Deciding kCFA is complete for EXPTIME

David Van Horn and Harry Mairson
Overview

For any $k > 0$, we prove that the control flow decision problem is complete for deterministic exponential time (EXPTIME).

This theorem:

- gives an exact characterization of the computational complexity of the k-CFA hierarchy
- validates empirical observations that such control flow analysis is intractable
Plan

★ Proving lower bounds — *programming with analysis*
 — What is kCFA?
 — Linearity and precision
 — Non-linearity and an exponential iterator
★ Simulating exponential Turing machines with kCFA
★ Conclusions
Proving lower bounds

A lower bound establishes the minimum computational requirements it takes to solve a class of problems.

kCFA is provably intractable (EXPTIME-hard)

The proof goes by construction:
Proving lower bounds

A lower bound establishes the minimum computational requirements it takes to solve a class of problems.

kCFA is provably intractable (EXPTIME-hard)

The proof goes by construction:

- given the description of a Turing machine and its input,
Proving lower bounds

A lower bound establishes the minimum computational requirements it takes to solve a class of problems.

kCFA is provably intractable (EXPTIME-hard)

The proof goes by construction:

- given the description of a Turing machine and its input,
- produce an instance of the kCFA problem,
Proving lower bounds

A lower bound establishes the minimum computational requirements it takes to solve a class of problems.

kCFA is provably intractable (EXPTIME-hard)

The proof goes by construction:

★ given the description of a Turing machine and its input,
★ produce an instance of the kCFA problem,
★ whose analysis faithfully simulates the TM on the input
Proving lower bounds

A lower bound establishes the minimum computational requirements it takes to solve a class of problems.

\(k \text{CFA} \) is \textit{provably intractable} (EXPTIME-hard)

The \textit{proof} goes by construction:

\begin{itemize}
 \item given the description of a Turing machine and its input,
 \item produce an instance of the \(k \text{CFA} \) problem,
 \item whose analysis faithfully simulates the TM on the input
 \item for an exponential number of steps.
\end{itemize}
Proving lower bounds

A lower bound establishes the minimum computational requirements it takes to solve a class of problems.

kCFA is provably intractable (EXPTIME-hard)

The *proof* goes by construction:

★ given the description of a Turing machine and its input,
★ produce an instance of the kCFA problem,
★ whose analysis faithfully simulates the TM on the input
★ for an exponential number of steps.

A compiler!
Proving lower bounds

A lower bound establishes the minimum computational requirements it takes to solve a class of problems.

kCFA is provably intractable (EXPTIME-hard)

The proof goes by construction:

★ given the description of a Turing machine and its input,
★ produce an instance of the kCFA problem,
★ whose analysis faithfully simulates the TM on the input
★ for an exponential number of steps.

A (weird) compiler!
Strange animal

A compiler:

★ Source language: exponential TMs with input
★ Target language: the λ-calculus
★ Interpreter: kCFA (as TM simulator)

\therefore kCFA is complete for **EXPTIME**.
More strange animals

Other compilers (ICFP’07):

★ Source language: Boolean formulas
★ Target language: the λ-calculus
★ Interpreter: kCFA (as SAT solver)

∴ kCFA is NP-hard.
More strange animals

Other compilers (ICFP’07):
★ Source language: circuit with inputs
★ Target language: the linear λ-calculus
★ Interpreter: 0CFA (as λ evaluator)
∴ 0CFA is complete for PTIME.
More strange animals

Other compilers (SAS’08):

★ Source language: circuit with inputs
★ Target language: the linear λ-calculus
★ Interpreter: Simple closure analysis (as λ evaluator)

∴ Simple closure analysis is complete for PTIME.
More strange animals

Other compilers (Mairson, JFP’04):

- Source language: circuit with inputs
- Target language: the linear λ-calculus
- Interpreter: type inference (as λ evaluator)

∴ Simple type inference is complete for \textbf{PTIME}.
More strange animals

Other examples (Neergaard and Mairson, ICFP’04):

★ Source language: elementary TMs with input
★ Target language: the λ calculus
★ Interpreter: rank-k \wedge-type inference (as λ evaluator)

∴ Rank-k \wedge-type inference is complete for \textbf{DTIME($K(k,n)$)}.

International Conference on Functional Programming (ICFP), 2008
More strange animals

Other examples (Mairson, POPL’89):

★ Source language: exponential TMs with input
★ Target language: ML
★ Interpreter: type inference (as ML evaluator)

∴ ML type inference is complete for EXPTIME.
A complexity zoo of static analysis

\[0\text{CFA} \equiv \text{Simple closure analysis} \equiv \text{Sub-0CFA} \equiv \text{Simple type inference} \equiv \text{Linear } \lambda\text{-calculus} \equiv \text{MLL} \ldots \]
\[\subset \]
\[k\text{CFA} \equiv \text{ML type inference} \ldots \]
\[\subset \]
\[\text{Rank-}k \text{ intersection type inference} \ldots \]
\[\subset \]
\[\text{Exact CFA} \equiv \text{Simply typed } \lambda\text{-calculus} \ldots \]
\[\subset \]
\[\infty\text{CFA} \equiv \text{The } \lambda\text{-calculus} \ldots \]

“Program analysis is still far from being able to precisely relate ingredients of different approaches to one another.”

(Nielson et al. 1999)
Plan

- Proving lower bounds — programming with analysis
 — What is kCFA?
 — Linearity and precision
 — Non-linearity and an exponential iterator
- Simulating exponential Turing machines with kCFA
- Conclusions
Flow analysis

Flow analysis is concerned with the sound approximation of run-time values at compile time.

Analysis answers decision problems such as:

\[\text{does expression } e \text{ possibly evaluate to value } v? \]

- The most approximate analysis always answers yes.
 — no resources to compute, but useless
- The most precise analysis answers yes iff \(e \) evaluates to \(v \).
 — useful, but unbounded resources to compute

For tractability, there is a necessary sacrifice of information in static analysis. (A blessing and a curse.)
Intuition— the more information we compute about contexts, the more precisely we can answer flow questions. **But this takes work.**

It did not take long to discover that the basic analysis, for any \(k > 0 \), was intractably slow for large programs.

Polyvariance

During reduction, a function may copy its argument:

$$(((\lambda f. \cdots (f e_1)^{\ell_1} \cdots (f e_2)^{\ell_2} \cdots) (\lambda x. e)))$$

Contours (strings of application labels) let us talk about e in each of the distinct calling contexts.
Cache-based evaluator

\[\text{Exp} \quad e ::= t^\ell \quad \text{expressions (or labeled terms)} \]
\[\text{Term} \quad t ::= x \mid e \cdot e \mid \lambda x. e \quad \text{terms (or unlabeled expressions)} \]

Evaluate the term \(t \), which is closed under environment \(ce \).

Write the result into location \((\ell, \delta) \) of the cache \(C \).

\[E \llbracket t^\ell \rrbracket_{ce} \]

\[C(\ell, \delta) = v \text{ means } t^\ell \text{ evaluates to } v \text{ in context } \delta. \]
A cache-based evaluator:

\[C \in \text{Cache} = (\text{Lab} + \text{Var}) \times \text{Lab}^* \rightarrow (\text{Term} \times \text{Env}) \]

\[\mathcal{E}[(t^{\ell_1} t^{\ell_2})^{\ell}]_{\delta}^c e = \mathcal{E}[t^{\ell_1}]_{\delta}^c e ; \mathcal{E}[t^{\ell_2}]_{\delta}^c e ; \]

let \langle \lambda x. t^{\ell_0} , ce' \rangle = C(\ell_1, \delta) in

\[C(x, \delta \ell) \leftarrow C(\ell_2, \delta) ; \]

\[\mathcal{E}[t^{\ell_0}]_{\delta \ell}^{ce'}[x \mapsto \delta \ell] \]

\[C(\ell, \delta) \leftarrow C(\ell_0, \delta \ell) \]
An *abstraction* of the cache-based evaluator:

\[\hat{C} \in \widehat{\text{Cache}} = (\text{Lab} + \text{Var}) \times \text{Lab}^{\leq k} \rightarrow \mathcal{P}(\text{Term} \times \text{Env}) \]

\[A\llbracket (t^{\ell_1} t^{\ell_2})^\ell \rrbracket_{ce}^\delta = A\llbracket t^{\ell_1} \rrbracket_{ce}^\delta ; A\llbracket t^{\ell_2} \rrbracket_{ce}^\delta ; \]

foreach \(\langle \lambda x. t^{\ell_0}, ce' \rangle \in \hat{C}(\ell_1, \delta) \):

\[\hat{C}(x, [\delta \ell]_k) \leftarrow \hat{C}(\ell_2, \delta) ; \]

\[A\llbracket t^{\ell_0} \rrbracket_{ce'}^{\delta \ell}[x \mapsto [\delta \ell]_k] ; \]

\[\hat{C}(\ell, \delta) \leftarrow \hat{C}(\ell_0, [\delta \ell]_k) \]
Plan

- Proving lower bounds — programming with analysis
 - What is \(k \text{CFA} \)?
 - Linearity and precision
 - Non-linearity and an exponential iterator
- Simulating exponential Turing machines with \(k \text{CFA} \)
- Conclusions
Linearity and evaluation

Since in a *linear* λ-term,

\bullet each abstraction can be applied to at most one argument
\bullet each variable can be bound to at most one value

Analysis of a linear term coincides exactly with its evaluation.
Boolean logic

Coding Boolean logic in linear λ-calculus (ICFP’07):

$$\begin{align*}
\text{TT} & \equiv \lambda p. \text{let } \langle x, y \rangle = p \text{ in } \langle x, y \rangle \\
\text{FF} & \equiv \lambda p. \text{let } \langle x, y \rangle = p \text{ in } \langle y, x \rangle \\
\text{True} & \equiv \langle \text{TT}, \text{FF} \rangle \\
\text{False} & \equiv \langle \text{FF}, \text{TT} \rangle
\end{align*}$$

Copy $\equiv \lambda b. \text{let } \langle u, v \rangle = b \text{ in } \langle u \langle \text{TT}, \text{FF} \rangle, v \langle \text{FF}, \text{TT} \rangle \rangle$

Implies $\equiv \lambda b_1. \lambda b_2. \left(\text{let } \langle u_1, v_1 \rangle = b_1 \text{ in } \langle u_1 \langle u_2, \text{TT} \rangle, v_1 \langle \text{FF}, v_2 \rangle \rangle \text{ in } \langle p_1, q_1 \circ p_2 \circ q_2 \circ \text{FF} \rangle \right)$
Plan

★ Proving lower bounds — *programming with analysis*
 — What is kCFA?
 — Linearity and precision
 — Non-linearity and an exponential iterator
★ Simulating exponential Turing machines with kCFA
★ Conclusions
Approximation as power tool

Hardness of κCFA relies on two insights:

1. Program points are approximated by an exponential number of closures.
2. *Inexactness* of analysis engenders *reevaluation* which provides *computational power*.
Abstract closures

Many closures can flow to a single program point:

\[(\lambda w. w x_1 x_2 \ldots x_n)\]

* \(n\) free variables
* an *exponential* number of possible associated environments mapping these variables to program points (contours of length 1 in 1CFA).
Toy calculation, with insights

Consider the following *non-linear* example

\[(\lambda f. (f \text{ True})(f \text{ False})) (\lambda x. (\lambda p. p(\lambda u. p(\lambda v. (\text{Implies } u v)))))(\lambda w. wx))\]
Toy calculation, with insights

Consider the following non-linear example

$$(\lambda f. (f \text{ True}) (f \text{ False}))$$

$$(\lambda x. (\lambda p. p (\lambda u. p (\lambda v. (\text{Implies } u v)))) (\lambda w. w x))$$

Q: What does $\text{Implies } u v$ evaluate to?
Toy calculation, with insights

Consider the following non-linear example

\[
(\lambda f. (f \ True)(f \ False))
(\lambda x. \\
(\lambda p.p(\lambda u.p(\lambda v.(Implies \ u \ v)))))(\lambda w.wx))
\]

Q: What does \texttt{Implies} \ u \ v evaluate to?
A: \texttt{True}: it is equivalent to \texttt{Implies} \ x \ x, a tautology.
Consider the following non-linear example

$$(\lambda f. (f \text{ True})(f \text{ False}))
(\lambda x.
(\lambda p.p(\lambda u.p(\lambda v.(\text{Implies } u v)))))(\lambda w.wx))$$

Q: What does $\text{Implies } u v$ evaluate to?
A: True: it is equivalent to $\text{Implies } x x$, a tautology.

Q: What flows out of $\text{Implies } u v$?
Consider the following *non-linear* example

\[
(\lambda f. (f \text{ True})(f \text{ False}))
(\lambda x.
(\lambda p.p(\lambda u.p(\lambda v.\text{Implies } u v))))(\lambda w.wx))
\]

Q: What does \text{Implies } u v \text{ evaluate to}?
A: \text{True}: it is equivalent to \text{Implies } x x, a tautology.

Q: What \text{flows out of} \text{Implies } u v?
A: both \text{True} and \text{False}: \text{Not true evaluation}!
Toy calculation, with insights

Consider the following non-linear example

\[
(\lambda f.(f \ True)(f \ False))
\]

\[
(\lambda x. (\lambda p.p(\lambda u. p(\lambda v. (\text{Implies } u \ v)))))(\lambda w.wx))
\]

Q: What does \text{Implies } u \ v evaluate to?
A: \text{True}: it is equivalent to \text{Implies } x \ x, a tautology.

Q: What flows out of \text{Implies } u \ v?
A: \text{both True and False}: \text{Not true evaluation!}

We are \text{computing with the approximation (spurious flows)}.
Plan

★ Proving lower bounds — *programming with analysis*
 — What is kCFA?
 — Linearity and precision
 — Non-linearity and an exponential iterator
★ Simulating exponential Turing machines with kCFA
★ Conclusions
Jigsaw puzzles, Machines

The idea:

★ Break machine ID into an exponential number of pieces
★ Do piecemeal transitions on pairs of puzzle pieces

\(\langle T, S, H, C, b \rangle \)

“At time \(T \), machine is in state \(S \), the head is at cell \(H \), and cell \(C \) holds symbol \(b \)”
Jigsaw puzzles, Machines

\[\langle T, S, H, C, b \rangle: \text{“At time } T, \text{ machine is in state } S, \text{ the head is at cell } H, \text{ and cell } C \text{ holds symbol } b \rangle \]

1) Compute:
\[
\delta \langle T, S, H, H, b \rangle \langle T, S', H', C', b' \rangle = \\
\langle T + 1, \delta_Q(S, b), \delta_{LR}(S, H, b), H, \delta_\Sigma(S, b) \rangle
\]
Jigsaw puzzles, Machines

\[\langle T, S, H, C, b \rangle: \text{“At time } T, \text{ machine is in state } S, \text{ the head is at cell } H, \text{ and cell } C \text{ holds symbol } b \text{”} \]

1) Compute:
\[
\delta \langle T, S, H, H, b \rangle \langle T, S', H', C', b' \rangle = \langle T + 1, \delta_Q(S, b), \delta_{LR}(S, H, b), H, \delta_\Sigma(S, b) \rangle
\]

2) Communicate:
\[
\delta \langle T + 1, S, H, C, b \rangle \langle T, S', H', C', b' \rangle = \langle T + 1, S, H, C', b' \rangle \quad (H' \neq C')
\]
Jigsaw puzzles, Machines

\[\langle T, S, H, C, b \rangle: \text{“At time } T, \text{ machine is in state } S, \text{ the head is at cell } H, \text{ and cell } C \text{ holds symbol } b \rangle \]

1) Compute:
\[
\delta \langle T, S, H, H, b \rangle \langle T, S', H', C', b' \rangle =
\langle T + 1, \delta_Q(S, b), \delta_{LR}(S, H, b), H, \delta_\Sigma(S, b) \rangle
\]

2) Communicate:
\[
\delta \langle T + 1, S, H, C, b \rangle \langle T, S', H', C', b' \rangle = \langle T + 1, S, H, C', b' \rangle
\]
\((H' \neq C') \)

3) Otherwise:
\[
\delta \langle T, S, H, C, b \rangle \langle T', S', H', C, b' \rangle = \langle \text{some goofy null value} \rangle
\]
\((T \neq T' \text{ and } T \neq T' + 1) \)
The real deal

Setting up initial ID, iterator, and test:

\[(\lambda f_1. (f_1 \ 0)(f_1 \ 1))\]
\[(\lambda z_1.\]
\[(\lambda f_2. (f_2 \ 0)(f_2 \ 1))\]
\[(\lambda z_2.\]
\[\ldots\]
\[(\lambda f_N. (f_N \ 0)(f_N \ 1))\]
\[(\lambda z_N.\]

\[\text{(let } \Phi = \text{coding of transition function of TM in \ Widget[Extract}(Y \ \Phi (\lambda w. w \ 0 \ldots 0 \ Q_0 \ H_0 \ z_1 z_2 \ldots z_N \ 0))))\ldots))))\]
\[\langle T, S, H, \quad C, b \rangle\]
The real deal

...let $\Phi = \text{coding of transition function of } TM$ in

$\text{Widget}[\text{Extract}(Y \Phi (\lambda w. w \ 0 \ldots 0 \ Q_0 \ H_0 \ z_1 z_2 \ldots z_N \ 0))] \ldots$

$\langle T, S, H, \ C, b \rangle$

$\Phi \equiv (\lambda p. p (\lambda x_1. \lambda x_2. \ldots \lambda x_m. p (\lambda y_1. \lambda y_2 \ldots \lambda y_m. (\phi x_1 x_2 \ldots x_m y_1 y_2 \ldots y_m))))$
The real deal

... let $\Phi = \text{coding of transition function of TM in}$

$\text{Widget}[\text{Extract}(Y \Phi (\lambda w.w 0 \cdots 0 Q_0 H_0 z_1 z_2 \cdots z_N 0))] \cdots$

$\langle T, S, H, C, b \rangle$

$\Phi \equiv (\lambda p.p(\lambda x_1.\lambda x_2.\ldots.\lambda x_m.p(\lambda y_1.\lambda y_2.\ldots.\lambda y_m.$

$(\phi x_1 x_2 \cdots x_m y_1 y_2 \cdots y_m))))$

$\text{Widget}[E] \equiv \ldots f \ldots a \ldots$, where a flows as an argument to f

iff a True value flows out of E.
The real deal

...let $\Phi = \text{coding of transition function of TM in}$

$$\text{Widget}[\text{Extract}(Y \Phi (\lambda w. w 0 \ldots 0 Q_0 H_0 z_1 z_2 \ldots z_N 0))] \ldots$$

$$\langle T, S, H, C, b \rangle$$

$$\Phi \equiv (\lambda p. p (\lambda x_1. x_2. \ldots \lambda x_m. p (\lambda y_1. y_2. \ldots \lambda y_m.$$

$$(\phi x_1 x_2 \ldots x_m y_1 y_2 \ldots y_m))))$$

$\text{Widget}[E] \equiv \ldots f \ldots a \ldots$, where a flows as an argument to f
iff a True value flows out of E.

Theorem In kCFA, a flow to f iff TM accept in 2^n steps.
The real deal

...let \(\Phi = \text{coding of transition function of TM in} \)
\[
\text{Widget}[\text{Extract}(Y \Phi (\lambda w.w 0 \ldots 0 Q_0 H_0 z_1 z_2 \ldots z_N 0))] \ldots
\begin{array}{c}
\langle T, S, H, C, b \rangle
\end{array}
\]

\[
\Phi \equiv (\lambda p.p(\lambda x_1.\lambda x_2.\ldots.\lambda x_m.p(\lambda y_1.\lambda y_2\ldots\lambda y_m.
(\phi x_1 x_2 \ldots x_m y_1 y_2 \ldots y_m))))
\]

\[
\text{Widget}[E] \equiv \ldots f \ldots a \ldots, \text{ where } a \text{ flows as an argument to } f
\]
iff a True value flows out of \(E \).

Theorem In \(kCFA \), \(a \) flow to \(f \) iff TM accept in \(2^n \) steps.

Theorem \(kCFA \) decision problem is complete for EXPTIME.
Plan

★ Proving lower bounds — *programming with analysis*
 — What is kCFA?
 — Linearity and precision
 — Non-linearity and an exponential iterator
★ Simulating exponential Turing machines with kCFA
★ Conclusions
What makes kCFA hard?

This is not just a replaying of the previous proofs.
What makes κCFA hard?

This is not just a replaying of the previous proofs.

⋆ If the analysis were simulating evaluation,
What makes kCFA hard?

This is not just a replaying of the previous proofs.

★ If the analysis were simulating evaluation,
★ there would be one entry in each cache location,
What makes \(k \)CFA hard?

This is not just a replaying of the previous proofs.

- If the analysis were simulating evaluation,
- there would be one entry in each cache location,
- therefore bounded by a polynomial!
What makes kCFA hard?

This is not just a replaying of the previous proofs.

* If the analysis were simulating evaluation,
* there would be one entry in each cache location,
* therefore bounded by a polynomial!

Might and Shivers’ observation:
improved precision leads to analyzer speedups.
What makes kCFA hard?

This is not just a replaying of the previous proofs.

- If the analysis were simulating evaluation,
- there would be one entry in each cache location,
- therefore bounded by a polynomial!

Might and Shivers’ observation: improved precision leads to analyzer speedups.

Analytic understanding: What you pay for in kCFA is the junk (spurious flows).
Doggie bag

- There is no tractable algorithm for kCFA
- Linearity is key in understanding static analysis
- The approximation of kCFA is what makes it hard
The End

Thank you.