
Deciding kCFA is complete
for EXPTIME
David Van Horn and Harry Mairson

Overview

For any k > 0, we prove that the control flow decision problem
is complete for deterministic exponential time (EXPTIME).

This theorem:

⋆ gives an exact characterization of the computational
complexity of the kCFA hierarchy

⋆ validates empirical observations that such control flow
analysis is intractable

International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.1/29

Plan

⋆ Proving lower bounds — programming with analysis
— What is kCFA?
— Linearity and precision
— Non-linearity and an exponential iterator

⋆ Simulating exponential Turing machines with kCFA

⋆ Conclusions

International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.2/29

Proving lower bounds

A lower bound establishes the minimum computational
requirements it takes to solve a class of problems.

kCFA is provably intractable (EXPTIME-hard)

The proof goes by construction:

▽International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.3/29

Proving lower bounds

A lower bound establishes the minimum computational
requirements it takes to solve a class of problems.

kCFA is provably intractable (EXPTIME-hard)

The proof goes by construction:

⋆ given the description of a Turing machine and its input,

▽International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.3/29

Proving lower bounds

A lower bound establishes the minimum computational
requirements it takes to solve a class of problems.

kCFA is provably intractable (EXPTIME-hard)

The proof goes by construction:

⋆ given the description of a Turing machine and its input,

⋆ produce an instance of the kCFA problem,

▽International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.3/29

Proving lower bounds

A lower bound establishes the minimum computational
requirements it takes to solve a class of problems.

kCFA is provably intractable (EXPTIME-hard)

The proof goes by construction:

⋆ given the description of a Turing machine and its input,

⋆ produce an instance of the kCFA problem,

⋆ whose analysis faithfully simulates the TM on the input

▽International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.3/29

Proving lower bounds

A lower bound establishes the minimum computational
requirements it takes to solve a class of problems.

kCFA is provably intractable (EXPTIME-hard)

The proof goes by construction:

⋆ given the description of a Turing machine and its input,

⋆ produce an instance of the kCFA problem,

⋆ whose analysis faithfully simulates the TM on the input

⋆ for an exponential number of steps.

▽International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.3/29

Proving lower bounds

A lower bound establishes the minimum computational
requirements it takes to solve a class of problems.

kCFA is provably intractable (EXPTIME-hard)

The proof goes by construction:

⋆ given the description of a Turing machine and its input,

⋆ produce an instance of the kCFA problem,

⋆ whose analysis faithfully simulates the TM on the input

⋆ for an exponential number of steps.

A compiler!
▽International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.3/29

Proving lower bounds

A lower bound establishes the minimum computational
requirements it takes to solve a class of problems.

kCFA is provably intractable (EXPTIME-hard)

The proof goes by construction:

⋆ given the description of a Turing machine and its input,

⋆ produce an instance of the kCFA problem,

⋆ whose analysis faithfully simulates the TM on the input

⋆ for an exponential number of steps.

A (weird) compiler!
International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.3/29

Strange animal

A compiler:

⋆ Source language: exponential TMs with input

⋆ Target language: the λ-calculus

⋆ Interpreter: kCFA (as TM simulator)

∴ kCFA is complete for EXPTIME.

International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.4/29

More strange animals

Other compilers (ICFP’07):

⋆ Source language: Boolean formulas

⋆ Target language: the λ-calculus

⋆ Interpreter: kCFA (as SAT solver)

∴ kCFA is NP-hard.

▽International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.5/29

More strange animals

Other compilers (ICFP’07):

⋆ Source language: circuit with inputs

⋆ Target language: the linear λ-calculus

⋆ Interpreter: 0CFA (as λ evaluator)

∴ 0CFA is complete for PTIME.

▽International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.5/29

More strange animals

Other compilers (SAS’08):

⋆ Source language: circuit with inputs

⋆ Target language: the linear λ-calculus

⋆ Interpreter: Simple closure analysis (as λ evaluator)

∴ Simple closure analysis is complete for PTIME.

▽International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.5/29

More strange animals

Other compilers (Mairson, JFP’04):

⋆ Source language: circuit with inputs

⋆ Target language: the linear λ-calculus

⋆ Interpreter: type inference (as λ evaluator)

∴ Simple type inference is complete for PTIME.

▽International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.5/29

More strange animals

Other examples (Neergaard and Mairson, ICFP’04):

⋆ Source language: elementary TMs with input

⋆ Target language: the λ calculus

⋆ Interpreter: rank-k ∧-type inference (as λ evaluator)

∴ Rank-k ∧-type inference is complete for DTIME(K(k, n)).

▽International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.5/29

More strange animals

Other examples (Mairson, POPL’89):

⋆ Source language: exponential TMs with input

⋆ Target language: ML

⋆ Interpreter: type inference (as ML evaluator)

∴ ML type inference is complete for EXPTIME.

International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.5/29

A complexity zoo of static analysis

0CFA ≡ Simple closure analysis ≡ Sub-0CFA ≡ Simple type
inference ≡ Linear λ-calculus ≡ MLL. . .

⊂
kCFA ≡ ML type inference. . .

⊂
Rank-k intersection type inference. . .

⊂
Exact CFA ≡ Simply typed λ-calculus. . .

⊂
∞CFA ≡ The λ-calculus. . .

“Program analysis is still far from being able to precisely relate
ingredients of different approaches to one another.”

(Nielson et al. 1999)

International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.6/29

Plan

⋆ Proving lower bounds — programming with analysis
— What is kCFA?
— Linearity and precision
— Non-linearity and an exponential iterator

⋆ Simulating exponential Turing machines with kCFA

⋆ Conclusions

International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.7/29

Flow analysis

Flow analysis is concerned with the sound approximation of
run-time values at compile time.

Analysis answers decision problems such as:
does expression e possibly evaluate to value v?

⋆ The most approximate analysis always answers yes.
— no resources to compute, but useless

⋆ The most precise analysis answers yes iff e evaluates to v.
— useful, but unbounded resources to compute

For tractability, there is a necessary sacrifice of information in
static analysis. (A blessing and a curse.)

International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.8/29

kCFA

Intuition— the more information we compute about contexts,
the more precisely we can answer flow questions.
But this takes work.

It did not take long to discover that the basic analysis, for any
k > 0, was intractably slow for large programs.

Shivers, Higher-order control-flow analysis in retrospect:
Lessons learned, lessons abandoned (2004)

International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.9/29

Polyvariance

During reduction, a function may copy its argument:

((λ f .· · ·(f e1)
ℓ1· · ·(f e2)

ℓ2· · ·)(λx.e))

Contours (strings of application labels) let us talk about e
in each of the distinct calling contexts.

International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.10/29

Cache-based evaluator
Exp e ::= tℓ expressions (or labeled terms)
Term t ::= x | e e | λx.e terms (or unlabeled expressions)

Evaluate the term t, which is closed under environment ce.

EJtℓKce
δ

Write the result into location (ℓ, δ) of the cache C.

C(ℓ, δ) = v means tℓ evaluates to v in context δ.

International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.11/29

∞CFA

A cache-based evaluator:

C ∈ Cache = (Lab + Var)× Lab⋆ → (Term× Env)

EJ(tℓ1 tℓ2)ℓKce
δ = EJtℓ1Kce

δ ; EJtℓ2Kce
δ ;

let 〈λx.tℓ0 , ce′〉 = C(ℓ1, δ) in
C(x, δℓ)← C(ℓ2, δ);

EJtℓ0K
ce′[x 7→δℓ]
δℓ

C(ℓ, δ)← C(ℓ0, δℓ)

International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.12/29

kCFA

An abstraction of the cache-based evaluator:

Ĉ ∈ Ĉache = (Lab + Var)× Lab≤k → P(Term× Env)

AJ(tℓ1tℓ2)ℓKce
δ = AJtℓ1Kce

δ ;AJtℓ2Kce
δ ;

foreach 〈λx.tℓ0 , ce′〉 ∈ Ĉ(ℓ1, δ) :

Ĉ(x, ⌈δℓ⌉k)← Ĉ(ℓ2, δ);

AJtℓ0K
ce′[x 7→⌈δℓ⌉k]
⌈δℓ⌉k

;

Ĉ(ℓ, δ)← Ĉ(ℓ0, ⌈δℓ⌉k)

International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.13/29

Plan

⋆ Proving lower bounds — programming with analysis
— What is kCFA?
— Linearity and precision
— Non-linearity and an exponential iterator

⋆ Simulating exponential Turing machines with kCFA

⋆ Conclusions

International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.14/29

Linearity and evaluation

Since in a linear λ-term,

⋆ each abstraction can be applied to at most one argument

⋆ each variable can be bound to at most one value

Analysis of a linear term coincides exactly with its evaluation.

International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.15/29

Boolean logic

Coding Boolean logic in linear λ-calculus (ICFP’07):

TT ≡ λp.let 〈x, y〉 = p in 〈x, y〉 True ≡ 〈TT, FF〉

FF ≡ λp.let 〈x, y〉 = p in 〈y, x〉 False ≡ 〈FF, TT〉

Copy ≡ λb.let 〈u, v〉 = b in 〈u〈TT, FF〉, v〈FF, TT〉〉

Implies ≡ λb1.λb2.

let 〈u1, v1〉 = b1 in
let 〈u2, v2〉 = b2 in
let 〈p1, p2〉 = u1〈u2, TT〉 in
let 〈q1, q2〉 = v1〈FF, v2〉 in
〈p1, q1 ◦ p2 ◦ q2 ◦ FF〉

International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.16/29

Plan

⋆ Proving lower bounds — programming with analysis
— What is kCFA?
— Linearity and precision
— Non-linearity and an exponential iterator

⋆ Simulating exponential Turing machines with kCFA

⋆ Conclusions

International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.17/29

Approximation as power tool

Hardness of kCFA relies on two insights:

1. Program points are approximated by an exponential
number of closures.

2. Inexactness of analysis engenders reevaluation which
provides computational power.

International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.18/29

Abstract closures

Many closures can flow to a single program point:

(λw.wx1x2 . . . xn)
⋆ n free variables

⋆ an exponential number of possible associated
environments mapping these variables to program points
(contours of length 1 in 1CFA).

International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.19/29

Toy calculation, with insights

Consider the following non-linear example

(λ f .(f True)(f False))

(λx.

(λp.p(λu.p(λv.(Implies u v))))(λw.wx))

▽International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.20/29

Toy calculation, with insights

Consider the following non-linear example

(λ f .(f True)(f False))

(λx.

(λp.p(λu.p(λv.(Implies u v))))(λw.wx))

Q: What does Implies u v evaluate to ?

▽International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.20/29

Toy calculation, with insights

Consider the following non-linear example

(λ f .(f True)(f False))

(λx.

(λp.p(λu.p(λv.(Implies u v))))(λw.wx))

Q: What does Implies u v evaluate to ?
A: True: it is equivalent to Implies x x, a tautology.

▽International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.20/29

Toy calculation, with insights

Consider the following non-linear example

(λ f .(f True)(f False))

(λx.

(λp.p(λu.p(λv.(Implies u v))))(λw.wx))

Q: What does Implies u v evaluate to ?
A: True: it is equivalent to Implies x x, a tautology.

Q: What flows out of Implies u v?

▽International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.20/29

Toy calculation, with insights

Consider the following non-linear example

(λ f .(f True)(f False))

(λx.

(λp.p(λu.p(λv.(Implies u v))))(λw.wx))

Q: What does Implies u v evaluate to ?
A: True: it is equivalent to Implies x x, a tautology.

Q: What flows out of Implies u v?
A: both True and False: Not true evaluation!

▽International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.20/29

Toy calculation, with insights

Consider the following non-linear example

(λ f .(f True)(f False))

(λx.

(λp.p(λu.p(λv.(Implies u v))))(λw.wx))

Q: What does Implies u v evaluate to ?
A: True: it is equivalent to Implies x x, a tautology.

Q: What flows out of Implies u v?
A: both True and False: Not true evaluation!

We are computing with the approximation (spurious flows).

International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.20/29

Plan

⋆ Proving lower bounds — programming with analysis
— What is kCFA?
— Linearity and precision
— Non-linearity and an exponential iterator

⋆ Simulating exponential Turing machines with kCFA

⋆ Conclusions

International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.21/29

Jigsaw puzzles, Machines

The idea:

⋆ Break machine ID into an exponential
number of pieces

⋆ Do piecemeal transitions on pairs of
puzzle pieces

〈T, S, H, C, b〉

“At time T, machine is in state S, the head is at
cell H, and cell C holds symbol b”

International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.22/29

Jigsaw puzzles, Machines

〈T, S, H, C, b〉: “At time T, machine is in state S, the head is at
cell H, and cell C holds symbol b”

1) Compute:
δ〈T, S, H, H, b〉〈T, S′, H′, C′, b′〉 =

〈T + 1, δQ(S, b), δLR(S, H, b), H, δΣ(S, b)〉

▽International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.23/29

Jigsaw puzzles, Machines

〈T, S, H, C, b〉: “At time T, machine is in state S, the head is at
cell H, and cell C holds symbol b”

1) Compute:
δ〈T, S, H, H, b〉〈T, S′, H′, C′, b′〉 =

〈T + 1, δQ(S, b), δLR(S, H, b), H, δΣ(S, b)〉

2) Communicate:
δ〈T + 1, S, H, C, b〉〈T, S′, H′, C′, b′〉 = 〈T + 1, S, H, C′, b′〉

(H′ 6= C′)

▽International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.23/29

Jigsaw puzzles, Machines

〈T, S, H, C, b〉: “At time T, machine is in state S, the head is at
cell H, and cell C holds symbol b”

1) Compute:
δ〈T, S, H, H, b〉〈T, S′, H′, C′, b′〉 =

〈T + 1, δQ(S, b), δLR(S, H, b), H, δΣ(S, b)〉

2) Communicate:
δ〈T + 1, S, H, C, b〉〈T, S′, H′, C′, b′〉 = 〈T + 1, S, H, C′, b′〉

(H′ 6= C′)

3) Otherwise:
δ〈T, S, H, C, b〉〈T′, S′, H′, C′, b′〉 = 〈some goofy null value〉

(T 6= T′ and T 6= T′ + 1)

International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.23/29

The real deal

Setting up initial ID, iterator, and test:

(λ f1.(f1 0)(f1 1))

(λz1.

(λ f2.(f2 0)(f2 1))

(λz2.

· · ·

(λ fN .(fN 0)(fN 1))

(λzN .

(let Φ = coding of transition function of TM in

Widget[Extract(Y Φ (λw.w 0 . . . 0 Q0 H0 z1z2 . . . zN 0))])) . . .))

〈T, S, H, C, b〉

International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.24/29

The real deal
. . . let Φ = coding of transition function of TM in

Widget[Extract(Y Φ (λw.w 0 . . . 0 Q0 H0 z1z2 . . . zN 0))] . . .

〈T, S, H, C, b〉

Φ ≡ (λp.p(λx1.λx2. . . . λxm.p(λy1.λy2 . . . λym.

(φx1x2 . . . xmy1y2 . . . ym))))

▽International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.25/29

The real deal
. . . let Φ = coding of transition function of TM in

Widget[Extract(Y Φ (λw.w 0 . . . 0 Q0 H0 z1z2 . . . zN 0))] . . .

〈T, S, H, C, b〉

Φ ≡ (λp.p(λx1.λx2. . . . λxm.p(λy1.λy2 . . . λym.

(φx1x2 . . . xmy1y2 . . . ym))))

Widget[E] ≡ . . . f . . . a . . ., where a flows as an argument to f
iff a True value flows out of E.

▽International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.25/29

The real deal
. . . let Φ = coding of transition function of TM in

Widget[Extract(Y Φ (λw.w 0 . . . 0 Q0 H0 z1z2 . . . zN 0))] . . .

〈T, S, H, C, b〉

Φ ≡ (λp.p(λx1.λx2. . . . λxm.p(λy1.λy2 . . . λym.

(φx1x2 . . . xmy1y2 . . . ym))))

Widget[E] ≡ . . . f . . . a . . ., where a flows as an argument to f
iff a True value flows out of E.

Theorem In kCFA, a flow to f iff TM accept in 2n steps.

▽International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.25/29

The real deal
. . . let Φ = coding of transition function of TM in

Widget[Extract(Y Φ (λw.w 0 . . . 0 Q0 H0 z1z2 . . . zN 0))] . . .

〈T, S, H, C, b〉

Φ ≡ (λp.p(λx1.λx2. . . . λxm.p(λy1.λy2 . . . λym.

(φx1x2 . . . xmy1y2 . . . ym))))

Widget[E] ≡ . . . f . . . a . . ., where a flows as an argument to f
iff a True value flows out of E.

Theorem In kCFA, a flow to f iff TM accept in 2n steps.
Theorem kCFA decision problem is complete for EXPTIME.

International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.25/29

Plan

⋆ Proving lower bounds — programming with analysis
— What is kCFA?
— Linearity and precision
— Non-linearity and an exponential iterator

⋆ Simulating exponential Turing machines with kCFA

⋆ Conclusions

International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.26/29

What makes kCFA hard?

This is not just a replaying of the previous proofs.

▽International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.27/29

What makes kCFA hard?

This is not just a replaying of the previous proofs.

⋆ If the analysis were simulating evaluation,

▽International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.27/29

What makes kCFA hard?

This is not just a replaying of the previous proofs.

⋆ If the analysis were simulating evaluation,

⋆ there would be one entry in each cache location,

▽International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.27/29

What makes kCFA hard?

This is not just a replaying of the previous proofs.

⋆ If the analysis were simulating evaluation,

⋆ there would be one entry in each cache location,

⋆ therefore bounded by a polynomial!

▽International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.27/29

What makes kCFA hard?

This is not just a replaying of the previous proofs.

⋆ If the analysis were simulating evaluation,

⋆ there would be one entry in each cache location,

⋆ therefore bounded by a polynomial!

Might and Shivers’ observation:
improved precision leads to analyzer speedups.

▽International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.27/29

What makes kCFA hard?

This is not just a replaying of the previous proofs.

⋆ If the analysis were simulating evaluation,

⋆ there would be one entry in each cache location,

⋆ therefore bounded by a polynomial!

Might and Shivers’ observation:
improved precision leads to analyzer speedups.

Analytic understanding:
What you pay for in kCFA is the junk (spurious flows).

International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.27/29

Doggie bag

⋆ There is no tractable algorithm for kCFA

⋆ Linearity is key in understanding static analysis

⋆ The approximation of kCFA is what makes it hard

International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.28/29

The End

Thank you.

International Conference on Functional Programming (ICFP), 2008 Deciding kCFA is complete for EXPTIME – p.29/29

	Overview
	Plan
	Proving lower bounds
	Strange animal
	More strange animals
	hspace {-1.2cm} A complexity zoo of static analysis
	Plan
	Flow analysis
	kCFA
	Polyvariance
	Cache-based evaluator
	$infty $CFA
	kCFA
	Plan
	Linearity and evaluation
	Boolean logic
	Plan
	Approximation as power tool
	Abstract closures
	Toy calculation, with insights
	Plan
	Jigsaw puzzles, Machines
	Jigsaw puzzles, Machines
	The real deal
	The real deal
	Plan
	What makes kCFA hard?
	Doggie bag
	The End

