FROM PRINCIPLES
TO PRACTICE
WITH CLASS

IN THE FIRST YEAR

SAM TOBIN-HOCHSTADT
DAVID VAN HORN




—

T

SCHOOL
WELCOME




PRINCIPLES

SCHOOL

fh B D

w
N

7 WELCONE N




PR
IN
CIP
LES

SCHOOL

T
—_
;




PR
IN
CIP
LES

SCHOOL

T
> |
.




SCHOOL

M

PRINCIPLES

>

0.2I3.4

Industrial co-op

R —




SCHOOL

/ WELCOME

N

PRINCIPLES

>

Industrial co-op
PRACTICE w



PRINCIPLES

PRACTICE



PRINCIPLES

HOW TO DESIGN PROGRAMS

An Introduction to Programming and Computing

PRACTICE



PRINCIPLES

How to Design Classes

Data: Structure and Organization

HOW TO DESIGN PROGRAMS

Matthias Felleisen
Matthew Flatt

Robert Bruce Findler
Kathryn E. Gray
Shriram Krishnamurthi
Viera K. Proulx

An Infroduction to Programming and Computing

Matthias Robert Bruce Matthew Shriram
Felleisen Findler Flatt Krishnamurthi

PRACTICE



PRINCIPI F€

Under consideration for publication in J. Functional Programming 1

EDUCATIONAL PEARL
The Structure and Interpretation of the
Computer Science Curriculum

Matthias Felleisen, Northeastern University, Boston, MA, USA
Robert Bruce Findler, University of Chicago, Chicago, IL, USA
Matthew Flatt, University of Utah, Salt Lake City, UT, USA
Shriram Krishnamurthi, Brown University, Providence, RI, USA

Classes
Email: {matthias,robby,mflatt,shriram}@plt-scheme.org

HOW TO DESIGN P I

Abstract

Twenty years ago Abelson and Sussman’s Structure and Interpretation of Computer Pro-
grams radically changed the intellectual landscape of introductory computing courses. In-
stead of teaching some currently fashionable programming language, it employed Scheme
= 2 and functional programming to teach important ideas. Introductory courses based on the
A n l nfrOd U d| O n fo P rog ra m m | n g book showed up around the world and made Scheme and functional programming popular.
Unfortunately, these courses quickly disappeared again due to shortcomings of the book
and the whimsies of Scheme. Worse, the experiment left people with a bad impression of
Scheme and functional programming in general.

In this pearl, we propose an alternative role for functional programming in the first-year
curriculum. Specifically, we present a framework for discussing the first-year curriculum
and, based on it, the design rationale for our book and course, dubbed How to Design
Programs. The approach emphasizes the systematic design of programs. Experience shows
that it works extremely well as a preparation for a course on object-oriented programming.

Matthias Robert Bruce Matthe 1 History and critique

Fe"eisen Findler The publication of Abelson and Sussman’s Structure and Interpretation of Com-
puter Programs (sICP) (Abelson et al., 1985) revolutionized the landscape of the
introductory computing curriculum in the 1980s. Most importantly, the book lib-
erated the introductory course from the tyranny of syntax. Instead of arranging a
course around the syntax of a currently fashionable programming language, SICP
focused the first course on the study of important ideas in computing: functional ab-
straction, data abstraction, streams, data-directed programming, implementation
of message-passing objects, interpreters, compilers, and register machines.

Over a short period, many universities in the US and around the world switched
their first course to sicp and Scheme. The book became a major bestseller for MIT
Press.! Along with sICP, the Scheme programming language (Sussman & Steele Jr.,

1 According to Bob Prior (editor at MIT Press), SiCP sold 45,000 copies in its first five years
[personal communication, 9 June 2003].

w1 1T RACTICEL




Under consideration for publication in J. Functional Programming

EDUCATIONAL PEARL
The Structure and Interpretation of the
Computer Science Curriculum

Matthias Felleisen, Northeastern University, Boston, MA, USA
Robert Bruce Findler, University of Chicago, Chicago, IL, USA
Matthew Flatt, University of Utah, Salt Lake City, UT, USA
Shriram Krishnamurthi, Brown University, Providence, RI, USA

Email: {matthias,robby,mflatt,shriram}@plt-scheme.org

Abstract

Twenty years ago Abelson and Sussman’s Structure and Interpretation of Computer Pro-
grams radically changed the intellectual landscape of introductory computing courses. In-
stead of teaching some currently fashionable programming language, it employed Scheme
and functional programming to teach important ideas. Introductory courses based on the
book showed up around the world and made Scheme and functional programming popular.
Unfortunately, these courses quickly disappeared again due to shortcomings of the book
and the whimsies of Scheme. Worse, the experiment left people with a bad impression of
Scheme and functional programming in general.

In this pearl, we propose an alternative role for functional programming in the first-year
curriculum. Specifically, we present a framework for discussing the first-year curriculum
and, based on it, the design rationale for our book and course, dubbed How to Design
Programs. The approach emphasizes the systematic design of programs. Experience shows
that it works extremely well as a preparation for a course on object-oriented programming,.

1 History and critique

The publication of Abelson and Sussman’s Structure and Interpretation of Com-
puter Programs (SICP) (Abelson et al., 1985) revolutionized the landscape of the
introductory computing curriculum in the 1980s. Most importantly, the book lib-
erated the introductory course from the tyranny of syntax. Instead of arranging a
course around the syntax of a currently fashionable programming language, SICP
focused the first course on the study of important ideas in computing: functional ab-
straction, data abstraction, streams, data-directed programming, implementation
of message-passing objects, interpreters, compilers, and register machines.

Over a short period, many universities in the US and around the world switched
their first course to sicp and Scheme. The book became a major bestseller for MIT
Press.! Along with SICP, the Scheme programming language (Sussman & Steele Jr.,

1 According to Bob Prior (editor at MIT Press), sicp sold 45,000 copies in its first five years
[personal communication, 9 June 2003].




Under consideration for publication in J. Functional Programming

EDUCATIONAL PEARL
The Structure and Interpretation of the
Computer Science Curriculum

Matthias Felleisen, Northeastern University, Boston, MA, USA
Robert Bruce Findler, University of Chicago, Chicago, IL, USA
Matthew Flatt, University of Utah, Salt Lake City, UT, USA
Shriram Krishnamurthi, Brown University, Providence, RI, USA

Email: {matthias,robby,mflatt,shriram}@plt-scheme.org

Twenty years ago
grams radically c
stead of teaching
and functional prc
book showed up a;
Unfortunately, th
and the whimsies
Scheme and funct o in general.

In this pearl, we propose an alternative role for functional programming in the first-year
curriculum. Specifically, we present a framework for discussing the first-year curriculum
and, based on it, the design rationale for our book and course, dubbed How to Design
Programs. The approach emphasizes the systematic design of programs. Experience shows
that it works extremely well as a preparation for a course on object-oriented programming,.

1 History and critique

The publication of Abelson and Sussman’s Structure and Interpretation of Com-
puter Programs (SICP) (Abelson et al., 1985) revolutionized the landscape of the
introductory computing curriculum in the 1980s. Most importantly, the book lib-
erated the introductory course from the tyranny of syntax. Instead of arranging a
course around the syntax of a currently fashionable programming language, SICP
focused the first course on the study of important ideas in computing: functional ab-
straction, data abstraction, streams, data-directed programming, implementation
of message-passing objects, interpreters, compilers, and register machines.

Over a short period, many universities in the US and around the world switched
their first course to sicp and Scheme. The book became a major bestseller for MIT
Press.! Along with SICP, the Scheme programming language (Sussman & Steele Jr.,

1 According to Bob Prior (editor at MIT Press), sicp sold 45,000 copies in its first five years
[personal communication, 9 June 2003].




Under consideration for publication in J. Functional Programming 1

EDUCATIONAL PEARL
The Structure and Interpretation of the
Computer Science Curriculum

Matthias Felleisen, Northeastern University, Boston, MA, USA
Robert Bruce Findler, University of Chicago, Chicago, IL, USA
Matthew Flatt, University of Utah, Salt Lake City, UT, USA
Shriram Krishnamurthi, Brown University, Providence, RI, USA

Email: {matthias,robby,mflatt,shriram}@plt-scheme.org

wavenwo | Tntroduce only those language constructs that are necessary to

grams radically ck
stead of teaching :

wimeini feqch programming principles

Unfortunately, the
and the whimsies . oo
Scheme and functional programming in general.

In this pearl, we propose an alternative role for functional programming in the first-year
CuI‘I‘icuhlIn. Speciﬁnnll ............. 4+ o Fucvnnsranls fav Ainnsinnine dha Bund crnaw arswniaslaaana
and, based on it,

Programs. The ap

e 2 Choose a language with as few language constructs as possible,
and one in which they can be introduced one at a time

The pubhcatlon Ul APDCIdULL Al OUDdDdLLIALL D DU WCLWI € Wit LIGUEE P EUUGEII T =\ O

puter Programs (SICP) (Abelson et al., 1985) revolutionized the landscape of the

introductory computing curriculum in the 1980s. Most importantly, the book lib-
erated the introductory course from the tyranny of syntax. Instead of arranging a
course around the syntax of a currently fashionable programming language, SICP
focused the first course on the study of important ideas in computing: functional ab-
straction, data abstraction, streams, data-directed programming, implementation
of message-passing objects, interpreters, compilers, and register machines.

Over a short period, many universities in the US and around the world switched
their first course to SICP and Scheme. The book became a major bestseller for MIT
Press.! Along with s1CP, the Scheme programming language (Sussman & Steele Jr.,

I According to Bob Prior (editor at MIT Press), sicp sold 45,000 copies in its first five years
[personal communication, 9 June 2003].




rocket.rkt™ (define ...)¥ Check Syntax Q, Step @sl: Run 4% Stop @

#lang htdp/bsl

(require 2htdp/image)

(require 2htdp/universe)

; Use the rocket key to insert the rocket here.

(define ROCKET 4)
(define WIDTH 100)
(define HEIGHT 300)
(define MT-SCENE (empty-scene WIDTH HEIGHT))
; A World is a Number.
; Interp: distance from the ground in AU.
; render : World -> Scene
(check-expect (render 0)
(place-image ROCKET (/ WIDTH 2) HEIGHT MT-SCENE))

(define (render h)

(place-image ROCKET
(/ WIDTH 2)
(- HEIGHT h)
MT-SCENE))

; next : World -> World
(check-expect (next 0) 7)
(define (next h)

(+ h 7))

(big-bang 0
(on-tick next)
(to-draw render))

Language: htdp/bsl; memory limit: 1024 MB.
511
>

Plug-in Development - NbBundleTestjava - Eclipse SDK

File Ecit Source Refaclor

Navigate Search Project Run Window Help

- H& | 30 Q | BHFGC | @ | e | 48| JAAB H F oD

=0

4} com aramco powers. .

) powersZqui product ] |J] GenericBranch |

ed>RBG”

v v v v wvwvwew

@ L= com.aramco.powers2 ui

v (Bsrc
v {1 com.aramco.powers2.ui
(1) AppActionBarAdvisor java
[1) Application java
[1) appWorkbenchadvisor java
[3) appWorkbenchWindowAdvis
[3) 1Commandlds java
[J) MessagePopupaction java
[J) NbBundie java
[J) OpenviewaAction java
[1) Perspective java
[7) PluginConstants java
[1) PowerszPlugin java
[ ProjectView java
[3) TableEditor java
[1) TableView java
[5) Bundle properties
b [H com.aramco.powers2.ui.action
b [ com.aramco.powers2.uiforms
b {3 com.aramco.powers2.uiprojectr
b {3 com.aramco.powers2.uitable
b [H com.aramco.powers2.uivizards
b [§ com.aramco.powers2 xyplot.date
v (Sest
b 8 com.aramco.powers2.internal ui.
< {3 com.aramco.powers2.uitest

) NbBundleTest java

b {3 com.aramco.powers2.xyplot.dats

v vV VvV VvVVvVvVvVvVvTVvTVYvCTVYCTVYCTU®VQ

b {3 samples

=\ JRE System Library [jdk1.5.0_06)
ﬁPlug-ln Dependencies

= Junit4

= doc

= lcons

S META-INF

-
}—1

]

[e1h build properties
|| com.aramco powers2 uiproject.moc

|| IPlotDataModel violet

»

| plugin_customization.ini -

4

| o°

L)

27
28

g e v e

import com.aramco.powersZ.u.NbBundle;

SR A M [ M M L e i)

29/%*
30 * Tests the behavior of utility class NbBundle.
31 * Tests need to run against the background of a known set of ob)

3zt
33 *

This set of ohiects is called a test fixture. (Refer to http:/Avwaw ju

34 * @author Guanglin Du (dugl@petrochina.com.cn), Software Eng
35 %
J6public class NbBundleTest {

37
38
33
40
4
42
43
44
45
46
47
48
43
S0
a1
92
53
54
95

/0"0
* Uses the Bundle.properties to test NbBundle's behavior.
*
@Test
public void testExistingResource() {
String s1 = NbBundle.getMessage(ProjectView.class, "add_
assertEquals("Add New PVT or SAT table’, s1);

/04
* Uses the Bundle.properties to test NbBundle's behavior.
*
@Test
public void testNonExistingResource() {
String s1 = NbBundle.get\Message(ProjectView.class, ‘non-
assertEquals(*Ynon-existing", s1);

Pt
*Method main to run this class directly.
* Can be run this way also on a command line:
* java orgjunitrunnerJUnitCore samples.SimpleTestFixture
*f

public static void main(String args[]) {
JUnitCore./main("com.aramco.powersZ.u.utiltest NbBundle T

Kl 1]

Error Logl'l'asks[ Problems Comolo] Properﬁesl Search |du JUnit 23\\\_

Finished after 0.123 seconds

Runs: 272

g Erors: 0 B Failures: 0

b g.)com aramco.powers2 uitest NbBundleTest [Runner: JUnit 4)

ST ) O e 7 e oo L

Plug-in Development - NbB



rocket.rkt™ (define ...)¥ Check Syntax Q, Step @sl: Run 4% Stop @

#lang htdp/bsl

(require 2htdp/image)

(require 2htdp/universe)

; Use the rocket key to insert the rocket here.

(define ROCKET 4)
(define WIDTH 100)
(define HEIGHT 300)
(define MT-SCENE (empty-scene WIDTH HEIGHT))
; A World is a Number.
; Interp: distance from the ground in AU.
; render : World -> Scene
(check-expect (render 0)
(place-image ROCKET (/ WIDTH 2) HEIGHT MT-SCENE))

(define (render h)

(place-image ROCKET
(/ WIDTH 2)
(- HEIGHT h)
MT-SCENE))

; next : World -> World
(check-expect (next 0) 7)
(define (next h)

(+ h 7))

(big-bang 0
(on-tick next)
(to-draw render))

Language: htdp/bsl; memory limit: 1024 MB.
511
>

Plug-in Development - NbBundleTestjava - Eclipse SDK

File Ecit Source Refaclor

Navigate Search Project Run Window Help

- H& | 30 Q | BHFGC | @ | e | 48| JAAB H F oD

=0

4} com aramco powers. .

) powersZqui product ] |J] GenericBranch |

ed>RBG”

v v v v wvwvwew

@ L= com.aramco.powers2 ui

v (Bsrc
v {1 com.aramco.powers2.ui
(1) AppActionBarAdvisor java
[1) Application java
[1) appWorkbenchadvisor java
[3) appWorkbenchWindowAdvis
[3) 1Commandlds java
[J) MessagePopupaction java
[J) NbBundie java
[J) OpenviewaAction java
[1) Perspective java
[7) PluginConstants java
[1) PowerszPlugin java
[ ProjectView java
[3) TableEditor java
[1) TableView java
[5) Bundle properties
b [H com.aramco.powers2.ui.action
b [ com.aramco.powers2.uiforms
b {3 com.aramco.powers2.uiprojectr
b {3 com.aramco.powers2.uitable
b [H com.aramco.powers2.uivizards
b [§ com.aramco.powers2 xyplot.date
v (Sest
b 8 com.aramco.powers2.internal ui.
< {3 com.aramco.powers2.uitest

) NbBundleTest java

b {3 com.aramco.powers2.xyplot.dats

v vV VvV VvVVvVvVvVvVvTVvTVYvCTVYCTVYCTU®VQ

b {3 samples

=\ JRE System Library [jdk1.5.0_06)
ﬁPlug-ln Dependencies

= Junit4

= doc

= lcons

S META-INF

-
}—1

]

[e1h build properties
|| com.aramco powers2 uiproject.moc

|| IPlotDataModel violet

»

| plugin_customization.ini -

4

| o°

L)

27
28

g e v e

import com.aramco.powersZ.u.NbBundle;

SR A M [ M M L e i)

29/%*
30 * Tests the behavior of utility class NbBundle.
31 * Tests need to run against the background of a known set of ob)

3zt
33 *

This set of ohiects is called a test fixture. (Refer to http:/Avwaw ju

34 * @author Guanglin Du (dugl@petrochina.com.cn), Software Eng
35 %
J6public class NbBundleTest {

37
38
33
40
4
42
43
44
45
46
47
48
43
S0
a1
92
53
54
95

/0"0
* Uses the Bundle.properties to test NbBundle's behavior.
*
@Test
public void testExistingResource() {
String s1 = NbBundle.getMessage(ProjectView.class, "add_
assertEquals("Add New PVT or SAT table’, s1);

/04
* Uses the Bundle.properties to test NbBundle's behavior.
*
@Test
public void testNonExistingResource() {
String s1 = NbBundle.get\Message(ProjectView.class, ‘non-
assertEquals(*Ynon-existing", s1);

Pt
*Method main to run this class directly.
* Can be run this way also on a command line:
* java orgjunitrunnerJUnitCore samples.SimpleTestFixture
*f

public static void main(String args[]) {
JUnitCore./main("com.aramco.powersZ.u.utiltest NbBundle T

Kl 1]

Error Logl'l'asks[ Problems Comolo] Properﬁesl Search |du JUnit 23\\\_

Finished after 0.123 seconds

Runs: 272

g Erors: 0 B Failures: 0

b g.)com aramco.powers2 uitest NbBundleTest [Runner: JUnit 4)

ST ) O e 7 e oo L

Plug-in Development - NbB






regular, minimal syntax



regular, minimal syntax complicated irregular syntax



regular, minimal syntax complicated irregular syntax
untyped



regular, minimal syntax complicated irregular syntax




regular, minimal syntax complicated irregular syntax

typed

untyped

pedagogical environment



regular, minimal syntax

untyped

pedagogical environment

complicated irregular syntax

typed

industrial environment



regular, minimal syntax

complicated irregular syntax

untyped typed

industrial environment

pedagogical environment

mathematical numbers




regular, minimal syntax

complicated irregular syntax

untyped typed

pedagogical environment industrial environment

mathematical numbers machine numbers




regular, minimal syntax

untyped

pedagogical environment

mathematical numbers

images as values

complicated irregular syntax

typed

industrial environment

machine numbers




regular, minimal syntax

_

untyped

pedagogical environment

mathematical numbers

images as values

complicated irregular syntax

typed

industrial environment

machine numbers



regular, minimal syntax

untyped

pedagogical environment

mathematical numbers

images as values

Interaction

complicated irregular syntax

typed

industrial environment

machine numbers



regular, minimal syntax

_

untyped

pedagogical environment

mathematical numbers

images as values

Interaction

complicated irregular syntax

typed

industrial environment

machine numbers

compilation



regular, minimal syntax

complicated irregular syntax

untyped typed

pedagogical environment industrial environment
machine numbers

mathematical numbers

images as values

interaction compilation




regular, minimal syntax

untyped

pedagogical environment

mathematical numbers

images as values

Interaction

functions and structures

complicated irregular syntax

typed

industrial environment

machine numbers

compilation




regular, minimal syntax

_

untyped

pedagogical environment

mathematical numbers

images as values

Interaction

functions and structures

complicated irregular syntax

typed

industrial environment

machine numbers

compilation

objects



regular, minimal syntax

untyped

pedagogical environment

mathematical numbers

images as values

Interaction

functions and structures




1. Introduce only those language constructs that are necessary to
teach programming principles

T — —

2. Choose a language with as few language constructs as possible,
and one in which they can be introduced one at a time

e —

objects




1. Introduce only those language constructs that are necessary to
teach programming principles

2. Choose a language with as few language constructs as possible,
and one in which they can be introduced one at a time

#lang class

objects




#lang class/0
(define-class posn (fields x v))
new posn 3 4)

(

(send (new posn 3 4) x) ;=> 3

(send (new posn 3 4) y) ;=>4
objects




#lang class/1
(define-class posn (fields x v))
(new posn 3 4)

((new posn 3 4) . x) ;=> 3
((new posn 3 4) . vy) ;=>4

objects




#lang class/1
(define-class posn (fields
;; Posn —-> Number
;; Distance between this
(check-expect ((new posn
(define (dist that)
(sgrt (+ (sgr (- (this
(sgqr (- (this
;5 —> Number
;; Distance of thilis posn
(check-expect ((new posn
(check-expect ((new posn
(define (dist-origin)
(this . dist (new posn

X VY)

posn and that posn

0 0)

dist (new posn 3 4))

x) (that . x)))
y) (that . y))))))

from the origin

-

0 0) dist-origin) O0)
3 4) dist-origin) 5)
0 0))))
objects
I —

S)



Untitled > (define ..)~ B[=] @l Check Syntax V¢ Macro Stepper &Pl Run|p Stop [l
#lang class/1

;7 A Posn is a (new posn Number Number),
;7 which represents a point on the Cartesian plane
(define-class posn (fields x y)

;7 Posn -> Number

;; Distance between this posn and that posn

(check-expect ((new posn 0 0) . dist (new posn 3 4)) 5)

(define (dist that)

(sqrt (+ (sqr (- (this . x) (that . x)))
(sqr (- (this . y) (that . y))))))
;3 —-> Number

;; Distance of this posn from the origin
(check-expect ((new posn 0 0) . dist-origin) 0)
(check-expect ((new posn 3 4) . dist-origin) 5)
(define (dist-origin)

(this . dist (new posn 0 0))))

Welcome to DrRacket, version 5.3.3.5--2013-02-25(08800641/d) [3m].
Language: class/1; memory limit: 128 MB.
All 3 tests passed!

> ((new posn 6 10) . dist-origin)
11.661903789690601
>

Background expansion finished (%]
Determine language from source ¥ - 164.27 MBI:] Q o

objects




;; A Tree i1s one of:
;; — (make-leaf Number)

e o
r 7

- (make—-node Tree Number Tree)

(define-struct leaf (v))
(define-struct node (left v right))

;; sum : Tree -> Number

;; sums the elements of

(define (sum a-tree)
(cond

the given tree

[ (leaf? a-tree) (leaf-v a-tree) ]

[else
(+ (sum (node-left
(node-v a-tree)

a-tree))

(sum (node-right a-tree)))]))

I —

—

#lang class/1
; ;A Tree 1s one of:

°
4
°
4
°
4
°
4

°
4

°
4
°
4
°
4

4

°
4

— (new leaf Number)

— (new node Tree Number Tree)
and 1mplements

sum : —-> Number

sums the elements of this tree

(define-class leaf

(fields v)
(define (sum) (this . v)))

(define-class node

(fields left v right)
(define (sum)
(+ (this . left . sum)
(this . v)
(this . right . sum))))




#lang class/1
(require 2htdp/image class/universe)

(require 2htdp/image 2htdp/universe)

;; A World is a Number

(define-struct world (n)) ;; A World 1s a (new world Number)

(define-class world

;; tock : World -> World (fields n)
(define (tock w)
(make-world (addl (world-n w)))) ;; on-tick : -> World
(define (on-tick)
;; draw : World -> Image (new world (addl (this . n))))
(define (draw w)
(rotate (modulo (world-n w) 360) ;; to-draw : -> Image

(define (to-draw)
(rotate (modulo (this . n) 360)

) )

- : KeyEvent World -> World ) )

(define (press k w) (make-world 0))
;; on—-key : KeyEvent -> World

(big-bang (make-world 0) (define (on-key k) (new world 10)))

[on-tick tock]
[on-draw draw]
[on-key press])

(big-bang (new world 0))

I — T—




#lang class

0. objects
R — B




#lang class

0. objects




#lang class

0. objects

1. shorthand method call




#lang class

0. objects

1. shorthand method call

2. 1nheritance




#lang class

0. objects

1. shorthand method call

2. 1nheritance

3. overriding




#lang class

0. objects

1. shorthand method call

2. 1nheritance

3. overriding

4. first-class classes




#lang class

0. objects

——

1. shorthand method call

2. 1nheritance

3. overriding

| — ——

4. first-class classes

——

5. mutation




0. objects

1. shorthand method call

2. 1nheritance

3. overriding

4. first-class classes

5. mutation



SCHOOL

N

PRINCIPLES

>

#lang class

' 4 p
: )
' . ol - 3
| :.'-: ;v‘.‘ % %
. g '\' P P « ) .
PR SRR
/
: J
Industrial co-op
', ;
> -.\ »a
5 ‘ . -
|. "




ASUMU NICHOLAS
TAKIKAWA LABICH




SCHOOL

N

PRINCIPLES

>

#lang class

' » :
/ ’ -s: = ’ " ' o
’ . % . - — i .
~& ' i P ' 2
e, " »
" A P 5 .
1 \':;“.0 Y KA " 4 ,
’ : < .1 "’ : P -
4
Industrial l
~ -“ '
- S R o
N N . \JO
% g



http://www.ccs.neu.edu/course/cs2510h/
http://www.ccs.neu.edu/course/cs2510h/

