→ d],κ〉
where d′ = 〈(λ (v) e), ρ′〉, a /∈ dom(σ)

This presentation is what is found in textbook treatments of
the CESK machine [2, page 166].

We employ a reachable states semantics:

evalCESK (e) = {ς | 〈e, [], [],mt〉 $−→→CESK ς}

2.4 Abstract CSK machine
In this section1, we define a 0-CFA-like abstraction of the
CESK machine. The analysis is 0-CFA-like in that functions
are approximated by their code component and all values
bound to a variable are merged in the abstract semantics. As
such, we take the finite set of variable names occuring in
the program as Âddr . Since environments would map all
variable names to themself, they are eliminated from the
semantics. It is important to note that stores map locations
to sets of values and are now joined rather than extended.

ς̂ ∈ Σ̂ = (Exp+D)× Ŝtore ×Kont
d̂ ∈ D = Lam

σ̂ ∈ Ŝtore = Âddr ⇀ P(D)
κ̂ ∈ Kont ::= mt | fn(d̂, κ̂) | ar(e, κ̂)

where Âddr is a finite set.

1 A preliminary version of this section was presented in the The 2010 Work-
shop on Scheme and Functional Programming [1], which states: “Publica-
tion of a paper at this workshop is not intended to replace conference or
journal publication, and does not preclude re-publication of a more com-
plete or finished version of the paper at some later conference or in a jour-
nal.”
The preliminary presentation treated a language in ANF, while here we
make explicit the connection to direct-style and the classical CESK ma-
chine.

Pushdown Abstractions of Objects and Functions 2 2011/3/6

O(n2.9)

e ::= n | x | (e+e)

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

〈e, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈m, c2(n,C)〉 → 〈n+m,C〉
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉

1

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

〈e, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈m, c2(n,C)〉 → 〈n+m,C〉
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉

1

Continuations:

〈〈x, ρ〉,κ〉 → 〈c,κ〉 where ρ(x) = c
〈c, c3(〈(λ (x) e), ρ〉,κ) → 〈〈e, ρ[x $→ c]〉,κ〉
〈c, c2(e, ρ,κ)〉 → 〈〈e, ρ〉, c3(c,κ)〉
〈〈(e0 e1), ρ〉,κ〉 → 〈〈e0, ρ〉, c2(e1, ρ,κ)〉

Figure 1. Environment machine for λv . (Not for paper.)

Reduction relation:

((λ (x) e) v) → [v/x]e

2.2 Machine for λv

Closures:
c ::= 〈(λ (x) e), ρ〉

Continuations:

κ ::= c1
| c2(e, ρ,κ)
| c3(c,κ)

2.3 CESK machine
The CESK machine operates on a configuration consisting
of a control string (C), which is either an expression or a de-
notable value; an environment (E) mapping free variables to
addresses, a store (S) mapping from addresses to denotable
values; and a continuation (K) representing remaining com-
putation. To retrieve the binding of a variable, the evaluator
now uses the environment to find the address where the value
can be found in the store. To bind a variable to a value, the
store is extended with a new address mapping to the value
and the environment is extended mapping the variable name
to this newly allocated address.

ς ∈ Σ = (Exp+D)× Env × Store ×Kont
d ∈ D = Lam× Env
ρ ∈ Env = Var ⇀ Addr
σ ∈ Store = Addr ⇀ D
κ ∈ Kont ::= mt | fn(d,κ) | ar(e, ρ,κ)

where Addr is an infinite set.

Evaluation contexts E are represented as follows: [] is
represented by mt; E[([] e)] is represented by ar(e, ρ,κ)
where ρ closes e and κ represents E; and E[(d [])] is
represented by fn(d,κ) where κ represents E.

Denotable values are represented with closures: a λ-term
paired with its environment. Environments are partial maps
from variables to addresses, stores are partial maps from
addresses to storeable values.

e0 e1 e2 e3 E[e′] E[e′′] e′ → e′′

e ::= n | (e+e)

(n+m) → n+m

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(e, C) | c2(n,C)

The CESK transition function is defined as:

$−→CESK

〈(λ (x) e), ρ,σ,κ〉 〈〈(λ (v) e), ρ〉, ρ,σ,κ〉

〈v, ρ,σ,κ〉 〈σ(ρ(v)), ρ,σ,κ〉

〈(e0 e1), ρ,σ,κ〉 〈e0, ρ,σ,ar(e1, ρ,κ)〉

〈d, ρ,σ,ar(e, ρ′,κ)〉 〈e, ρ′,σ, fn(d,κ)〉

〈d, ρ,σ, fn(d′,κ)〉 〈e, ρ′[v $→ a],σ[a $→ d],κ〉
where d′ = 〈(λ (v) e), ρ′〉, a /∈ dom(σ)

This presentation is what is found in textbook treatments of
the CESK machine [2, page 166].

We employ a reachable states semantics:

evalCESK (e) = {ς | 〈e, [], [],mt〉 $−→→CESK ς}

2.4 Abstract CSK machine
In this section1, we define a 0-CFA-like abstraction of the
CESK machine. The analysis is 0-CFA-like in that functions
are approximated by their code component and all values
bound to a variable are merged in the abstract semantics. As
such, we take the finite set of variable names occuring in
the program as Âddr . Since environments would map all
variable names to themself, they are eliminated from the
semantics. It is important to note that stores map locations
to sets of values and are now joined rather than extended.

ς̂ ∈ Σ̂ = (Exp+D)× Ŝtore ×Kont
d̂ ∈ D = Lam

σ̂ ∈ Ŝtore = Âddr ⇀ P(D)
κ̂ ∈ Kont ::= mt | fn(d̂, κ̂) | ar(e, κ̂)

where Âddr is a finite set.

1 A preliminary version of this section was presented in the The 2010 Work-
shop on Scheme and Functional Programming [1], which states: “Publica-
tion of a paper at this workshop is not intended to replace conference or
journal publication, and does not preclude re-publication of a more com-
plete or finished version of the paper at some later conference or in a jour-
nal.”
The preliminary presentation treated a language in ANF, while here we
make explicit the connection to direct-style and the classical CESK ma-
chine.

Pushdown Abstractions of Objects and Functions 2 2011/3/6

101

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

E[(x+y)]

〈e, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈m, c2(n,C)〉 → 〈n+m,C〉
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉

1

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

E[(x+y)]

〈e, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈m, c2(n,C)〉 → 〈n+m,C〉
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉

1

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

x → 3

E[(x+y)]

E[(3+y)]

(3+y)

E[(3+[])]

y

y → 4

E[(3+4)]

C

(3+4) → 7

1

102

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

x → 3

E[(x+y)]

E[(3+y)]

(3+y)

E[(3+[])]

y

y → 4

E[(3+4)]

C

c1(C, y)

1

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

x

E[(x+y)]

〈e, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈m, c2(n,C)〉 → 〈n+m,C〉
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉

1

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

x → 3

E[(x+y)]

〈e, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈m, c2(n,C)〉 → 〈n+m,C〉
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉

1

103

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

x → 3

E[(x+y)]

E[(3+y)]

(3+y)

E[(3+[])]

y

y → 4

E[(3+4)]

C

c1(C, y)

1

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

x → 3

E[(x+y)]

〈e, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈m, c2(n,C)〉 → 〈n+m,C〉
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉

1

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

x → 3

E[(x+y)]

〈e, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈m, c2(n,C)〉 → 〈n+m,C〉
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉

1

104

c2(C, 3)

(3+4) → 7

E[]

〈e, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉
〈m, c2(n,C)〉 → 〈n+m,C〉

2

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

x → 3

E[(x+y)]

E[(3+y)]

(3+y)

E[(3+[])]

y

〈e, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈m, c2(n,C)〉 → 〈n+m,C〉
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉

1

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

x → 3

E[(x+y)]

E[(3+y)]

(3+y)

E[(3+[])]

y

y → 4

〈e, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈m, c2(n,C)〉 → 〈n+m,C〉
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉

1

105

c2(C, 3)

(3+4) → 7

E[]

〈e, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉
〈m, c2(n,C)〉 → 〈n+m,C〉

2

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

x → 3

E[(x+y)]

E[(3+y)]

(3+y)

E[(3+[])]

y

y → 4

〈e, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈m, c2(n,C)〉 → 〈n+m,C〉
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉

1

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

x → 3

E[(x+y)]

E[(3+y)]

(3+y)

E[(3+[])]

y

y → 4

〈e, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈m, c2(n,C)〉 → 〈n+m,C〉
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉

1

106

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

x → 3

E[(x+y)]

E[(3+y)]

(3+y)

E[(3+[])]

y

y → 4

E[(3+4)]

C

(3+4) → 7

1

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

x → 3

E[(x+y)]

E[(3+y)]

(3+y)

E[(3+[])]

y

y → 4

E[(3+4)]

(3+4) → 7

〈e, C〉

1

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

(x+y)

E[([]+y)]

x → 3

E[(x+y)]

E[(3+y)]

(3+y)

E[(3+[])]

y

y → 4

E[(3+4)]

(3+4)

〈e, C〉

1

107

Stack machine:〈〈x, ρ〉,κ〉 → 〈c,κ〉 where ρ(x) = c
〈c, c3(〈(λ (x) e), ρ〉,κ) → 〈〈e, ρ[x $→ c]〉,κ〉
〈c, c2(e, ρ,κ)〉 → 〈〈e, ρ〉, c3(c,κ)〉
〈〈(e0 e1), ρ〉,κ〉 → 〈〈e0, ρ〉, c2(e1, ρ,κ)〉

Figure 1. Environment machine for λv . (Not for paper.)

Reduction relation:

((λ (x) e) v) → [v/x]e

2.2 Machine for λv

Closures:
c ::= 〈(λ (x) e), ρ〉

Continuations:

κ ::= c1
| c2(e, ρ,κ)
| c3(c,κ)

2.3 CESK machine
The CESK machine operates on a configuration consisting
of a control string (C), which is either an expression or a de-
notable value; an environment (E) mapping free variables to
addresses, a store (S) mapping from addresses to denotable
values; and a continuation (K) representing remaining com-
putation. To retrieve the binding of a variable, the evaluator
now uses the environment to find the address where the value
can be found in the store. To bind a variable to a value, the
store is extended with a new address mapping to the value
and the environment is extended mapping the variable name
to this newly allocated address.

ς ∈ Σ = (Exp+D)× Env × Store ×Kont
d ∈ D = Lam× Env
ρ ∈ Env = Var ⇀ Addr
σ ∈ Store = Addr ⇀ D
κ ∈ Kont ::= mt | fn(d,κ) | ar(e, ρ,κ)

where Addr is an infinite set.

Evaluation contexts E are represented as follows: [] is
represented by mt; E[([] e)] is represented by ar(e, ρ,κ)
where ρ closes e and κ represents E; and E[(d [])] is
represented by fn(d,κ) where κ represents E.

Denotable values are represented with closures: a λ-term
paired with its environment. Environments are partial maps
from variables to addresses, stores are partial maps from
addresses to storeable values.

e0 e1 e2 e3 E[e′] E[e′′] e′ → e′′

e ::= n | (e+e)

(n+m) → n+m

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(e, C) | c2(n,C)

〈m, c2(n,C)〉 → 〈n+m,C〉
〈n, c1(e, C)〉 → 〈e, c2(n,C)〉
〈(e1+e2), C〉 → 〈e1, c1(e2, C)〉

P →! n ⇐⇒ 〈P, c0〉 →! 〈n, c0〉
The CESK transition function is defined as:

$−→CESK

〈(λ (x) e), ρ,σ,κ〉 〈〈(λ (v) e), ρ〉, ρ,σ,κ〉

〈v, ρ,σ,κ〉 〈σ(ρ(v)), ρ,σ,κ〉

〈(e0 e1), ρ,σ,κ〉 〈e0, ρ,σ,ar(e1, ρ,κ)〉

〈d, ρ,σ,ar(e, ρ′,κ)〉 〈e, ρ′,σ, fn(d,κ)〉

〈d, ρ,σ, fn(d′,κ)〉 〈e, ρ′[v $→ a],σ[a $→ d],κ〉
where d′ = 〈(λ (v) e), ρ′〉, a /∈ dom(σ)

This presentation is what is found in textbook treatments of
the CESK machine [2, page 166].

We employ a reachable states semantics:

evalCESK (e) = {ς | 〈e, [], [],mt〉 $−→→CESK ς}

2.4 Abstract CSK machine
In this section1, we define a 0-CFA-like abstraction of the
CESK machine. The analysis is 0-CFA-like in that functions
are approximated by their code component and all values
bound to a variable are merged in the abstract semantics. As
such, we take the finite set of variable names occuring in
the program as Âddr . Since environments would map all
variable names to themself, they are eliminated from the
semantics. It is important to note that stores map locations
to sets of values and are now joined rather than extended.

ς̂ ∈ Σ̂ = (Exp+D)× Ŝtore ×Kont
d̂ ∈ D = Lam

σ̂ ∈ Ŝtore = Âddr ⇀ P(D)
κ̂ ∈ Kont ::= mt | fn(d̂, κ̂) | ar(e, κ̂)

where Âddr is a finite set.

1 A preliminary version of this section was presented in the The 2010 Work-
shop on Scheme and Functional Programming [1], which states: “Publica-
tion of a paper at this workshop is not intended to replace conference or
journal publication, and does not preclude re-publication of a more com-
plete or finished version of the paper at some later conference or in a jour-
nal.”
The preliminary presentation treated a language in ANF, while here we
make explicit the connection to direct-style and the classical CESK ma-
chine.

Pushdown Abstractions of Objects and Functions 2 2011/3/6

Correctness:

c2(C, 3)

(3+4) → 7

E[]

〈e, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉
〈m, c2(n,C)〉 → 〈n+m,C〉

2

108

Semantics

Machine

Analysis

A Closer Look

〈〈x, ρ〉,κ〉 → 〈c,κ〉 where ρ(x) = c
〈c, c3(〈(λ (x) e), ρ〉,κ) → 〈〈e, ρ[x $→ c]〉,κ〉
〈c, c2(e, ρ,κ)〉 → 〈〈e, ρ〉, c3(c,κ)〉
〈〈(e0 e1), ρ〉,κ〉 → 〈〈e0, ρ〉, c2(e1, ρ,κ)〉

Figure 1. Environment machine for λv . (Not for paper.)

Reduction relation:

((λ (x) e) v) → [v/x]e

2.2 Machine for λv

Closures:
c ::= 〈(λ (x) e), ρ〉

Continuations:

κ ::= c1
| c2(e, ρ,κ)
| c3(c,κ)

2.3 CESK machine
The CESK machine operates on a configuration consisting
of a control string (C), which is either an expression or a de-
notable value; an environment (E) mapping free variables to
addresses, a store (S) mapping from addresses to denotable
values; and a continuation (K) representing remaining com-
putation. To retrieve the binding of a variable, the evaluator
now uses the environment to find the address where the value
can be found in the store. To bind a variable to a value, the
store is extended with a new address mapping to the value
and the environment is extended mapping the variable name
to this newly allocated address.

ς ∈ Σ = (Exp+D)× Env × Store ×Kont
d ∈ D = Lam× Env
ρ ∈ Env = Var ⇀ Addr
σ ∈ Store = Addr ⇀ D
κ ∈ Kont ::= mt | fn(d,κ) | ar(e, ρ,κ)

where Addr is an infinite set.

Evaluation contexts E are represented as follows: [] is
represented by mt; E[([] e)] is represented by ar(e, ρ,κ)
where ρ closes e and κ represents E; and E[(d [])] is
represented by fn(d,κ) where κ represents E.

Denotable values are represented with closures: a λ-term
paired with its environment. Environments are partial maps
from variables to addresses, stores are partial maps from
addresses to storeable values.

e0 e1 e2 e3 E[e′] E[e′′] e′ → e′′

e ::= n | (e+e)

(n+m) → n+m

E ::= [] | (E+e) | (n+E)

The CESK transition function is defined as:

$−→CESK

〈(λ (x) e), ρ,σ,κ〉 〈〈(λ (v) e), ρ〉, ρ,σ,κ〉

〈v, ρ,σ,κ〉 〈σ(ρ(v)), ρ,σ,κ〉

〈(e0 e1), ρ,σ,κ〉 〈e0, ρ,σ,ar(e1, ρ,κ)〉

〈d, ρ,σ,ar(e, ρ′,κ)〉 〈e, ρ′,σ, fn(d,κ)〉

〈d, ρ,σ, fn(d′,κ)〉 〈e, ρ′[v $→ a],σ[a $→ d],κ〉
where d′ = 〈(λ (v) e), ρ′〉, a /∈ dom(σ)

This presentation is what is found in textbook treatments of
the CESK machine [2, page 166].

We employ a reachable states semantics:

evalCESK (e) = {ς | 〈e, [], [],mt〉 $−→→CESK ς}

2.4 Abstract CSK machine
In this section1, we define a 0-CFA-like abstraction of the
CESK machine. The analysis is 0-CFA-like in that functions
are approximated by their code component and all values
bound to a variable are merged in the abstract semantics. As
such, we take the finite set of variable names occuring in
the program as Âddr . Since environments would map all
variable names to themself, they are eliminated from the
semantics. It is important to note that stores map locations
to sets of values and are now joined rather than extended.

ς̂ ∈ Σ̂ = (Exp+D)× Ŝtore ×Kont
d̂ ∈ D = Lam

σ̂ ∈ Ŝtore = Âddr ⇀ P(D)
κ̂ ∈ Kont ::= mt | fn(d̂, κ̂) | ar(e, κ̂)

where Âddr is a finite set.

1 A preliminary version of this section was presented in the The 2010 Work-
shop on Scheme and Functional Programming [1], which states: “Publica-
tion of a paper at this workshop is not intended to replace conference or
journal publication, and does not preclude re-publication of a more com-
plete or finished version of the paper at some later conference or in a jour-
nal.”
The preliminary presentation treated a language in ANF, while here we
make explicit the connection to direct-style and the classical CESK ma-
chine.

Pushdown Abstractions of Objects and Functions 2 2011/3/6

O(n2.9)

e ::= n | x | (e+e)

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

〈e, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈m, c2(n,C)〉 → 〈n+m,C〉
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉

1

O(n2.9)

e ::= n | x | (e+e)

(n+m) → n+m

x → n where ρ(x) = n

E ::= [] | (E+e) | (n+E)

C ::= c0 | c1(C, e) | c2(n,C)

〈e, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈m, c2(n,C)〉 → 〈n+m,C〉
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉

1

c2(C, 3)

(3+4) → 7

E[]

〈e, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉
〈m, c2(n,C)〉 → 〈n+m,C〉

2

109

The first four clauses of δ are straightforward implementa-
tions of the CSK transition rules. Notice that none of these
rules consume input, so the PDA simulates the CSK machine
on the program regardless of the input tape. The remaining
clauses handle the input.

The input, which represents the state of the CSK machine
whose reachability is being determined, will be encoded as
a configuration followed by a string of stack frames:

f(ς̂) = f(〈de, σ̂,κ〉) = 〈de, σ̂〉 · f(κ)
f(mt) = mt

f(fn(d̂,κ)) = fn(d̂) · f(κ)
f(ar(e,κ)) = ar(e) · f(κ)

The second to last δ rules states that whenever the PDA
is in configuration c and reading the same configuration c
on the input tape, it consumes the symbol. This signifies
the simulation of the CSK machine reached a point where
the CS component was c. At this point, the PDA changes
modes by entering the • state and reads the remaining stack
elements on the input tape. So long as the next stack frame
on the input tape matches the PDA’s stack frame, the PDA
consumes and pops. If the PDA has no input and an empty
stack, the given abstract state is reachable.

Theorem 2 (Correctness).

f(ς̂) ∈ N(PDFA(e)) ⇐⇒ ς̂ ∈ eval ĈSK (e)

3. Pushdown abstractions of Java
[4]

3.1 Reduction semantics
Language syntax:

L ::= class C extends C { %C %f; K %M }

K ::= C(%C %f){ super(%f); this.%f=%f; }

M ::= C m(%C %x){ return e; }
e ::= x | e.f | e.m(%e) | new C(%e) | (C)e

Syntactic values:

v ::= new C(%v)

We restrict the congruence and reduction rules of FJ to
impose left-to-right call-by-value reduction. The congruence
rules are presented in the (equivalent) form of a grammar of
evaluation contexts.

Evaluation contexts:

E ::= [] (1)
| E.f (2)
| E.m(%e) (3)
| v.m(v, . . . , E, e, . . .) (4)
| new C(v, . . . , E, e, . . .) (5)
| (C)E (6)

Reduction relation:

fields(C) = %C %f

new C(%v).fi → vi

C <: D

(D)(new C(%v)) → new C(%v)

mbody(m,C) = %x.e
(new C(%v)).m(%u) → [%u/%x, new C(%v)]e

3.2 Machine for FJ
We now develop a CESK-style machine for FJ.

Closures:
c ::= new C(%c)

Continuations:
κ ::= c1

| c2(f,κ)
| c3(m,%e, ρ,κ)
| c4(c,%c,%e, ρ,κ)
| c5(C,%c,%e, ρ,κ)
| c6(C,κ)

[Notation: x . . . means zero or more xs. The empty se-
quence is written as an empty string, e.g. 〈, 〉 is a pair of two
empty sequences.]

[theorem relating FJ machine and reduction semantics]

3.3 Pushdown abstraction of FJ
[theorem relating FJ machine and pushdown abstraction]

4. Pushdown abstractions of JavaScript
[3]

4.1 Reduction semantics
Language syntax:

c ::= num | str | bool | undefined | null
v ::= c | func(%x) { return e } | { str.v . . . }
p ::= str:e
e ::= x | v | { %p } | let (x = e) e | e(%e)

| e[e] | e[e] = e | del e[e]

Evaluation contexts:

E ::= [] (1)
| let (x = E) e (2)
| E(%e) (3)
| v(e . . . E, v . . .) (4)
| { str:v . . . str:E, %p } (5)
| E[e] (6)
| v[E] (7)
| E[e] = e (8)
| v[E] = e (9)
| v[v] = E (10)
| del E[e] (11)
| del v[E] (12)

Reduction relation:

Pushdown Abstractions of Objects and Functions 4 2011/3/6

JavaScript

Syntax:

110

〈〈x, ρ〉,σ, C〉 → 〈c,σ, C〉 where σ(ρ(x)) = c

〈new C(#c),σ, c2(fi, C)〉 → 〈ci,σ, C〉 where fields(C) = #C #f
〈new C(#c),σ, c6(D,C)〉 → 〈new C(#c),σ, C〉 where C <: D
〈cn,σ, c4(c, cn−1 . . . c0, , ρ, C)〉 → 〈〈e, [#x $→ #a, this $→ a]〉,σ[#a $→ c0 . . . cn−1cn, a $→ c], C〉

where mbody(m,C) = #x.e, a#a fresh
〈〈new C(#c), ρ〉,σ, C〉 → 〈new C(#c),σ, C〉
〈c,σ, c3(m, e0#e, ρ, C)〉 → 〈〈e0, ρ〉,σ, c4(c, ,#e, ρ, C)〉
〈c,σ, c3(m, , ρ, C)〉 → 〈〈e, [this $→ a]〉,σ[a $→ c], C〉 where mbody(m,C) = .e, a fresh
〈ci,σ, c4(c,#c, ei+1#e, ρ, C)〉 → 〈〈ei+1, ρ〉,σ, c4(c, ci#c,#e, ρ, C)〉
〈c,σ, c5(C,#c, e0#e, ρ, C)〉 → 〈〈e0, ρ〉,σ, c5(C, c#c,#e, ρ, C)〉
〈cn,σ, c5(C, cn−1 . . . c0, , ρ, C)〉 → 〈new C(c0 . . . cn−1cn),σ, C〉
〈〈e.f, ρ〉,σ, C〉 → 〈〈e, ρ〉,σ, c2(f, C)〉
〈〈e.m(#e), ρ〉,σ, C〉 → 〈〈e, ρ〉,σ, c3(m,#e, ρ, C)〉
〈〈new C(e#e), ρ〉,σ, C〉 → 〈〈e, ρ〉,σ, c5(C, ,#e, ρ, C)〉
〈〈new C(), ρ〉,σ, C〉 → 〈new C(),σ, C〉
〈〈(C)e, ρ〉,σ, C〉 → 〈〈e, ρ〉,σ, c6(C,C)〉

Figure 2. Environment and store machine for FJ.

〈〈x, ρ〉, σ̂, C〉 → 〈c, σ̂, C〉 where σ̂(ρ(x)) % c
〈cn, σ̂, c4(c, cn−1 . . . c0, , ρ, C)〉 → 〈〈e, [#x $→ #a, this $→ a]〉, σ̂ & [#a $→ c0 . . . cn−1cn, a $→ c], C〉

where mbody(m,C) = #x.e, a#a freshish
〈c, σ̂, c3(m, , ρ, C)〉 → 〈〈e, [this $→ a]〉, σ̂ & [a $→ c], C〉 where mbody(m,C) = .e, a freshish

Figure 3. Pushdown abstraction of environment and store machine for FJ (selected rules).

let (x = v) e → [v/x]e

(func(#x) { return e })(#v) → [#v/#x]e

{ . . . str i.v . . . }[str i] → v

strx '∈ (str1 . . .)

{ str1.v1 . . . }[strx] → undefined

{ . . . str i.vi . . . }[str i] = v → { . . . str i.v . . . }

strx '∈ (str1 . . .)

{ str1.v1 . . . }[strx] = v → { strx.v, str1.v1 . . . }

del { . . . str i.vi . . . }[str i] → { . . . }

strx '∈ (str1 . . .)

del { str1.v1 . . . }[strx] → { str1.v1 . . . }

Figure 4. Reduction semantics for λJS .

4.2 Machine for λJS

Closures:

q ::= str.c
c ::= { #q } | 〈func(#x) { return e }, ρ〉

Continuations:

C ::= c1
| c2(x, e, ρ, C)
| c3(#e, ρ, C)
| c4(c,#c,#e, ρ, C)
| c5(str , #q, #p, ρ, C)
| c6(e, ρ, C)
| c7(c, C)
| c8(e, e, ρ, C)
| c9(c, e, ρ, C)
| c10(c, c, C)
| c11(e, ρ, C)
| c12(c, C)

Continuation constructors are labeled ci to coincide with
the numbering of evaluation context each continuation rep-
resents.

Pushdown Abstractions of Objects and Functions 5 2011/3/8

JavaScript

Reductions:

111

The first four clauses of δ are straightforward implementa-
tions of the CSK transition rules. Notice that none of these
rules consume input, so the PDA simulates the CSK machine
on the program regardless of the input tape. The remaining
clauses handle the input.

The input, which represents the state of the CSK machine
whose reachability is being determined, will be encoded as
a configuration followed by a string of stack frames:

f(ς̂) = f(〈de, σ̂,κ〉) = 〈de, σ̂〉 · f(κ)
f(mt) = mt

f(fn(d̂,κ)) = fn(d̂) · f(κ)
f(ar(e,κ)) = ar(e) · f(κ)

The second to last δ rules states that whenever the PDA
is in configuration c and reading the same configuration c
on the input tape, it consumes the symbol. This signifies
the simulation of the CSK machine reached a point where
the CS component was c. At this point, the PDA changes
modes by entering the • state and reads the remaining stack
elements on the input tape. So long as the next stack frame
on the input tape matches the PDA’s stack frame, the PDA
consumes and pops. If the PDA has no input and an empty
stack, the given abstract state is reachable.

Theorem 2 (Correctness).

f(ς̂) ∈ N(PDFA(e)) ⇐⇒ ς̂ ∈ eval ĈSK (e)

3. Pushdown abstractions of Java
[4]

3.1 Reduction semantics
Language syntax:

L ::= class C extends C { %C %f; K %M }

K ::= C(%C %f){ super(%f); this.%f=%f; }

M ::= C m(%C %x){ return e; }
e ::= x | e.f | e.m(%e) | new C(%e) | (C)e

Syntactic values:

v ::= new C(%v)

We restrict the congruence and reduction rules of FJ to
impose left-to-right call-by-value reduction. The congruence
rules are presented in the (equivalent) form of a grammar of
evaluation contexts.

Evaluation contexts:

E ::= [] (1)
| E.f (2)
| E.m(%e) (3)
| v.m(v, . . . , E, e, . . .) (4)
| new C(v, . . . , E, e, . . .) (5)
| (C)E (6)

Reduction relation:

fields(C) = %C %f

new C(%v).fi → vi

C <: D

(D)(new C(%v)) → new C(%v)

mbody(m,C) = %x.e
(new C(%v)).m(%u) → [%u/%x, new C(%v)]e

3.2 Machine for FJ
We now develop a CESK-style machine for FJ.

Closures:
c ::= new C(%c)

Continuations:
κ ::= c1

| c2(f,κ)
| c3(m,%e, ρ,κ)
| c4(c,%c,%e, ρ,κ)
| c5(C,%c,%e, ρ,κ)
| c6(C,κ)

[Notation: x . . . means zero or more xs. The empty se-
quence is written as an empty string, e.g. 〈, 〉 is a pair of two
empty sequences.]

[theorem relating FJ machine and reduction semantics]

3.3 Pushdown abstraction of FJ
[theorem relating FJ machine and pushdown abstraction]

4. Pushdown abstractions of JavaScript
[3]

4.1 Reduction semantics
Language syntax:

c ::= num | str | bool | undefined | null
v ::= c | func(%x) { return e } | { str.v . . . }
p ::= str:e
e ::= x | v | { %p } | let (x = e) e | e(%e)

| e[e] | e[e] = e | del e[e]

Evaluation contexts:

E ::= [] (1)
| let (x = E) e (2)
| E(%e) (3)
| v(e . . . E, v . . .) (4)
| { str:v . . . str:E, %p } (5)
| E[e] (6)
| v[E] (7)
| E[e] = e (8)
| v[E] = e (9)
| v[v] = E (10)
| del E[e] (11)
| del v[E] (12)

Reduction relation:

Pushdown Abstractions of Objects and Functions 4 2011/3/6

〈〈x, ρ〉,σ, C〉 → 〈c,σ, C〉 where σ(ρ(x)) = c

〈new C(#c),σ, c2(fi, C)〉 → 〈ci,σ, C〉 where fields(C) = #C #f
〈new C(#c),σ, c6(D,C)〉 → 〈new C(#c),σ, C〉 where C <: D
〈cn,σ, c4(c, cn−1 . . . c0, , ρ, C)〉 → 〈〈e, [#x $→ #a, this $→ a]〉,σ[#a $→ c0 . . . cn−1cn, a $→ c], C〉

where mbody(m,C) = #x.e, a#a fresh
〈〈new C(#c), ρ〉,σ, C〉 → 〈new C(#c),σ, C〉
〈c,σ, c3(m, e0#e, ρ, C)〉 → 〈〈e0, ρ〉,σ, c4(c, ,#e, ρ, C)〉
〈c,σ, c3(m, , ρ, C)〉 → 〈〈e, [this $→ a]〉,σ[a $→ c], C〉 where mbody(m,C) = .e, a fresh
〈ci,σ, c4(c,#c, ei+1#e, ρ, C)〉 → 〈〈ei+1, ρ〉,σ, c4(c, ci#c,#e, ρ, C)〉
〈c,σ, c5(C,#c, e0#e, ρ, C)〉 → 〈〈e0, ρ〉,σ, c5(C, c#c,#e, ρ, C)〉
〈cn,σ, c5(C, cn−1 . . . c0, , ρ, C)〉 → 〈new C(c0 . . . cn−1cn),σ, C〉
〈〈e.f, ρ〉,σ, C〉 → 〈〈e, ρ〉,σ, c2(f, C)〉
〈〈e.m(#e), ρ〉,σ, C〉 → 〈〈e, ρ〉,σ, c3(m,#e, ρ, C)〉
〈〈new C(e#e), ρ〉,σ, C〉 → 〈〈e, ρ〉,σ, c5(C, ,#e, ρ, C)〉
〈〈new C(), ρ〉,σ, C〉 → 〈new C(),σ, C〉
〈〈(C)e, ρ〉,σ, C〉 → 〈〈e, ρ〉,σ, c6(C,C)〉

Figure 2. Environment and store machine for FJ.

〈〈x, ρ〉, σ̂, C〉 → 〈c, σ̂, C〉 where σ̂(ρ(x)) % c
〈cn, σ̂, c4(c, cn−1 . . . c0, , ρ, C)〉 → 〈〈e, [#x $→ #a, this $→ a]〉, σ̂ & [#a $→ c0 . . . cn−1cn, a $→ c], C〉

where mbody(m,C) = #x.e, a#a freshish
〈c, σ̂, c3(m, , ρ, C)〉 → 〈〈e, [this $→ a]〉, σ̂ & [a $→ c], C〉 where mbody(m,C) = .e, a freshish

Figure 3. Pushdown abstraction of environment and store machine for FJ (selected rules).

let (x = v) e → [v/x]e

(func(#x) { return e })(#v) → [#v/#x]e

{ . . . str i.v . . . }[str i] → v

strx '∈ (str1 . . .)

{ str1.v1 . . . }[strx] → undefined

{ . . . str i.vi . . . }[str i] = v → { . . . str i.v . . . }

strx '∈ (str1 . . .)

{ str1.v1 . . . }[strx] = v → { strx.v, str1.v1 . . . }

del { . . . str i.vi . . . }[str i] → { . . . }

strx '∈ (str1 . . .)

del { str1.v1 . . . }[strx] → { str1.v1 . . . }

Figure 4. Reduction semantics for λJS .

4.2 Machine for λJS

Closures:

q ::= str.c
c ::= { #q } | 〈func(#x) { return e }, ρ〉

Continuations:

C ::= c1
| c2(x, e, ρ, C)
| c3(#e, ρ, C)
| c4(c,#c,#e, ρ, C)
| c5(str , #q, #p, ρ, C)
| c6(e, ρ, C)
| c7(c, C)
| c8(e, e, ρ, C)
| c9(c, e, ρ, C)
| c10(c, c, C)
| c11(e, ρ, C)
| c12(c, C)

Continuation constructors are labeled ci to coincide with
the numbering of evaluation context each continuation rep-
resents.

Pushdown Abstractions of Objects and Functions 5 2011/3/8

JavaScript
Eval. Contexts: Continuations:

112

〈〈x, ρ〉,σ, C〉 → 〈c,σ, C〉 where σ(ρ(x)) = c
〈c,σ, c2(x, e, ρ, C)〉 → 〈〈e, ρ[x $→ a]〉,σ[a $→ c], C〉 where a is fresh
〈c,σ, c4(〈func(#x) { return e }, ρ〉, cn . . . c0, , ρ′, C)〉 → 〈〈e, ρ[#x $→ #a]〉,σ[#a $→ c0 . . . cnc], C〉 where #a are fresh
〈〈str i, ρ〉,σ, c7({ . . . str i.ci . . . }, C)〉 → 〈ci,σ, C〉
〈〈strx, ρ〉,σ, c7({ str1.c1 . . . }, C)〉 → 〈undefined,σ, C〉 where strx %∈ (str1 . . .)
〈c,σ, c10({ . . . str i.ci . . . }, 〈str i, ρ〉, C)〉 → 〈{ . . . str i.c . . . },σ, C〉
〈c,σ, c10({ str1.c1 . . . }, 〈strx, ρ〉, C)〉 → 〈{ strx.c, str1.c1 . . . },σ, C〉 where strx %∈ (str1 . . .)
〈〈str i, ρ〉,σ, c12({ . . . str i.ci . . . }, C)〉 → 〈{ . . . },σ, C〉
〈〈strx, ρ〉,σ, c12({ str1.c1 . . . }, C)〉 → 〈{ str1.c1 . . . },σ, C〉 where strx %∈ (str1 . . .)
〈c,σ, c3(e#e, ρ, C)〉 → 〈〈e, ρ〉,σ, c4(c, ,#e, ρ, C)
〈〈func() { return e }, ρ〉,σ, c3(, ρ′, C) → 〈〈e, ρ〉,σ, C〉
〈c,σ, c5(str , #q, , ρ, C)〉 → 〈{ str:c, #q }, C〉
〈c,σ, c5(str , #q, str1:e1#p, ρ, C)〉 → 〈〈e1, ρ〉,σ, c5(str1, str:c#q, #p, ρ, C)〉
〈〈let (x = e0) e1, ρ〉,σ, C〉 → 〈〈e0, ρ〉,σ, c2(x, e1, ρ, C)〉
〈〈e(), ρ〉,σ, C〉 → 〈〈e, ρ〉,σ, C〉
〈〈e0(e#e), ρ〉,σ, C〉 → 〈〈e0, ρ〉,σ, c3(e#e, ρ, C)〉
〈〈{ }, ρ〉,σ, C〉 → 〈{ },σ, C〉
〈〈{ str0:e0#p }, ρ〉,σ, C〉 → 〈〈e0, ρ〉,σ, c5(str0, , #p, ρ, C)
〈〈e0[e1], ρ〉,σ, C〉 → 〈〈e0, ρ〉,σ, c6(e1, ρ, C)〉
〈〈e0[e1] = e2, ρ〉,σ, C〉 → 〈〈e0, ρ〉,σ, c8(e1, e2, ρ, C)〉
〈〈del e0[e1], ρ〉,σ, C〉 → 〈〈e0, ρ〉,σ, c11(e1, ρ, C)〉

Figure 5. Environment and store machine for λJS .

〈〈x, ρ〉, σ̂, C〉 → 〈c, σ̂, C〉 where σ̂(ρ(x)) ' c
〈c, σ̂, c2(x, e, ρ, C)〉 → 〈〈e, ρ[x $→ a]〉, σ̂ ([a $→ c], C〉 where a is freshish
〈c, σ̂, c4(〈func(#x) { return e }, ρ〉, cn . . . c0, , ρ′, C)〉 → 〈〈e, ρ[#x $→ #a]〉, σ̂ ([#a $→ c0 . . . cnc], C〉 where #a are freshish

Figure 6. Pushdown abstraction of environment and store machine for λJS (selected rules).

4.3 Pushdown abstraction of λJS

5. Validation
[In addition to proving correctness of the machines, we test
it. We run a sample of tests and compare the reduction se-
mantics, machine, and reference implementation for equal-
ity.]

[C. Klein and R. B. Finder. Randomized testing in PLT
Redex. In ACM SIGPLAN Workshop on Scheme and Func-
tional Programming, 2009.]

[In addition to proving soundness of the abstract seman-
tics, we test it. For each state in our machine test-bed, we ask
if the state is reachable in the abstract semantics and make
sure the answer is always yes.]

6. Evaluation
[Compare FSA to PDA.]

7. Related work
7.1 Pushdown analyses
[6] [1]

7.2 Java analyses
7.3 JavaScript analyses
[A. Guha, S. Krishnamurthi, and T. Jim. Static analysis for
Ajax intrusion detec- tion. In International World Wide Web
Conference, 2009.]

[P. Heidegger and P. Thiemann. Recency types for dynamically-
typed, object- based languages: Strong updates for JavaScript.
In ACM SIGPLAN International Workshop on Foundations
of Object-Oriented Languages, 2009.]

[S. H. Jensen, A. MÃÿller, and P. Thiemann. Type anal-
ysis for JavaScript. In International Static Analysis Sympo-
sium, 2009.]

[C. Anderson, P. Giannini, and S. Drossopoulou. Towards
type inference for JavaScript. In European Conference on
Object-Oriented Programming, 2005.]

Pushdown Abstractions of Objects and Functions 6 2011/3/8

JavaScript
Machine:

113

c2(C, 3)

(3+4) → 7

E[]

〈e, C〉

〈e, ρ,σ, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉
〈m, c2(n,C)〉 → 〈n+m,C〉

2

114

c2(C, 3)

(3+4) → 7

E[]

〈e, C〉

〈e, ρ,σ, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉
〈m, c2(n,C)〉 → 〈n+m,C〉

2

Var→Addr Addr→Value

115

Semantics

Machine

Analysis

A Closer Look

115

Semantics

Machine

Analysis

A Closer Look

116

Key idea:
Deterministic state transition system
with an infinite state space.

Non-Deterministic state transition system
with a finite state space.

117

c2(C, 3)

(3+4) → 7

E[]

〈e, C〉

〈e, ρ,σ, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉
〈m, c2(n,C)〉 → 〈n+m,C〉

2

Move continuations into heap.

Step 1:

117

c2(C, 3)

(3+4) → 7

E[]

〈e, C〉

〈e, ρ,σ, C〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉
〈m, c2(n,C)〉 → 〈n+m,C〉

2

Move continuations into heap.

Step 1:

118

c2(C, 3)

(3+4) → 7

E[]

〈e, C〉

〈e, ρ,σ, C〉

〈e, ρ,σ, a〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉
〈m, c2(n,C)〉 → 〈n+m,C〉

2

c2(C, 3)

(3+4) → 7

E[]

〈e, C〉

〈e, ρ,σ, C〉

〈e, ρ,σ, a〉

σ(a) = C

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉
〈m, c2(n,C)〉 → 〈n+m,C〉

2

Step 1:

118

c2(C, 3)

(3+4) → 7

E[]

〈e, C〉

〈e, ρ,σ, C〉

〈e, ρ,σ, a〉

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉
〈m, c2(n,C)〉 → 〈n+m,C〉

2

c2(C, 3)

(3+4) → 7

E[]

〈e, C〉

〈e, ρ,σ, C〉

〈e, ρ,σ, a〉

σ(a) = C

〈n,C〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉
〈m, c2(n,C)〉 → 〈n+m,C〉

2

Step 1: Var→Addr Addr→Value+Cont

119

c2(C, 3)

(3+4) → 7

E[]

〈e, C〉

〈e, ρ,σ, C〉

〈e, ρ,σ, a〉

σ(a) = C

〈n,C〉

〈(e1+e2), ρ,σ, C〉 → 〈e1, ρ,σ, c1(C, e2)〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉
〈m, c2(n,C)〉 → 〈n+m,C〉

2

c2(C, 3)

(3+4) → 7

E[]

〈e, C〉

〈e, ρ,σ, C〉

〈e, ρ,σ, a〉

σ(a) = C

〈n,C〉

〈(e1+e2), ρ,σ, C〉 → 〈e1, ρ,σ, c1(C, e2)〉
〈(e1+e2), ρ,σ, a〉 → 〈e1, ρ,σ[a′ $→ c1(a, e2)], a′〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉
〈m, c2(n,C)〉 → 〈n+m,C〉

2

c2(C, 3)

(3+4) → 7

E[]

〈e, C〉

〈e, ρ,σ, C〉

〈e, ρ,σ, a〉

σ(a) = C

〈n,C〉

〈(e1+e2), ρ,σ, C〉 → 〈e1, ρ,σ, c1(C, e2)〉
〈(e1+e2), ρ,σ, a〉 → 〈e1, ρ,σ[a′ $→ c1(a, e2)], a′〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉
〈m, c2(n,C)〉 → 〈n+m,C〉

⇐⇒

2

Step 1:

120

Step 2:

c2(C, 3)

(3+4) → 7

E[]

〈e, C〉

〈e, ρ,σ, C〉

〈e, ρ,σ, a〉

〈e, ρ, σ̂, a〉

σ(a) = C

〈n,C〉

〈(e1+e2), ρ,σ, C〉 → 〈e1, ρ,σ, c1(C, e2)〉
〈(e1+e2), ρ,σ, a〉 → 〈e1, ρ,σ[a′ $→ c1(a, e2)], a′〉
〈(e1+e2), ρ, σ̂, a〉 → 〈e1, ρ, σ̂ % [a′ $→ c1(a, e2)], a′〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉
〈m, c2(n,C)〉 → 〈n+m,C〉

⇐⇒

⇒

P

P ′

P ′′

2

c2(C, 3)

(3+4) → 7

E[]

〈e, C〉

〈e, ρ,σ, C〉

〈e, ρ,σ, a〉

〈e, ρ, σ̂, a〉

σ̂(a) $ C

σ(a) = C

〈n,C〉

〈(e1+e2), ρ,σ, C〉 → 〈e1, ρ,σ, c1(C, e2)〉
〈(e1+e2), ρ,σ, a〉 → 〈e1, ρ,σ[a′ %→ c1(a, e2)], a′〉
〈(e1+e2), ρ, σ̂, a〉 → 〈e1, ρ, σ̂ & [a′ %→ c1(a, e2)], a′〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉
〈m, c2(n,C)〉 → 〈n+m,C〉

⇐⇒

⇒

P

P ′

P ′′

2

120

Step 2: Var→Addr Addr→℘(Value+Cont)

c2(C, 3)

(3+4) → 7

E[]

〈e, C〉

〈e, ρ,σ, C〉

〈e, ρ,σ, a〉

〈e, ρ, σ̂, a〉

σ(a) = C

〈n,C〉

〈(e1+e2), ρ,σ, C〉 → 〈e1, ρ,σ, c1(C, e2)〉
〈(e1+e2), ρ,σ, a〉 → 〈e1, ρ,σ[a′ $→ c1(a, e2)], a′〉
〈(e1+e2), ρ, σ̂, a〉 → 〈e1, ρ, σ̂ % [a′ $→ c1(a, e2)], a′〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉
〈m, c2(n,C)〉 → 〈n+m,C〉

⇐⇒

⇒

P

P ′

P ′′

2

c2(C, 3)

(3+4) → 7

E[]

〈e, C〉

〈e, ρ,σ, C〉

〈e, ρ,σ, a〉

〈e, ρ, σ̂, a〉

σ̂(a) $ C

σ(a) = C

〈n,C〉

〈(e1+e2), ρ,σ, C〉 → 〈e1, ρ,σ, c1(C, e2)〉
〈(e1+e2), ρ,σ, a〉 → 〈e1, ρ,σ[a′ %→ c1(a, e2)], a′〉
〈(e1+e2), ρ, σ̂, a〉 → 〈e1, ρ, σ̂ & [a′ %→ c1(a, e2)], a′〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉
〈m, c2(n,C)〉 → 〈n+m,C〉

⇐⇒

⇒

P

P ′

P ′′

2

121

c2(C, 3)

(3+4) → 7

E[]

〈e, C〉

〈e, ρ,σ, C〉

〈e, ρ,σ, a〉

σ(a) = C

〈n,C〉

〈(e1+e2), ρ,σ, C〉 → 〈e1, ρ,σ, c1(C, e2)〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉
〈m, c2(n,C)〉 → 〈n+m,C〉

2

c2(C, 3)

(3+4) → 7

E[]

〈e, C〉

〈e, ρ,σ, C〉

〈e, ρ,σ, a〉

σ(a) = C

〈n,C〉

〈(e1+e2), ρ,σ, C〉 → 〈e1, ρ,σ, c1(C, e2)〉
〈(e1+e2), ρ,σ, a〉 → 〈e1, ρ,σ[a′ $→ c1(a, e2)], a′〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉
〈m, c2(n,C)〉 → 〈n+m,C〉

2

c2(C, 3)

(3+4) → 7

E[]

〈e, C〉

〈e, ρ,σ, C〉

〈e, ρ,σ, a〉

σ(a) = C

〈n,C〉

〈(e1+e2), ρ,σ, C〉 → 〈e1, ρ,σ, c1(C, e2)〉
〈(e1+e2), ρ,σ, a〉 → 〈e1, ρ,σ[a′ $→ c1(a, e2)], a′〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉
〈m, c2(n,C)〉 → 〈n+m,C〉

⇐⇒

2

c2(C, 3)

(3+4) → 7

E[]

〈e, C〉

〈e, ρ,σ, C〉

〈e, ρ,σ, a〉

σ(a) = C

〈n,C〉

〈(e1+e2), ρ,σ, C〉 → 〈e1, ρ,σ, c1(C, e2)〉
〈(e1+e2), ρ,σ, a〉 → 〈e1, ρ,σ[a′ $→ c1(a, e2)], a′〉
〈(e1+e2), ρ, σ̂, a〉 → 〈e1, ρ, σ̂ % [a′ $→ c1(a, e2)], a′〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉
〈m, c2(n,C)〉 → 〈n+m,C〉

⇐⇒

2

c2(C, 3)

(3+4) → 7

E[]

〈e, C〉

〈e, ρ,σ, C〉

〈e, ρ,σ, a〉

σ(a) = C

〈n,C〉

〈(e1+e2), ρ,σ, C〉 → 〈e1, ρ,σ, c1(C, e2)〉
〈(e1+e2), ρ,σ, a〉 → 〈e1, ρ,σ[a′ $→ c1(a, e2)], a′〉
〈(e1+e2), ρ, σ̂, a〉 → 〈e1, ρ, σ̂ % [a′ $→ c1(a, e2)], a′〉

〈(e1+e2), C〉 → 〈e1, c1(C, e2)〉
〈x,C〉 → 〈n,C〉 where ρ(x) = n
〈n, c1(C, e)〉 → 〈e, c2(n,C)〉
〈m, c2(n,C)〉 → 〈n+m,C〉

⇐⇒

⇒

2

Step 1:

122

Semantics

Machine

Analysis

ICFP’10/CACM’11

122

Analysis of:
First-class control
Exceptions
Mutation
Base values
...

Semantics

Machine

Analysis

ICFP’10/CACM’11

123

Semantics

Machine

Analysis

ICFP’10/CACM’11

123

Semantics

Machine

Analysis

ICFP’10/CACM’11

123

Static verification of security
via stack inspectionSemantics

Machine

Analysis

ICFP’10/CACM’11

124

Machine

Analysis

Abstract Models of Memory Management*

Abstract

Greg Morrisett Matthias Felleisen Robert Harper

Carnegie Mellon Rice University Carnegie Mellon

jgmorris@cs .cmu. edu matthias@cs .rice. edu rwh@cs. emu. edu

Most specifications of garbage collectors concentrate on the
low-level algorithmic details of how to find and preserve ac-
cessible objects. Often, they focus on bit-level manipula-
tions such as “scanning stack frames,” “marking objects,”
‘(tagging data,” etc. While these details are important in
some contexts, they often obscure the more fundamental as-
pects of memory management: what objects are garbage and
why?

We develop a series of calculi that are just low-level
enough that we can express allocation and garbage collec-
tion, yet are sufficiently abstract that we may formally prove
the correctness of various memory management strategies.
By making the heap of a program syntactically apparent, we
can specify memory actions as rewriting rules that allocate
values on the heap and automatically dereference pointers
to such objects when needed. This formulation permits the
specification of garbage collection as a relation that removes
portions of the heap without affecting the outcome of the
evaluation.

Our high-level approach allows us to specify in a compact
manner a wide variety of memory management techniques,
including standard trace-based garbage collection (i. e., the
family of copying and mark/sweep collection algorithms),
generational collection, and type-based, tag-free collection.
Furthermore, since the definition of garbage is based on the
semantzcs of the underlying language instead of the conser-
vative approximation of inaccessibility, we are able to specify
and prove the idea that type inference can be used to collect
some objects that are accessible but never used.

*This work was sponsored in part by the Advanced Research
Projects Agency (ARPA), CSTO, under the title “The Fox Project:
Advanced Development of Systems Software,” ARPA Order No, 8313,
issued by ESD/AVS under Contract No. F1962S–91–C–0168, Wright
Laboratory, Aeronautical Systems Center, Air Force Materiel Com-
mand, USAF, and ARPA grant No. F33615-93-I-1330. Views and
conclusions contained in this document are those of the authors and
should not be interpreted as necessarily representing official policies
or endorsements, either expressed or implied, of Wright Laboratory
or the United State~ Government,

Penmssion to make di$itailhard copies of all or pmt of this material wl~h-
Out fee is granted prowded that the cop!es are not made or distnb”tcd
for profit or commercial ~dvanhge, the AC&f copyright/semer
nouce, the tMe o f the publication md its date appew, md notw IS given
that copyright is by permission of the Assocwmon for Computmg Machinc~,
Inc. (ACM). To copy o(herwse, to republish, to post on servers or to
redistribute to lists, re.qums specific pa-mission md}or fee.
FPCA ’95 La Jollz, CA USA” 1995 ACIM O-8979 1-7/95/0006 . ..$3.50

1 Memory Safety

Advanced programming languages manage memory alloca-
tion and deallocation automatically. Automatic memory
managers, or garbage collectors, significantly facilitate the
programming process because programmers can rely on the
language implementation for the delicate tasks of finding
and freeing unneeded objects. Indeed, the presence of a
garbage collector ensures memory safety in the same way
that a type system guarantees type safety no program writ-
ten in an advanced programming language will crash due
to dangling pointer problems while allocation, access, and
deallocation are transparent. However, in contrast to type
systems, memory management strategies and particularly
garbage collectors rarely come with a compact formulation
and a formal proof of soundness. Since garbage collectors
work on the machine representations of abstract values, the
very idea of providing a proof of memory safety sounds unre-
alistic given the lack of simple models of memory operations.

The recently developed syntactic approaches to the spec-
ification of language semantics by Felleisen and Hieb [1 I]
and Mason and Talcott [18, 19] are the first execution mod-
els that are intensional enough to permit the specification
of memory management actions and yet are sufficiently ab-
stract to permit compact proofs of important properties.
Starting from the AU-S calculus of Felleisen and Hieb, we
design compact specifications of a number of memory man-
agement ideas and prove several correctness theorems.

The basic idea underlying the development of our gar-
bage collection calculi is the representation of a program’s
run-time memory as a global series of syntactic declarations.
The program evaluation rules allocate large objects in the
global declaration, which represents the heap, and automat-
ically dereference pointers to such objects when needed. As
a result, garbage collection can be specified as any relation
that removes portions of the current heap without affecting
the result of a program’s execution.

In Section 2, we present a small functional programming
language, Age, with a rewriting semantics that makes allo-
cation explicit. We define a semantic notion of garbage col-
lection for Agc and prove that there is no optimal collection
strategy that is computable. In Section 3, we specify the
“free-variable” garbage collection rule which models trace-
based collectors including mark/sweep and copying collec-
tors. We prove that the free-variable rule is correct and
provide two “implementations” at the syntactic level: the
first corresponds to a copying collector, the second to a gen-
erational one.

In Section 4, we formalize so-called “tag-free” collec-
tion algorithms for explicitly-typed, monomorphic languages
such as Pascal and Algol [7, 29, 8]. We show how to recover

66

ICFP’10/CACM’11

124

Machine

Analysis

Abstract Models of Memory Management*

Abstract

Greg Morrisett Matthias Felleisen Robert Harper

Carnegie Mellon Rice University Carnegie Mellon

jgmorris@cs .cmu. edu matthias@cs .rice. edu rwh@cs. emu. edu

Most specifications of garbage collectors concentrate on the
low-level algorithmic details of how to find and preserve ac-
cessible objects. Often, they focus on bit-level manipula-
tions such as “scanning stack frames,” “marking objects,”
‘(tagging data,” etc. While these details are important in
some contexts, they often obscure the more fundamental as-
pects of memory management: what objects are garbage and
why?

We develop a series of calculi that are just low-level
enough that we can express allocation and garbage collec-
tion, yet are sufficiently abstract that we may formally prove
the correctness of various memory management strategies.
By making the heap of a program syntactically apparent, we
can specify memory actions as rewriting rules that allocate
values on the heap and automatically dereference pointers
to such objects when needed. This formulation permits the
specification of garbage collection as a relation that removes
portions of the heap without affecting the outcome of the
evaluation.

Our high-level approach allows us to specify in a compact
manner a wide variety of memory management techniques,
including standard trace-based garbage collection (i. e., the
family of copying and mark/sweep collection algorithms),
generational collection, and type-based, tag-free collection.
Furthermore, since the definition of garbage is based on the
semantzcs of the underlying language instead of the conser-
vative approximation of inaccessibility, we are able to specify
and prove the idea that type inference can be used to collect
some objects that are accessible but never used.

*This work was sponsored in part by the Advanced Research
Projects Agency (ARPA), CSTO, under the title “The Fox Project:
Advanced Development of Systems Software,” ARPA Order No, 8313,
issued by ESD/AVS under Contract No. F1962S–91–C–0168, Wright
Laboratory, Aeronautical Systems Center, Air Force Materiel Com-
mand, USAF, and ARPA grant No. F33615-93-I-1330. Views and
conclusions contained in this document are those of the authors and
should not be interpreted as necessarily representing official policies
or endorsements, either expressed or implied, of Wright Laboratory
or the United State~ Government,

Penmssion to make di$itailhard copies of all or pmt of this material wl~h-
Out fee is granted prowded that the cop!es are not made or distnb”tcd
for profit or commercial ~dvanhge, the AC&f copyright/semer
nouce, the tMe o f the publication md its date appew, md notw IS given
that copyright is by permission of the Assocwmon for Computmg Machinc~,
Inc. (ACM). To copy o(herwse, to republish, to post on servers or to
redistribute to lists, re.qums specific pa-mission md}or fee.
FPCA ’95 La Jollz, CA USA” 1995 ACIM O-8979 1-7/95/0006 . ..$3.50

1 Memory Safety

Advanced programming languages manage memory alloca-
tion and deallocation automatically. Automatic memory
managers, or garbage collectors, significantly facilitate the
programming process because programmers can rely on the
language implementation for the delicate tasks of finding
and freeing unneeded objects. Indeed, the presence of a
garbage collector ensures memory safety in the same way
that a type system guarantees type safety no program writ-
ten in an advanced programming language will crash due
to dangling pointer problems while allocation, access, and
deallocation are transparent. However, in contrast to type
systems, memory management strategies and particularly
garbage collectors rarely come with a compact formulation
and a formal proof of soundness. Since garbage collectors
work on the machine representations of abstract values, the
very idea of providing a proof of memory safety sounds unre-
alistic given the lack of simple models of memory operations.

The recently developed syntactic approaches to the spec-
ification of language semantics by Felleisen and Hieb [1 I]
and Mason and Talcott [18, 19] are the first execution mod-
els that are intensional enough to permit the specification
of memory management actions and yet are sufficiently ab-
stract to permit compact proofs of important properties.
Starting from the AU-S calculus of Felleisen and Hieb, we
design compact specifications of a number of memory man-
agement ideas and prove several correctness theorems.

The basic idea underlying the development of our gar-
bage collection calculi is the representation of a program’s
run-time memory as a global series of syntactic declarations.
The program evaluation rules allocate large objects in the
global declaration, which represents the heap, and automat-
ically dereference pointers to such objects when needed. As
a result, garbage collection can be specified as any relation
that removes portions of the current heap without affecting
the result of a program’s execution.

In Section 2, we present a small functional programming
language, Age, with a rewriting semantics that makes allo-
cation explicit. We define a semantic notion of garbage col-
lection for Agc and prove that there is no optimal collection
strategy that is computable. In Section 3, we specify the
“free-variable” garbage collection rule which models trace-
based collectors including mark/sweep and copying collec-
tors. We prove that the free-variable rule is correct and
provide two “implementations” at the syntactic level: the
first corresponds to a copying collector, the second to a gen-
erational one.

In Section 4, we formalize so-called “tag-free” collec-
tion algorithms for explicitly-typed, monomorphic languages
such as Pascal and Algol [7, 29, 8]. We show how to recover

66

ICFP’10/CACM’11

124

Machine

Analysis

Improved precision and
efficiency via abstract GC

Abstract Models of Memory Management*

Abstract

Greg Morrisett Matthias Felleisen Robert Harper

Carnegie Mellon Rice University Carnegie Mellon

jgmorris@cs .cmu. edu matthias@cs .rice. edu rwh@cs. emu. edu

Most specifications of garbage collectors concentrate on the
low-level algorithmic details of how to find and preserve ac-
cessible objects. Often, they focus on bit-level manipula-
tions such as “scanning stack frames,” “marking objects,”
‘(tagging data,” etc. While these details are important in
some contexts, they often obscure the more fundamental as-
pects of memory management: what objects are garbage and
why?

We develop a series of calculi that are just low-level
enough that we can express allocation and garbage collec-
tion, yet are sufficiently abstract that we may formally prove
the correctness of various memory management strategies.
By making the heap of a program syntactically apparent, we
can specify memory actions as rewriting rules that allocate
values on the heap and automatically dereference pointers
to such objects when needed. This formulation permits the
specification of garbage collection as a relation that removes
portions of the heap without affecting the outcome of the
evaluation.

Our high-level approach allows us to specify in a compact
manner a wide variety of memory management techniques,
including standard trace-based garbage collection (i. e., the
family of copying and mark/sweep collection algorithms),
generational collection, and type-based, tag-free collection.
Furthermore, since the definition of garbage is based on the
semantzcs of the underlying language instead of the conser-
vative approximation of inaccessibility, we are able to specify
and prove the idea that type inference can be used to collect
some objects that are accessible but never used.

*This work was sponsored in part by the Advanced Research
Projects Agency (ARPA), CSTO, under the title “The Fox Project:
Advanced Development of Systems Software,” ARPA Order No, 8313,
issued by ESD/AVS under Contract No. F1962S–91–C–0168, Wright
Laboratory, Aeronautical Systems Center, Air Force Materiel Com-
mand, USAF, and ARPA grant No. F33615-93-I-1330. Views and
conclusions contained in this document are those of the authors and
should not be interpreted as necessarily representing official policies
or endorsements, either expressed or implied, of Wright Laboratory
or the United State~ Government,

Penmssion to make di$itailhard copies of all or pmt of this material wl~h-
Out fee is granted prowded that the cop!es are not made or distnb”tcd
for profit or commercial ~dvanhge, the AC&f copyright/semer
nouce, the tMe o f the publication md its date appew, md notw IS given
that copyright is by permission of the Assocwmon for Computmg Machinc~,
Inc. (ACM). To copy o(herwse, to republish, to post on servers or to
redistribute to lists, re.qums specific pa-mission md}or fee.
FPCA ’95 La Jollz, CA USA” 1995 ACIM O-8979 1-7/95/0006 . ..$3.50

1 Memory Safety

Advanced programming languages manage memory alloca-
tion and deallocation automatically. Automatic memory
managers, or garbage collectors, significantly facilitate the
programming process because programmers can rely on the
language implementation for the delicate tasks of finding
and freeing unneeded objects. Indeed, the presence of a
garbage collector ensures memory safety in the same way
that a type system guarantees type safety no program writ-
ten in an advanced programming language will crash due
to dangling pointer problems while allocation, access, and
deallocation are transparent. However, in contrast to type
systems, memory management strategies and particularly
garbage collectors rarely come with a compact formulation
and a formal proof of soundness. Since garbage collectors
work on the machine representations of abstract values, the
very idea of providing a proof of memory safety sounds unre-
alistic given the lack of simple models of memory operations.

The recently developed syntactic approaches to the spec-
ification of language semantics by Felleisen and Hieb [1 I]
and Mason and Talcott [18, 19] are the first execution mod-
els that are intensional enough to permit the specification
of memory management actions and yet are sufficiently ab-
stract to permit compact proofs of important properties.
Starting from the AU-S calculus of Felleisen and Hieb, we
design compact specifications of a number of memory man-
agement ideas and prove several correctness theorems.

The basic idea underlying the development of our gar-
bage collection calculi is the representation of a program’s
run-time memory as a global series of syntactic declarations.
The program evaluation rules allocate large objects in the
global declaration, which represents the heap, and automat-
ically dereference pointers to such objects when needed. As
a result, garbage collection can be specified as any relation
that removes portions of the current heap without affecting
the result of a program’s execution.

In Section 2, we present a small functional programming
language, Age, with a rewriting semantics that makes allo-
cation explicit. We define a semantic notion of garbage col-
lection for Agc and prove that there is no optimal collection
strategy that is computable. In Section 3, we specify the
“free-variable” garbage collection rule which models trace-
based collectors including mark/sweep and copying collec-
tors. We prove that the free-variable rule is correct and
provide two “implementations” at the syntactic level: the
first corresponds to a copying collector, the second to a gen-
erational one.

In Section 4, we formalize so-called “tag-free” collec-
tion algorithms for explicitly-typed, monomorphic languages
such as Pascal and Algol [7, 29, 8]. We show how to recover

66

ICFP’10/CACM’11

Effects of abstract GC

ICFP’10/CACM’11

Effects of abstract GC

ICFP’10/CACM’11

Effects of abstract GC

ICFP’10/CACM’11

126

My challenge to
ICFP:
Develop a program analysis for reasoning about:

Space-consumption in a lazy language
State and control in a language with effects

Security in a language with stack inspection

Blame in a language with behavioral contracts

Safe parallelism in a language with futures

✓✓
✓✓
✍

127

Garbage collection
Java

JavaScript

✓✓
✓

May happen in parallel for threads✍

Space-consumption in a lazy language
State and control in a language with effects

Security in a language with stack inspection

Blame in a language with behavioral contracts

Safe parallelism in a language with futures

✓✓
✓✓
✍

128

Complexity and
Modularity

1M LOC

129

Aho et al. (1968)

Time and tape complexity of pushdown automaton languages:

! Introduces the class “2NPDA”

! Gives a O(n3) algorithm for 2NPDA.

Subcubic Control-Flow Analysis Algorithms, Symposium in Honor of Mitchell Wand, Northeastern University, August, 2009 – p.7/35

+ ☹=

1M LOC

129

Aho et al. (1968)

Time and tape complexity of pushdown automaton languages:

! Introduces the class “2NPDA”

! Gives a O(n3) algorithm for 2NPDA.

Subcubic Control-Flow Analysis Algorithms, Symposium in Honor of Mitchell Wand, Northeastern University, August, 2009 – p.7/35

+ ☹
☝

=

1M LOC

129

Aho et al. (1968)

Time and tape complexity of pushdown automaton languages:

! Introduces the class “2NPDA”

! Gives a O(n3) algorithm for 2NPDA.

Subcubic Control-Flow Analysis Algorithms, Symposium in Honor of Mitchell Wand, Northeastern University, August, 2009 – p.7/35

+ ☹
☝

=

On the Cubic Bottleneck in
Subtyping and Flow Analysis

Nevin Heintze*

Abstract

We prove that certain data-$ow and control-$ow prob-
lems are 2NPDA-complete. This means that these problems
are in the class 2NPDA and that they are hardfor that class.
The fact that they are in 2NPDA demonstrates the richness
of the class. The fact that they are hard for 2NPDA can be
interpreted as evidence they can not be solved in sub-cubic
time - the cubic time decision procedure for an arbitrary
2NPDA problem has not been improved since its discovery
in 1968.

1. Introduction

Cubic time complexity has become a common feature
of algorithms for the automated analysis of computer pro-
grams. There is a general feeling that many of these algo-
rithms are inherently cubic time - no sub-cubic procedure
has been found. Such cubic time algorithms include Shivers’
control flow analysis [171, the Palsberg and 0’ Keefe method
of determining typability in the Amadio-Cardelli type sys-
tem [15, 11, and various set-based analyses [5, 10, 113. At
an intuitive level the inherent cubic complexity in all these
problems arises from the need to compute a dynamic tran-
sitive closure - one must compute the transitive closure of
a directed graph while adding edges to the input graph as
a consequence of edges derived for the output graph. Not
only do these problems all seem inherently cubic, they all
seem structurally similar and inherently cubic for the same
reason.

In order to better understand the “cubic bottleneck” in
flow analysis, Melski and Reps have investigated a sim-
ple data-flow reachability problem [131.’ They relate this

“Bell Labs, 600 Mountain Ave, Murray Hill, NJ 07974, nch@bell-
labs.com.

tAT&T Labs, 600 Mountain Ave, Murray Hill, NJ 07974,
dmac@research.att.com.

‘Following Heintze and Jaffar [4], Melski and Reps formulate this data-
flow reachability problem as a set-constraint problem. We use the data-flow
formulation here because it seems closer to applications.

David McAllestert

data-flow reachability problem to the problem of context-
free-language reachability (CFL-reachability). An instance
of the CFL-reachability problem consists of a context free
grammar and a directed graph where each arc is labeled with
a symbol from the terminal alphabet. The problem is to de-
termine whether there is a path between two given nodes
such that the sequence of labels on the arcs in that path is a
string in the language generated by the given grammar. The
CFL-reachability problem can be solved in O(lGln3) time
where]GI is the size of the grammar (the number of produc-
tions in a Chomsky normal form grammar) and n is the num-
ber of nodes in the graph. Melski and Reps give a linear time
reduction from data-flow reachability to CFL-reachability.
This reduction produces a grammar of size n, so the reduc-
tion appears to yield an O(n4) method of solving data-flow
reachability. However, Melski and Reps show that the re-
duction produces problems with special structure and that
the overall running time of solving a data-flow problem by
reduction to CFL-reachability is O(n3). More significantly,
Melski and Reps give a reduction of CFL-reachability to
data-flow reachability which runs in O(IGln) time. For a
fixed grammar this reduction is linear time. If the data-flow
reachability problem could be solved in sub-cubic time then
the CFL-reachability problem over a fixed grammar could
also be solved in sub-cubic time.

Here we investigate the cubic bottleneck by relating it
to the class 2NPDA. 2NPDA is the class of languages (or
problems) definable by a two way nondeterministic push-
down automata. In 1968 it was shown that any problem
in the class 2NPDA can be solved in cubic time [2]. But
no sub-cubic procedure for an arbitrary 2NPDA problem is
known. Neal has shown that a certain 2NPDA problem -
ground monadic rewriting reachability (GMR-reachability)
-is 2NPDA complete [141.’ In other words, this problem is
both in the class 2NPDA and is 2NPDA-hard, i.e., if GMR-
reachability can be solved in sub-cubic time then all 2NPDA
problems can be solved in sub-cubic time. We review
Neal’s result here. We also show that data-flow reachability,
control-flow reachability, and the complement of Amadio-

2Neal uses a “monotone closure” formulation of GMR-problem. We
find the GMR formulation more natural.

1043-6871/97 $10.00 0 1997 IEEE 342

HOSC’11

1M LOC

129

+ =☹

Chaudhuri (2008)

Subcubic algorithms for recursive state machines:

! Uses Rytter’s technique to obtain O(n3/ lg n)
CFL-reachability algorithm.

Subcubic Control-Flow Analysis Algorithms, Symposium in Honor of Mitchell Wand, Northeastern University, August, 2009 – p.15/35

1M LOC

129

+ =☹O(n2.9)

1

1M LOC

129

+ =☹
☝

O(n2.9)

1

1M LOC

130

1M LOC

130

✁

1K LOC

131

✁

132

Analysis

Semantics

132

Analysis

...of whole programs

Semantics

132

Analysis

...of whole programs

Semantics
...of whole programs

133

Analysis

Semantics

133

Analysis

Semantics

...of partial programs

133

Analysis

Semantics

...of partial programs

...of partial programs

arXiv 1103.1362

134

f(5)

134

f(5)

f:int!int

134

f(5)

134

f(5)

f →

134

f(5)

(5) 120→*
f →

135

f(5)

f:int!int

135

f(5)

f:int!int

135

int!int

135

int!int

f → (int!int)

135

int!int

(int!int)(5) int→
f → (int!int)

136

Reduction: (m+n) → m+ n (1)

(int+v) → int (2)

(v+int) → int (3)

3

Eval. Contexts:

(m+n) → m+ n (1)

(int+v) → int (2)

(v+int) → int (3)

E ::= [] | (E+e) | (v+E)

3

(m+n) → m+ n (1)

(int+v) → int (2)

(v+int) → int (3)

E ::= [] | (E+e) | (v+E)

e ::= v | x | (e+e) (4)

v ::= n | int (5)

3

Syntax:

(m+n) → m+ n (1)

(int+v) → int (2)

(v+int) → int (3)

E ::= [] | (E+e) | (v+E)

e ::= v | x | (e+e) (4)

v ::= n | int (5)

e ::= . . . | (if0 e e e) (6)

E ::= [] | (E+e) | (v+E) | (if0 E e e)

(if0 0 e1 e2) → e1 (7)

(if0 n e1 e2) → e2 where n "= 0 (8)

(if0 int e1 e2) → e1 (9)

(if0 int e1 e2) → e2 (10)

3

137

Reduction:

Eval. Contexts:

Syntax:

(m+n) → m+ n (1)

(int+v) → int (2)

(v+int) → int (3)

E ::= [] | (E+e) | (v+E)

e ::= v | x | (e+e) (4)

v ::= n | int (5)

e ::= . . . | (if0 e e e) (6)

E ::= [] | (E+e) | (v+E) | (if0 E e e)

3

(m+n) → m+ n (1)

(int+v) → int (2)

(v+int) → int (3)

E ::= [] | (E+e) | (v+E)

e ::= v | x | (e+e) (4)

v ::= n | int (5)

e ::= . . . | (if0 e e e) (6)

E ::= [] | (E+e) | (v+E) | (if0 E e e)

(if0 0 e1 e2) → e1 (7)

(if0 n e1 e2) → e1 where n "= 0 (8)

(if0 int e1 e2) → e1 (9)

(if0 int e1 e2) → e2 (10)

3

(m+n) → m+ n (1)

(int+v) → int (2)

(v+int) → int (3)

E ::= [] | (E+e) | (v+E)

e ::= v | x | (e+e) (4)

v ::= n | int (5)

e ::= . . . | (if0 e e e) (6)

E ::= [] | (E+e) | (v+E) | (if0 E e e)

(if0 0 e1 e2) → e1 (7)

(if0 n e1 e2) → e2 where n "= 0 (8)

(if0 int e1 e2) → e1 (9)

(if0 int e1 e2) → e2 (10)

3

137

Reduction:

Eval. Contexts:

Syntax:

(m+n) → m+ n (1)

(int+v) → int (2)

(v+int) → int (3)

E ::= [] | (E+e) | (v+E)

e ::= v | x | (e+e) (4)

v ::= n | int (5)

e ::= . . . | (if0 e e e) (6)

E ::= [] | (E+e) | (v+E) | (if0 E e e)

3

(m+n) → m+ n (1)

(int+v) → int (2)

(v+int) → int (3)

E ::= [] | (E+e) | (v+E)

e ::= v | x | (e+e) (4)

v ::= n | int (5)

e ::= . . . | (if0 e e e) (6)

E ::= [] | (E+e) | (v+E) | (if0 E e e)

(if0 0 e1 e2) → e1 (7)

(if0 n e1 e2) → e1 where n "= 0 (8)

(if0 int e1 e2) → e1 (9)

(if0 int e1 e2) → e2 (10)

3

138

Key idea:
Non-deterministic state transition system
with an infinite state space.

Non-deterministic state transition system
with a finite state space.

139

f(5)

f:prime?!int

Scales to higher-order
behavioral contracts

139

f(5)

f:prime?!int

Scales to higher-order
behavioral contracts

139

prime?!int

Scales to higher-order
behavioral contracts

139

prime?!int

f → (prime?!int)

Scales to higher-order
behavioral contracts

139

prime?!int

(prime?!int)(5) int→
f → (prime?!int)

→*

Scales to higher-order
behavioral contracts

140

Scalability{Complexity
Maintenance
Verification
Expressivity
Modularity

A Way
Forward

141

Past
Complexity:
 - ICFP’07: PTIME of context-insensitive CFA
 - SAS’08: PTIME of sub- 0CFAs
 - ICFP’08: EXPTIME of context-sensitive
 - HOSC’11: Subcubic bottleneck broken

A Way Forward
Expressive, maintainable, verifiable, modular, performant:
 - ICFP’10, CACM’11: Systematic approach analysis
 - PLDI’10: Object-oriented, functional bridge
 - SFP’10: Pushdown machine analysis
 - 2011 (in prep): Modular reduction for modular analysis

142

{Compositional
Componential
Modular
Parallel
Applied

Scalability

Future

143

Compositional

Applied
 Scripts to programs via analysis
 Analysis of the Racket Machine, X10
 Contract verification of .5MLOC

Parallel
May happen in parallel for H.O. + threads
Futures and imperative H.O. languages
Context-sensitive analysis on a GPU

Componential analyses for separate analysis
Composing analyses for mutual benefit

Modular
Beyond types and contracts as specifications

144

vision

☚ Understand higher-order program analysis

145

vision

☚ Systematic approach that scales

146

vision

☚ Systematic approach that scales

146

vision
Tools for reasoning about large-scale
software written in expressive,
modern languages.

☚

146

vision
Tools for reasoning about large-scale
software written in expressive,
modern languages.

☚

Thank you

