
1

David Van Horn

The Complexity of kCFA
& Harry Mairson

2

Van Horn and Mairson, ICFP’07, ICFP’08, SAS’08

3

0CFA and PTIME

4

Evaluation

What is in the intersection?

Analysis

5

CHAPTER 4. LINEAR LOGIC AND STATIC ANALYSIS

4.1 Sharing Graphs for Static Analysis

In general, the sharing graph of a term will consist of a distinguished root wire
from which the rest of the term’s graph “hangs.”

M

fv(M)

At the bottom of the graph, the dangling wires represent free variables and connect
to occurrences of the free variable within in term.

Graphs consist of ternary abstraction (�), apply (@), sharing (O) nodes, and unary
weakening (�) nodes. Each node has a distinguished principal port. For unary
nodes, this is the only port. The ternary nodes have two auxiliary ports, distin-
guished as the white and black ports.

• A variable occurrence is represented simply as a wire from the root to the
free occurrence of the variable.

x

x

• Given the graph for M , where x occurs free,

M

fv(M) \ {x} x

52

6

CHAPTER 4. LINEAR LOGIC AND STATIC ANALYSIS

4.1 Sharing Graphs for Static Analysis

In general, the sharing graph of a term will consist of a distinguished root wire
from which the rest of the term’s graph “hangs.”

M

fv(M)

At the bottom of the graph, the dangling wires represent free variables and connect
to occurrences of the free variable within in term.

Graphs consist of ternary abstraction (�), apply (@), sharing (O) nodes, and unary
weakening (�) nodes. Each node has a distinguished principal port. For unary
nodes, this is the only port. The ternary nodes have two auxiliary ports, distin-
guished as the white and black ports.

• A variable occurrence is represented simply as a wire from the root to the
free occurrence of the variable.

x

x

• Given the graph for M , where x occurs free,

M

fv(M) \ {x} x

52

7

CHAPTER 4. LINEAR LOGIC AND STATIC ANALYSIS

the abstraction �x.M is formed as,

�x.M, x 2 fv(M)M

fv(M) \ {x}

�

Supposing x does not occur in M , the weakening node (�) is used to “plug”
the � variable wire.

�x.M, x /2 fv(M)M

fv(M)

�

�

• Given graphs for M and N ,

M N

fv(M) fv(N),

53

8

CHAPTER 4. LINEAR LOGIC AND STATIC ANALYSIS

the abstraction �x.M is formed as,

�x.M, x 2 fv(M)M

fv(M) \ {x}

�

Supposing x does not occur in M , the weakening node (�) is used to “plug”
the � variable wire.

�x.M, x /2 fv(M)M

fv(M)

�

�

• Given graphs for M and N ,

M N

fv(M) fv(N),

53

9

CHAPTER 4. LINEAR LOGIC AND STATIC ANALYSIS

@ @ @@

�x

)cfa

�x �x

)cfa

�x

Figure 4.1: CFA virtual wire propagation rules.

the application MN is formed as,

M N

@

MN

fv(N) \ fv(M)

fv(N) \ fv(M)

fv(M) \ fv(N)

.

An application node is introduced. The operator M is connected to the
function port and the operand N is connected to the argument port. The
continuation wire becomes the root wire for the application. Free variables
shared between both M and N are fanned out with sharing nodes.

4.2 Graphical 0CFA

We now describe an algorithm for performing control flow analysis that is based
on the graph coding of terms. The graphical formulation consists of generating a
set of virtual paths for a program graph. Virtual paths describe an approximation
of the real paths that will arise during program execution.

Figure 4.1 defines the virtual path propagation rules. Note that a wire can be

54

10

CHAPTER 4. LINEAR LOGIC AND STATIC ANALYSIS

@

@

@

@

@

@

�f

�x

�y

10

1 2

4

5

3

8

9

6

7

�f

�x

�y

10

1 2

4

5

3

8

9

6

7

Figure 4.2: Graph coding and CFA graph of (�f.ff(�y.y))(�x.x).

algorithm constructs answers that satisfy the acceptability relation specifying the
analysis. Moreover, this algorithm constructs least solutions according to the par-
tial order given in section 2.3.

Lemma 5. bC0,ˆr0 |= e implies bC,ˆr v bC0,ˆr0 for bC,ˆr constructed for e as described
above.

We now consider an example of use of the algorithm. Consider the labeled pro-
gram:

((�f.((f 1f 2
)

3
(�y.y4

)

5
)

6
)

7
(�x.x8

)

9
)

10

Figure 4.2 shows the graph coding of the program and the corresponding CFA
graph. The CFA graph is constructed by adding virtual wires 10 6 and f 9,
induced by the actual �-redex on wire 7. Adding the virtual path f 9 to the
graph creates a virtual �-redex via the route 1 f (through the sharing node),
and f 9 (through the virtual wire). This induces 3 8 and 8 2. There is
now a virtual �-redex via 3 8 2 f 9, so wires 6 8 and 8 5 are
added. This addition creates another virtual redex via 3 8 2 5, which
induces virtual wires 6 4 and 4 5. No further wires can be added, so the

56

11

@ @ @@

�x

)cfa

�x �x

)cfa

�x

Figure 2. CFA virtual wire propagation rules.

textual information can be used to distinguish the copies and give
more precise answers to these questions.

We follow Nielson et al. (1999) and say the result of 0CFA is
an abstract cache b

C associating abstract values with each labeled
program point. More precisely:

bv 2 d
Val = P(Term) abstract values

b
C 2 \

Cache = Lab! d
Val abstract caches

An abstract cache maps a program label to an abstract value bv, a set
of lambda expressions, which represents the set of (textual) values
that may flow into that label’s subexpression during evaluation.
Similarly, the abstract enviroment maps a variable to an abstract
value, which represents the set of (textual) values that may be
bound to that variable during evaluation.

An acceptable control flow analysis for an expression e is writ-
ten b

C |= e. Recalling again from Nielson et al. (1999), the accept-
ability relation is given by the greatest fixed point of the functional
defined according to the following clauses:

b
C |= x` iff b

C(x) ✓ b
C(`)

b
C |= (�x.e)` iff (�x.e) 2 b

C(`)

b
C |= (t`1

1 t`2
2)` iff b

C |= t`1
1 ^ b

C |= t`2
2 ^ 8(�x.t`0

0) 2 b
C(`1) :

b
C |= t`0

0 ^ b
C(`2) ✓ b

C(x) ^ b
C(`0) ✓ b

C(`)

We now describe an algorithm for performing control flow anal-
ysis that is based on the graph coding of terms. The graphical for-
mulation consists of generating a set of virtual paths for a program
graph. Virtual paths describe an approximation of the real paths that
will arise during program execution.

Figure 2 defines the virtual path propagation rules. The left hand
rule states that a virtual wire is added from the continuation wire to
the body wire and from the variable wire to the argument wire of
each �-redex. The right hand rule states analogous wires are added
to each virtual �-redex—an apply and lambda node connected by
a virtual path. There is a virtual path between two wires ` and `0,
written ` `0 in a CFA-graph iff: 1) ` ⌘ `0, 2) there is a virtual
wire from ` to `0, 3) ` connects to an auxiliary port and `0 connects
to the principal port of a sharing node, or 4) ` `00 and `00 `0.

Some care must be taken to ensure leastness when propagat-
ing virtual wires. In particular, wires are added only when there
is a virtual path between a reachable apply and a lambda. An ap-
ply node is reachable if it is on the spine of the program, i.e., if
e = (· · · ((e0e1)

`1e2)
`2 · · · en)`n then the apply nodes with con-

tinuation wires labeled `1, . . . , `n are reachable, or it is on the spine
of an expression with a virtual path from a reachable apply node.

The graph-based analysis can now be performed in the follow-
ing way: construct the CFA graph according to the rules in Fig-
ure 2, then define b

C(`) as {(�x.e)`0 | ` `0}. It is easy to see
that the algorithm constructs answers that satisfy the acceptabil-
ity relation specifying the analysis. Moreover, this algorithm con-
structs least solutions according to the partial order b

C ve
b
C

0 iff
8` 2 Labe : b

C(`) ✓ b
C

0(`), where Labe denotes the set of labels
restricted to those occurring in e, the program of interest.

@

@

@

@

@

@

�f

�x

�y

10

1 2

4

5

3

8

9

6

7

�f

�x

�y

10

1 2

4

5

3

8

9

6

7

Figure 3. Graph coding and CFA graph.

Lemma 1.

b
C

0 |= e implies b
C ve

b
C

0 for b
C constructed for e as

described above.

We now consider an example of use of the algorithm. Consider
the labeled program:

((�f.((f1f2)3(�y.y4)5)6)7(�x.x8)9)10

Figure 3 shows the graph coding of the program and the corre-
sponding CFA graph. The CFA graph is constructed by adding vir-
tual wires 10 6 and f 9, induced by the actual �-redex on
wire 7. Adding the virtual path f 9 to the graph creates a vir-
tual �-redex via the route 1 f (through the sharing node), and
f 9 (through the virtual wire). This induces 3 8 and 8 2.
There is now a virtual �-redex via 3 8 2 f 9, so wires
6 8 and 8 5 are added. This addition creates another virtual
redex via 3 8 2 5, which induces virtual wires 6 4
and 4 5. No further wires can be added, so the CFA graph is
complete. The resulting abstract cache gives:

b
C(1) = {�x} b

C(6) = {�x, �y}
b
C(2) = {�x} b

C(7) = {�f}
b
C(3) = {�x, �y} b

C(8) = {�x, �y}
b
C(4) = {�y} b

C(9) = {�x}
b
C(5) = {�y} b

C(10) = {�x, �y}

b
C(f) = {�x}
b
C(x) = {�x, �y}
b
C(y) = {�y}

We now describe a natural decision problem answered by this
control flow analysis. After describing the problem here, subse-
quent sections will consider variants of it for kCFA.

3.1 The 0CFA decision problem

A decision problem—a question that can be answered with a yes
or a no—makes the analysis insensitive to the output size of any
control flow analysis. Typically, this analysis computes the answer
to questions like “what functions can be applied at a particular call
site?” or “what arguments can a particular function be applied to?”,
so a natural decision problem based on these questions are “is this
particular function applied at this particular call site?” or “does
this function get applied to this argument?”, where the function is
denoted by some lambda expression or application in the program
text. These questions provide ways of answering the more general
“to what values can a subexpression evaluate?”

Control Flow Problem (0CFA): Given expressions e, (�x.e0),
and label `, is (�x.e0) 2 b

C(`) in a least analysis of e?

The graphical analogue of this problem point to a �-node and
an application node, and ask if there a virtual path (describing a �-
redex from reductions to take place) from the function port of the

87

12

@ @ @@

�x

)cfa

�x �x

)cfa

�x

Figure 2. CFA virtual wire propagation rules.

textual information can be used to distinguish the copies and give
more precise answers to these questions.

We follow Nielson et al. (1999) and say the result of 0CFA is
an abstract cache b

C associating abstract values with each labeled
program point. More precisely:

bv 2 d
Val = P(Term) abstract values

b
C 2 \

Cache = Lab! d
Val abstract caches

An abstract cache maps a program label to an abstract value bv, a set
of lambda expressions, which represents the set of (textual) values
that may flow into that label’s subexpression during evaluation.
Similarly, the abstract enviroment maps a variable to an abstract
value, which represents the set of (textual) values that may be
bound to that variable during evaluation.

An acceptable control flow analysis for an expression e is writ-
ten b

C |= e. Recalling again from Nielson et al. (1999), the accept-
ability relation is given by the greatest fixed point of the functional
defined according to the following clauses:

b
C |= x` iff b

C(x) ✓ b
C(`)

b
C |= (�x.e)` iff (�x.e) 2 b

C(`)

b
C |= (t`1

1 t`2
2)` iff b

C |= t`1
1 ^ b

C |= t`2
2 ^ 8(�x.t`0

0) 2 b
C(`1) :

b
C |= t`0

0 ^ b
C(`2) ✓ b

C(x) ^ b
C(`0) ✓ b

C(`)

We now describe an algorithm for performing control flow anal-
ysis that is based on the graph coding of terms. The graphical for-
mulation consists of generating a set of virtual paths for a program
graph. Virtual paths describe an approximation of the real paths that
will arise during program execution.

Figure 2 defines the virtual path propagation rules. The left hand
rule states that a virtual wire is added from the continuation wire to
the body wire and from the variable wire to the argument wire of
each �-redex. The right hand rule states analogous wires are added
to each virtual �-redex—an apply and lambda node connected by
a virtual path. There is a virtual path between two wires ` and `0,
written ` `0 in a CFA-graph iff: 1) ` ⌘ `0, 2) there is a virtual
wire from ` to `0, 3) ` connects to an auxiliary port and `0 connects
to the principal port of a sharing node, or 4) ` `00 and `00 `0.

Some care must be taken to ensure leastness when propagat-
ing virtual wires. In particular, wires are added only when there
is a virtual path between a reachable apply and a lambda. An ap-
ply node is reachable if it is on the spine of the program, i.e., if
e = (· · · ((e0e1)

`1e2)
`2 · · · en)`n then the apply nodes with con-

tinuation wires labeled `1, . . . , `n are reachable, or it is on the spine
of an expression with a virtual path from a reachable apply node.

The graph-based analysis can now be performed in the follow-
ing way: construct the CFA graph according to the rules in Fig-
ure 2, then define b

C(`) as {(�x.e)`0 | ` `0}. It is easy to see
that the algorithm constructs answers that satisfy the acceptabil-
ity relation specifying the analysis. Moreover, this algorithm con-
structs least solutions according to the partial order b

C ve
b
C

0 iff
8` 2 Labe : b

C(`) ✓ b
C

0(`), where Labe denotes the set of labels
restricted to those occurring in e, the program of interest.

@

@

@

@

@

@

�f

�x

�y

10

1 2

4

5

3

8

9

6

7

�f

�x

�y

10

1 2

4

5

3

8

9

6

7

Figure 3. Graph coding and CFA graph.

Lemma 1.

b
C

0 |= e implies b
C ve

b
C

0 for b
C constructed for e as

described above.

We now consider an example of use of the algorithm. Consider
the labeled program:

((�f.((f1f2)3(�y.y4)5)6)7(�x.x8)9)10

Figure 3 shows the graph coding of the program and the corre-
sponding CFA graph. The CFA graph is constructed by adding vir-
tual wires 10 6 and f 9, induced by the actual �-redex on
wire 7. Adding the virtual path f 9 to the graph creates a vir-
tual �-redex via the route 1 f (through the sharing node), and
f 9 (through the virtual wire). This induces 3 8 and 8 2.
There is now a virtual �-redex via 3 8 2 f 9, so wires
6 8 and 8 5 are added. This addition creates another virtual
redex via 3 8 2 5, which induces virtual wires 6 4
and 4 5. No further wires can be added, so the CFA graph is
complete. The resulting abstract cache gives:

b
C(1) = {�x} b

C(6) = {�x, �y}
b
C(2) = {�x} b

C(7) = {�f}
b
C(3) = {�x, �y} b

C(8) = {�x, �y}
b
C(4) = {�y} b

C(9) = {�x}
b
C(5) = {�y} b

C(10) = {�x, �y}

b
C(f) = {�x}
b
C(x) = {�x, �y}
b
C(y) = {�y}

We now describe a natural decision problem answered by this
control flow analysis. After describing the problem here, subse-
quent sections will consider variants of it for kCFA.

3.1 The 0CFA decision problem

A decision problem—a question that can be answered with a yes
or a no—makes the analysis insensitive to the output size of any
control flow analysis. Typically, this analysis computes the answer
to questions like “what functions can be applied at a particular call
site?” or “what arguments can a particular function be applied to?”,
so a natural decision problem based on these questions are “is this
particular function applied at this particular call site?” or “does
this function get applied to this argument?”, where the function is
denoted by some lambda expression or application in the program
text. These questions provide ways of answering the more general
“to what values can a subexpression evaluate?”

Control Flow Problem (0CFA): Given expressions e, (�x.e0),
and label `, is (�x.e0) 2 b

C(`) in a least analysis of e?

The graphical analogue of this problem point to a �-node and
an application node, and ask if there a virtual path (describing a �-
redex from reductions to take place) from the function port of the

87

mVFA
OCFA in direct style

λ+

2. Closure rule:

λ-*

13

@ @ @@

�x

)cfa

�x �x

)cfa

�x

Figure 2. CFA virtual wire propagation rules.

textual information can be used to distinguish the copies and give
more precise answers to these questions.

We follow Nielson et al. (1999) and say the result of 0CFA is
an abstract cache b

C associating abstract values with each labeled
program point. More precisely:

bv 2 d
Val = P(Term) abstract values

b
C 2 \

Cache = Lab! d
Val abstract caches

An abstract cache maps a program label to an abstract value bv, a set
of lambda expressions, which represents the set of (textual) values
that may flow into that label’s subexpression during evaluation.
Similarly, the abstract enviroment maps a variable to an abstract
value, which represents the set of (textual) values that may be
bound to that variable during evaluation.

An acceptable control flow analysis for an expression e is writ-
ten b

C |= e. Recalling again from Nielson et al. (1999), the accept-
ability relation is given by the greatest fixed point of the functional
defined according to the following clauses:

b
C |= x` iff b

C(x) ✓ b
C(`)

b
C |= (�x.e)` iff (�x.e) 2 b

C(`)

b
C |= (t`1

1 t`2
2)` iff b

C |= t`1
1 ^ b

C |= t`2
2 ^ 8(�x.t`0

0) 2 b
C(`1) :

b
C |= t`0

0 ^ b
C(`2) ✓ b

C(x) ^ b
C(`0) ✓ b

C(`)

We now describe an algorithm for performing control flow anal-
ysis that is based on the graph coding of terms. The graphical for-
mulation consists of generating a set of virtual paths for a program
graph. Virtual paths describe an approximation of the real paths that
will arise during program execution.

Figure 2 defines the virtual path propagation rules. The left hand
rule states that a virtual wire is added from the continuation wire to
the body wire and from the variable wire to the argument wire of
each �-redex. The right hand rule states analogous wires are added
to each virtual �-redex—an apply and lambda node connected by
a virtual path. There is a virtual path between two wires ` and `0,
written ` `0 in a CFA-graph iff: 1) ` ⌘ `0, 2) there is a virtual
wire from ` to `0, 3) ` connects to an auxiliary port and `0 connects
to the principal port of a sharing node, or 4) ` `00 and `00 `0.

Some care must be taken to ensure leastness when propagat-
ing virtual wires. In particular, wires are added only when there
is a virtual path between a reachable apply and a lambda. An ap-
ply node is reachable if it is on the spine of the program, i.e., if
e = (· · · ((e0e1)

`1e2)
`2 · · · en)`n then the apply nodes with con-

tinuation wires labeled `1, . . . , `n are reachable, or it is on the spine
of an expression with a virtual path from a reachable apply node.

The graph-based analysis can now be performed in the follow-
ing way: construct the CFA graph according to the rules in Fig-
ure 2, then define b

C(`) as {(�x.e)`0 | ` `0}. It is easy to see
that the algorithm constructs answers that satisfy the acceptabil-
ity relation specifying the analysis. Moreover, this algorithm con-
structs least solutions according to the partial order b

C ve
b
C

0 iff
8` 2 Labe : b

C(`) ✓ b
C

0(`), where Labe denotes the set of labels
restricted to those occurring in e, the program of interest.

@

@

@

@

@

@

�f

�x

�y

10

1 2

4

5

3

8

9

6

7

�f

�x

�y

10

1 2

4

5

3

8

9

6

7

Figure 3. Graph coding and CFA graph.

Lemma 1.

b
C

0 |= e implies b
C ve

b
C

0 for b
C constructed for e as

described above.

We now consider an example of use of the algorithm. Consider
the labeled program:

((�f.((f1f2)3(�y.y4)5)6)7(�x.x8)9)10

Figure 3 shows the graph coding of the program and the corre-
sponding CFA graph. The CFA graph is constructed by adding vir-
tual wires 10 6 and f 9, induced by the actual �-redex on
wire 7. Adding the virtual path f 9 to the graph creates a vir-
tual �-redex via the route 1 f (through the sharing node), and
f 9 (through the virtual wire). This induces 3 8 and 8 2.
There is now a virtual �-redex via 3 8 2 f 9, so wires
6 8 and 8 5 are added. This addition creates another virtual
redex via 3 8 2 5, which induces virtual wires 6 4
and 4 5. No further wires can be added, so the CFA graph is
complete. The resulting abstract cache gives:

b
C(1) = {�x} b

C(6) = {�x, �y}
b
C(2) = {�x} b

C(7) = {�f}
b
C(3) = {�x, �y} b

C(8) = {�x, �y}
b
C(4) = {�y} b

C(9) = {�x}
b
C(5) = {�y} b

C(10) = {�x, �y}

b
C(f) = {�x}
b
C(x) = {�x, �y}
b
C(y) = {�y}

We now describe a natural decision problem answered by this
control flow analysis. After describing the problem here, subse-
quent sections will consider variants of it for kCFA.

3.1 The 0CFA decision problem

A decision problem—a question that can be answered with a yes
or a no—makes the analysis insensitive to the output size of any
control flow analysis. Typically, this analysis computes the answer
to questions like “what functions can be applied at a particular call
site?” or “what arguments can a particular function be applied to?”,
so a natural decision problem based on these questions are “is this
particular function applied at this particular call site?” or “does
this function get applied to this argument?”, where the function is
denoted by some lambda expression or application in the program
text. These questions provide ways of answering the more general
“to what values can a subexpression evaluate?”

Control Flow Problem (0CFA): Given expressions e, (�x.e0),
and label `, is (�x.e0) 2 b

C(`) in a least analysis of e?

The graphical analogue of this problem point to a �-node and
an application node, and ask if there a virtual path (describing a �-
redex from reductions to take place) from the function port of the

87

14

Eval

Every variable occurs once.

0CFA

14

EvalPTIME0CFA

15

@ @ @@

�x

)cfa

�x �x

)cfa

�x

Figure 2. CFA virtual wire propagation rules.

textual information can be used to distinguish the copies and give
more precise answers to these questions.

We follow Nielson et al. (1999) and say the result of 0CFA is
an abstract cache b

C associating abstract values with each labeled
program point. More precisely:

bv 2 d
Val = P(Term) abstract values

b
C 2 \

Cache = Lab! d
Val abstract caches

An abstract cache maps a program label to an abstract value bv, a set
of lambda expressions, which represents the set of (textual) values
that may flow into that label’s subexpression during evaluation.
Similarly, the abstract enviroment maps a variable to an abstract
value, which represents the set of (textual) values that may be
bound to that variable during evaluation.

An acceptable control flow analysis for an expression e is writ-
ten b

C |= e. Recalling again from Nielson et al. (1999), the accept-
ability relation is given by the greatest fixed point of the functional
defined according to the following clauses:

b
C |= x` iff b

C(x) ✓ b
C(`)

b
C |= (�x.e)` iff (�x.e) 2 b

C(`)

b
C |= (t`1

1 t`2
2)` iff b

C |= t`1
1 ^ b

C |= t`2
2 ^ 8(�x.t`0

0) 2 b
C(`1) :

b
C |= t`0

0 ^ b
C(`2) ✓ b

C(x) ^ b
C(`0) ✓ b

C(`)

We now describe an algorithm for performing control flow anal-
ysis that is based on the graph coding of terms. The graphical for-
mulation consists of generating a set of virtual paths for a program
graph. Virtual paths describe an approximation of the real paths that
will arise during program execution.

Figure 2 defines the virtual path propagation rules. The left hand
rule states that a virtual wire is added from the continuation wire to
the body wire and from the variable wire to the argument wire of
each �-redex. The right hand rule states analogous wires are added
to each virtual �-redex—an apply and lambda node connected by
a virtual path. There is a virtual path between two wires ` and `0,
written ` `0 in a CFA-graph iff: 1) ` ⌘ `0, 2) there is a virtual
wire from ` to `0, 3) ` connects to an auxiliary port and `0 connects
to the principal port of a sharing node, or 4) ` `00 and `00 `0.

Some care must be taken to ensure leastness when propagat-
ing virtual wires. In particular, wires are added only when there
is a virtual path between a reachable apply and a lambda. An ap-
ply node is reachable if it is on the spine of the program, i.e., if
e = (· · · ((e0e1)

`1e2)
`2 · · · en)`n then the apply nodes with con-

tinuation wires labeled `1, . . . , `n are reachable, or it is on the spine
of an expression with a virtual path from a reachable apply node.

The graph-based analysis can now be performed in the follow-
ing way: construct the CFA graph according to the rules in Fig-
ure 2, then define b

C(`) as {(�x.e)`0 | ` `0}. It is easy to see
that the algorithm constructs answers that satisfy the acceptabil-
ity relation specifying the analysis. Moreover, this algorithm con-
structs least solutions according to the partial order b

C ve
b
C

0 iff
8` 2 Labe : b

C(`) ✓ b
C

0(`), where Labe denotes the set of labels
restricted to those occurring in e, the program of interest.

@

@

@

@

@

@

�f

�x

�y

10

1 2

4

5

3

8

9

6

7

�f

�x

�y

10

1 2

4

5

3

8

9

6

7

Figure 3. Graph coding and CFA graph.

Lemma 1.

b
C

0 |= e implies b
C ve

b
C

0 for b
C constructed for e as

described above.

We now consider an example of use of the algorithm. Consider
the labeled program:

((�f.((f1f2)3(�y.y4)5)6)7(�x.x8)9)10

Figure 3 shows the graph coding of the program and the corre-
sponding CFA graph. The CFA graph is constructed by adding vir-
tual wires 10 6 and f 9, induced by the actual �-redex on
wire 7. Adding the virtual path f 9 to the graph creates a vir-
tual �-redex via the route 1 f (through the sharing node), and
f 9 (through the virtual wire). This induces 3 8 and 8 2.
There is now a virtual �-redex via 3 8 2 f 9, so wires
6 8 and 8 5 are added. This addition creates another virtual
redex via 3 8 2 5, which induces virtual wires 6 4
and 4 5. No further wires can be added, so the CFA graph is
complete. The resulting abstract cache gives:

b
C(1) = {�x} b

C(6) = {�x, �y}
b
C(2) = {�x} b

C(7) = {�f}
b
C(3) = {�x, �y} b

C(8) = {�x, �y}
b
C(4) = {�y} b

C(9) = {�x}
b
C(5) = {�y} b

C(10) = {�x, �y}

b
C(f) = {�x}
b
C(x) = {�x, �y}
b
C(y) = {�y}

We now describe a natural decision problem answered by this
control flow analysis. After describing the problem here, subse-
quent sections will consider variants of it for kCFA.

3.1 The 0CFA decision problem

A decision problem—a question that can be answered with a yes
or a no—makes the analysis insensitive to the output size of any
control flow analysis. Typically, this analysis computes the answer
to questions like “what functions can be applied at a particular call
site?” or “what arguments can a particular function be applied to?”,
so a natural decision problem based on these questions are “is this
particular function applied at this particular call site?” or “does
this function get applied to this argument?”, where the function is
denoted by some lambda expression or application in the program
text. These questions provide ways of answering the more general
“to what values can a subexpression evaluate?”

Control Flow Problem (0CFA): Given expressions e, (�x.e0),
and label `, is (�x.e0) 2 b

C(`) in a least analysis of e?

The graphical analogue of this problem point to a �-node and
an application node, and ask if there a virtual path (describing a �-
redex from reductions to take place) from the function port of the

87

16

@ @ @@

�x

)cfa

�x �x

)cfa

�x

Figure 2. CFA virtual wire propagation rules.

textual information can be used to distinguish the copies and give
more precise answers to these questions.

We follow Nielson et al. (1999) and say the result of 0CFA is
an abstract cache b

C associating abstract values with each labeled
program point. More precisely:

bv 2 d
Val = P(Term) abstract values

b
C 2 \

Cache = Lab! d
Val abstract caches

An abstract cache maps a program label to an abstract value bv, a set
of lambda expressions, which represents the set of (textual) values
that may flow into that label’s subexpression during evaluation.
Similarly, the abstract enviroment maps a variable to an abstract
value, which represents the set of (textual) values that may be
bound to that variable during evaluation.

An acceptable control flow analysis for an expression e is writ-
ten b

C |= e. Recalling again from Nielson et al. (1999), the accept-
ability relation is given by the greatest fixed point of the functional
defined according to the following clauses:

b
C |= x` iff b

C(x) ✓ b
C(`)

b
C |= (�x.e)` iff (�x.e) 2 b

C(`)

b
C |= (t`1

1 t`2
2)` iff b

C |= t`1
1 ^ b

C |= t`2
2 ^ 8(�x.t`0

0) 2 b
C(`1) :

b
C |= t`0

0 ^ b
C(`2) ✓ b

C(x) ^ b
C(`0) ✓ b

C(`)

We now describe an algorithm for performing control flow anal-
ysis that is based on the graph coding of terms. The graphical for-
mulation consists of generating a set of virtual paths for a program
graph. Virtual paths describe an approximation of the real paths that
will arise during program execution.

Figure 2 defines the virtual path propagation rules. The left hand
rule states that a virtual wire is added from the continuation wire to
the body wire and from the variable wire to the argument wire of
each �-redex. The right hand rule states analogous wires are added
to each virtual �-redex—an apply and lambda node connected by
a virtual path. There is a virtual path between two wires ` and `0,
written ` `0 in a CFA-graph iff: 1) ` ⌘ `0, 2) there is a virtual
wire from ` to `0, 3) ` connects to an auxiliary port and `0 connects
to the principal port of a sharing node, or 4) ` `00 and `00 `0.

Some care must be taken to ensure leastness when propagat-
ing virtual wires. In particular, wires are added only when there
is a virtual path between a reachable apply and a lambda. An ap-
ply node is reachable if it is on the spine of the program, i.e., if
e = (· · · ((e0e1)

`1e2)
`2 · · · en)`n then the apply nodes with con-

tinuation wires labeled `1, . . . , `n are reachable, or it is on the spine
of an expression with a virtual path from a reachable apply node.

The graph-based analysis can now be performed in the follow-
ing way: construct the CFA graph according to the rules in Fig-
ure 2, then define b

C(`) as {(�x.e)`0 | ` `0}. It is easy to see
that the algorithm constructs answers that satisfy the acceptabil-
ity relation specifying the analysis. Moreover, this algorithm con-
structs least solutions according to the partial order b

C ve
b
C

0 iff
8` 2 Labe : b

C(`) ✓ b
C

0(`), where Labe denotes the set of labels
restricted to those occurring in e, the program of interest.

@

@

@

@

@

@

�f

�x

�y

10

1 2

4

5

3

8

9

6

7

�f

�x

�y

10

1 2

4

5

3

8

9

6

7

Figure 3. Graph coding and CFA graph.

Lemma 1.

b
C

0 |= e implies b
C ve

b
C

0 for b
C constructed for e as

described above.

We now consider an example of use of the algorithm. Consider
the labeled program:

((�f.((f1f2)3(�y.y4)5)6)7(�x.x8)9)10

Figure 3 shows the graph coding of the program and the corre-
sponding CFA graph. The CFA graph is constructed by adding vir-
tual wires 10 6 and f 9, induced by the actual �-redex on
wire 7. Adding the virtual path f 9 to the graph creates a vir-
tual �-redex via the route 1 f (through the sharing node), and
f 9 (through the virtual wire). This induces 3 8 and 8 2.
There is now a virtual �-redex via 3 8 2 f 9, so wires
6 8 and 8 5 are added. This addition creates another virtual
redex via 3 8 2 5, which induces virtual wires 6 4
and 4 5. No further wires can be added, so the CFA graph is
complete. The resulting abstract cache gives:

b
C(1) = {�x} b

C(6) = {�x, �y}
b
C(2) = {�x} b

C(7) = {�f}
b
C(3) = {�x, �y} b

C(8) = {�x, �y}
b
C(4) = {�y} b

C(9) = {�x}
b
C(5) = {�y} b

C(10) = {�x, �y}

b
C(f) = {�x}
b
C(x) = {�x, �y}
b
C(y) = {�y}

We now describe a natural decision problem answered by this
control flow analysis. After describing the problem here, subse-
quent sections will consider variants of it for kCFA.

3.1 The 0CFA decision problem

A decision problem—a question that can be answered with a yes
or a no—makes the analysis insensitive to the output size of any
control flow analysis. Typically, this analysis computes the answer
to questions like “what functions can be applied at a particular call
site?” or “what arguments can a particular function be applied to?”,
so a natural decision problem based on these questions are “is this
particular function applied at this particular call site?” or “does
this function get applied to this argument?”, where the function is
denoted by some lambda expression or application in the program
text. These questions provide ways of answering the more general
“to what values can a subexpression evaluate?”

Control Flow Problem (0CFA): Given expressions e, (�x.e0),
and label `, is (�x.e0) 2 b

C(`) in a least analysis of e?

The graphical analogue of this problem point to a �-node and
an application node, and ask if there a virtual path (describing a �-
redex from reductions to take place) from the function port of the

87

17

@ @ @@

�x

)cfa

�x �x

)cfa

�x

Figure 2. CFA virtual wire propagation rules.

textual information can be used to distinguish the copies and give
more precise answers to these questions.

We follow Nielson et al. (1999) and say the result of 0CFA is
an abstract cache b

C associating abstract values with each labeled
program point. More precisely:

bv 2 d
Val = P(Term) abstract values

b
C 2 \

Cache = Lab! d
Val abstract caches

An abstract cache maps a program label to an abstract value bv, a set
of lambda expressions, which represents the set of (textual) values
that may flow into that label’s subexpression during evaluation.
Similarly, the abstract enviroment maps a variable to an abstract
value, which represents the set of (textual) values that may be
bound to that variable during evaluation.

An acceptable control flow analysis for an expression e is writ-
ten b

C |= e. Recalling again from Nielson et al. (1999), the accept-
ability relation is given by the greatest fixed point of the functional
defined according to the following clauses:

b
C |= x` iff b

C(x) ✓ b
C(`)

b
C |= (�x.e)` iff (�x.e) 2 b

C(`)

b
C |= (t`1

1 t`2
2)` iff b

C |= t`1
1 ^ b

C |= t`2
2 ^ 8(�x.t`0

0) 2 b
C(`1) :

b
C |= t`0

0 ^ b
C(`2) ✓ b

C(x) ^ b
C(`0) ✓ b

C(`)

We now describe an algorithm for performing control flow anal-
ysis that is based on the graph coding of terms. The graphical for-
mulation consists of generating a set of virtual paths for a program
graph. Virtual paths describe an approximation of the real paths that
will arise during program execution.

Figure 2 defines the virtual path propagation rules. The left hand
rule states that a virtual wire is added from the continuation wire to
the body wire and from the variable wire to the argument wire of
each �-redex. The right hand rule states analogous wires are added
to each virtual �-redex—an apply and lambda node connected by
a virtual path. There is a virtual path between two wires ` and `0,
written ` `0 in a CFA-graph iff: 1) ` ⌘ `0, 2) there is a virtual
wire from ` to `0, 3) ` connects to an auxiliary port and `0 connects
to the principal port of a sharing node, or 4) ` `00 and `00 `0.

Some care must be taken to ensure leastness when propagat-
ing virtual wires. In particular, wires are added only when there
is a virtual path between a reachable apply and a lambda. An ap-
ply node is reachable if it is on the spine of the program, i.e., if
e = (· · · ((e0e1)

`1e2)
`2 · · · en)`n then the apply nodes with con-

tinuation wires labeled `1, . . . , `n are reachable, or it is on the spine
of an expression with a virtual path from a reachable apply node.

The graph-based analysis can now be performed in the follow-
ing way: construct the CFA graph according to the rules in Fig-
ure 2, then define b

C(`) as {(�x.e)`0 | ` `0}. It is easy to see
that the algorithm constructs answers that satisfy the acceptabil-
ity relation specifying the analysis. Moreover, this algorithm con-
structs least solutions according to the partial order b

C ve
b
C

0 iff
8` 2 Labe : b

C(`) ✓ b
C

0(`), where Labe denotes the set of labels
restricted to those occurring in e, the program of interest.

@

@

@

@

@

@

�f

�x

�y

10

1 2

4

5

3

8

9

6

7

�f

�x

�y

10

1 2

4

5

3

8

9

6

7

Figure 3. Graph coding and CFA graph.

Lemma 1.

b
C

0 |= e implies b
C ve

b
C

0 for b
C constructed for e as

described above.

We now consider an example of use of the algorithm. Consider
the labeled program:

((�f.((f1f2)3(�y.y4)5)6)7(�x.x8)9)10

Figure 3 shows the graph coding of the program and the corre-
sponding CFA graph. The CFA graph is constructed by adding vir-
tual wires 10 6 and f 9, induced by the actual �-redex on
wire 7. Adding the virtual path f 9 to the graph creates a vir-
tual �-redex via the route 1 f (through the sharing node), and
f 9 (through the virtual wire). This induces 3 8 and 8 2.
There is now a virtual �-redex via 3 8 2 f 9, so wires
6 8 and 8 5 are added. This addition creates another virtual
redex via 3 8 2 5, which induces virtual wires 6 4
and 4 5. No further wires can be added, so the CFA graph is
complete. The resulting abstract cache gives:

b
C(1) = {�x} b

C(6) = {�x, �y}
b
C(2) = {�x} b

C(7) = {�f}
b
C(3) = {�x, �y} b

C(8) = {�x, �y}
b
C(4) = {�y} b

C(9) = {�x}
b
C(5) = {�y} b

C(10) = {�x, �y}

b
C(f) = {�x}
b
C(x) = {�x, �y}
b
C(y) = {�y}

We now describe a natural decision problem answered by this
control flow analysis. After describing the problem here, subse-
quent sections will consider variants of it for kCFA.

3.1 The 0CFA decision problem

A decision problem—a question that can be answered with a yes
or a no—makes the analysis insensitive to the output size of any
control flow analysis. Typically, this analysis computes the answer
to questions like “what functions can be applied at a particular call
site?” or “what arguments can a particular function be applied to?”,
so a natural decision problem based on these questions are “is this
particular function applied at this particular call site?” or “does
this function get applied to this argument?”, where the function is
denoted by some lambda expression or application in the program
text. These questions provide ways of answering the more general
“to what values can a subexpression evaluate?”

Control Flow Problem (0CFA): Given expressions e, (�x.e0),
and label `, is (�x.e0) 2 b

C(`) in a least analysis of e?

The graphical analogue of this problem point to a �-node and
an application node, and ask if there a virtual path (describing a �-
redex from reductions to take place) from the function port of the

87

The expansion variables come to use when doing type inference.
The type inference first derives a typing 〈Γ;τ〉 and a set of con-
straints C on the form τ = τ′. It then finds a substitution S that
solves the constraints C. The inferred type is obtained by apply-
ing S to 〈Γ;τ〉. The inference is syntax-directed and straightforward
except for the application where we use4

Γ $I P : τ Γ′ $I Q : τ
AppInfer

Γ∧ (FΓ′) $I PQ : τ′

where F and τ′ are fresh. We add the constraint that τ = F τ→ τ′

and modify each constraint τ= τ′ found for Q to be F τ= F τ′.

To meaningfully talk about solutions, we need to specify what it
means to substitute an expansion for an expansion variables. The
idea is that when e is substituted for F, applications F τ are replaced
by e with each hole filled with a fresh instance of τ. The fresh
instances are chosen such that if the same expansion is applied to
different instances of a type variable, it gets the same fresh name. A
formal definition and some further constraints necessary for techni-
cal reasons are in the formal definition of System-I [28, 26].

Intersection type systems (and System-I) type exactly the strongly
normalizing λ-terms, so type inference is undecidable. We obtain a
tractable fragment by limiting the depth of ∧ under→. Usually [24]
rank is defined as the maximal depth of ∧ in the left child of a→.
We use a tighter definition where we only count the alternation of
∧ on the “domain” (i.e., argument) side of a→ in types. Formally,
we use the functions rank : (T ∪T) → N0 and rank’ : T → N0:

rank(a) = 0 rank(τ∧ τ’) = max{rank τ, rank τ′ }
rank(F τ) = rank τ rank(τ→ τ) = max{rank’ τ, rank τ}
rank’(τ) = rank τ rank’(F τ) = rank’ τ

rank’(τ∧ τ’) = 1+max{rank τ, rank τ′ }
(2)

A term M with typing 〈Γ;τ〉 derived by Δ has as rank the maximal
rank of an abstracted variable (either explicitly or in the environ-
ment): rank(Δ) = max({rank’σ | z : σ ∈ Γ}∪ {rankσ | ∃p.(σ ∈
typ(Δ, p)& sub(M, p) = λz.Q)}).

2.2 Interaction nets and proofnets
Interaction nets provide a graphical representation of λ-calculus
terms, while avoiding problems of variable capture, preserving sub-
ject reduction, and providing a link to concepts in linear logic. The
λ-calculus can be represented using nets (here, we have used the
call-by-name encoding *·+, presented inductively in Fig. 1); to rep-
resent System-I typings we add typing information to the nets and
obtain proofnets.

The external vertices of a net are either free ports () represent-
ing the free variables, or the distinguished root port for the whole
term. Weakening nodes () mark unused function arguments; ap-
plication (@) and function nodes (λ) mark the definition and use
of procedures; sharing nodes () code the multiplicity of variable
occurrences; and croissant nodes () mark variable occurrences.
A global construction, the box, delineates the (sharable) arguments
of an application. Edges are wires; their endpoints are attached to

4Strictly speaking, the System-I algorithm has an extra step
where the term is decorated with expansion variables to form a so-
called skeleton. In principle this can be done in many ways, but the
algorithm decorates the arguments to applications as shown here.

x

λ

*P+
· · ·

λIx.P

λ

*P+
· · ·

λKx.P

@

*P+ *Q+

· · ·
··· ···

· · · · · ·

PQ

Figure 1. The inductive encoding *·+ of a λ-term as a net. The
port () on top is the root, representing the whole term, while
the ports in the bottom correspond to the free variables. In the
application case the left group of wires is the variables solely
in P, the middle group the variables occurring in both P and Q,
and the right group is the variables solely in Q.

@

λ
⇒ ⇒

· · ·
⇒

· · ·

··· ··· ⇒

Figure 2. Reduction rules for interaction nets.

ports of either a node, or the entire graph. Each node has a principal
port (marked with a black dot), and possibly other auxiliary ports.

Equivalent to doing β-reduction, a net can be reduced using the
rules presented in Fig. 2. An interaction takes place between an @-
and λ-node connected on their principal ports, between a sharing
node and box connected on their principal ports, or between two
boxes, connected from a principal to an auxiliary port. These rules
are the graphical equivalent of β-unification, the constraint solving
rules used in System-I [27].

We omit discussion of necessary weakening rules, since our primary
concern is type inference where erasing an argument can change
typability. The system is Church-Rosser, and we write NF⇒ for its
normal forms; it simulates β-reduction up to trivial permutations on
the sharing nodes, as in the following proposition.

Proposition 2.1. Let M and N be λ-terms such that M→β N. There
is a net I such that *M+⇒ I, and I is equivalent to the nodes of *N+
reachable from the root up to left/right orientation of auxiliary ports
on sharing nodes, and their location inside or outside boxes.

We restrict our consideration to the nets that arise from encoding
and reducing λ-terms.

At this point, we have a language corresponding to the untyped λ-
calculus. We recover the equivalent of a type system by annotating
the wires of the net with types, oriented in a fixed direction along the
wire, where the type system enforces constraints around the ports of
nodes and boxes. We call an annotated net a proofnet. For example,
with simple types, the wire on the principal port of an @-node has
an incoming type α→ β, and the right (left) auxiliary port has an

142

18

Boolean logic

Coding Boolean logic in linear λ-calculus:

TT ≡ λp.let 〈x, y〉 = p in 〈x, y〉 True ≡ 〈TT, FF〉

FF ≡ λp.let 〈x, y〉 = p in 〈y, x〉 False ≡ 〈FF, TT〉

Copy ≡ λb.let 〈u, v〉 = b in 〈u〈TT, FF〉, v〈FF, TT〉〉

Implies ≡ λb1.λb2.

let 〈u1, v1〉 = b1 in
let 〈u2, v2〉 = b2 in
let 〈p1, p2〉 = u1〈u2, TT〉 in
let 〈q1, q2〉 = v1〈FF, v2〉 in
〈p1, q1 ◦ p2 ◦ q2 ◦ FF〉

The Complexity of Flow Analaysis in Higher-Order Languages – p.49/61

19

Eval

Every variable occurs once.

0CFA

19

Eval

Every variable occurs once.

0CFA

Sub0CFA

19

Eval

Every variable occurs once.

0CFA

Sub0CFA

Simple closure

19

EvalPTIME0CFA

Sub0CFA

Simple closure

20

@ @

@

@ @

�k

�f

�v
�

Jcall/ccK

�f

�v
�

�
�x

2

1

Figure 5. Graph coding of call/cc and example CFA graph.

contextual analyses and transforms must be also implemented—
redundantly,” in his view. Although our formulation of kCFA is a
“direct-style” formulation, a graph representation enjoys the same
benefits of a CPS representation, namely that control structures are
made explicit—in a graph a continuation is simply a wire. Con-
trol constructs such as call/cc can be expressed directly (Lawall
and Mairson 2000) and our graphical formulation of control flow
analysis carries over without modification.

Lawall and Mairson (2000) derive graph representations of pro-
grams with control operators such as call/cc by first translating
programs into continuation passing style (CPS). They observed that
when edges in the CPS graphs carrying answer values (of type ?)
are eliminated, the original (direct-style) graph is regained, modulo
placement of boxes and croissants that control sharing. Compos-
ing the two transformations results in a direct-style graph coding
for languages with call/cc (hereafter, �K). The approach applies
equally well to languages such as Filinski’s symmetric �-calculus
(1989), Parigot’s �µ calculus (1992), and most any language ex-
pressible in CPS.9

The left side of Figure 5 shows the graph coding of call/cc.
Examining this graph, we can read of an interpretation of call/cc,
namely: call/cc is a function that when applied, copies the cur-
rent continuation (4) and applies the given function f to a function
(�v . . .) that when applied abandons the continuation at that point
(�) and gives its argument v to a copy of the continuation where
call/cc was applied. If f never applies the function it is given,
then control returns “normally” and the value f returns is given to
the other copy of the continuation where call/cc was applied.

The right side of Figure 5 gives the CFA graph for the program:

(call/cc (�k.(�x.1)(k2)))l

From the CFA graph we see that b
C(l) = {1, 2}, reflecting the

fact that the program will return 1 under a call-by-name reduction
strategy and 2 under call-by-value. Thus, the analysis is indifferent
to the reduction strategy. Note that whereas before, approximation
was introduced through non-linearity of bound variables, approxi-
mation can now be introduced via non-linear use of continuations,
as seen in the example. In the same way that 0CFA considers all
occurrences of a bound variable “the same”, 0CFA considers all
continuations obtained with each instance of call/cc “the same”.

Note that we can ask new kinds of interesting questions in this
analysis. For example, in Figure 5, we can compute which contin-
uations are potentially discarded, by computing which continua-
tions flow into the weakening node of the call/cc term. (The an-
swer is the continuation ((�x.1)[]).) Likewise, it is possible to ask

9 Languages such as �⇠ , which contains the “delimited control” operators
shift and reset (Danvy and Filinski 1990), are not immediately amenable
to this approach since the direct-style transformation requires all calls to
functions or continuations be in tail position. Adapting this approach to
such languages constitutes an active area of research for us.

which continuations are potentially copied, by computing which
continuations flow into the principal port of the sharing node in
the call/cc term (in this case, the top-level empty continuation
[]). Because continuations are used linearly in call/cc-free pro-
grams, the questions were uninteresting before—the answer is al-
ways none.

Our proofs for the PTIME-completeness of 0CFA for the un-
typed �-calculus—and likewise for the results on kCFA—carry
over without modification languages such as �K, �µ and the sym-
metric �-calculus. In other words, first-class control operators such
as call/cc increase the expressivity of the language, but add noth-
ing to the computational complexity of control flow analysis. In
the case of simply-typed, fully ⌘-expanded programs, the same can
be said. A suitable notion of “simply-typed” programs is needed,
such as that provided by Griffin (1990) for �K. The type-based
expansion algorithm of Figure 4 applies without modification and
Lemma 7 holds, allowing 0CFA for this class of programs to be
done in LOGSPACE. Linear logic provides a foundation for (clas-
sical) �-calculi with control; related logical insights allow control
flow analysis in this setting.

7. Related work

The PTIME-completeness of 0CFA is most closely related to the
PTIME-completeness of simply typing in the �-caclculus (Mairson
2004). Both results use linearity to subvert the approximation of
the analysis, and since both analyses rely on the same source of
approximation, it is no suprise that they share the same lower bound
on complexity.

ML typing can be viewed as a bounded running of a program
(reducing all let-redexes) followed by a simple typing of the resid-
ual. The residual program can be exponentially larger, leading to
EXPTIME-completeness results by using polymorphism to iterate
a linear TM transition function (Mairson 1990). The EXPTIME-
completeness of nCFA can be viewed in a similar light. Contours
of length proportional to the program size provide a bounded “run-
ning” of the program by exact analysis of the non-linearity intro-
duced by iterative doubling of the transition function.

The story is the same for k-rank bounded intesection typing—a
program is run by computing k successive minimal complete devel-
opments and the residual is simply typed. The resulting hardness
of typing is elementary in k (Neergaard and Mairson 2004), and
thus the complexity class of each fixed k is seperated. On the other
hand, for (k > 0)CFA, the complexity in the “hierarchy” remains
the same as k grows. There should be a natural way of developing
an alternative control flow hierarchy that relies on complete de-
velopments for its notion of bounded running that will be strictly
more expressive than the kCFA examined in this paper. The result
is likely to be similiar in spirit to that of Mossin (1997b), although
Mossin’s analysis is simply evaluation by virtue of its exactness. To
remain useful, some information must be purposeless lost in order
to compute an answer in less time than it takes to run the program.

It also seems likely that the linear logic based investigation into
CFA presented here can be coupled with that of Neergaard and
Mairson (2004) to provide the foundation for complexity results
for the control flow analysis of rank-2 bounded intersection typed
programs (Banerjee and Jensen 2003).

Static program analysis has been recast as various kinds of
graph reachability problems, and parenthesis languages have been
used to describe paths in these graphs; see Reps (2000) for example.
Words in these languages are the contexts of the context semantics
presentation (Mairson 2003) of the geometry of interaction (Girard
1989). The undecidability of decision problems for these special-
ized parenthesis languages corresponds naturally to versions of the
halting problem.

94

21

1CFA and EXPTIME

22

kCFA EvalkCFA

Datalog-style programming with analysis.

22

kCFA EvalkCFA EXPTIME

23

kCFA

An abstraction of the instrumented evaluator:

Ĉ ∈ Ĉache = Lab× Lab
≤k → P(Term×Env)

A!(t!1t!2)!"ce
δ = A!t!1"ce

δ ;A!t!2"ce
δ ;

foreach 〈λx.t!0 , ce′〉 ∈ Ĉ("1, δ) :

r̂(x, &δ"'k) ! Ĉ("2, δ);

A!t!0"ce′[x #→%δ!&k]
%δ!&k

;

Ĉ(", δ) ! Ĉ("0, &δ"'k)

The Complexity of Flow Analaysis in Higher-Order Languages – p.48/61

24

Approximation as power tool

Hardness of kCFA relies on two insights:
1. Program points are approximated by an exponential

number of closures.
2. Inexactness of analysis engenders reevaluation which

provides computational power.

The Complexity of Flow Analaysis in Higher-Order Languages – p.50/61

25

Abstract closures

Many closures can flow to a single program point:

(λw.wx1x2 . . . xn)
! n free variables
! an exponential number of possible associated
environments mapping these variables to program points
(contours of length 1 in 1CFA).

The Complexity of Flow Analaysis in Higher-Order Languages – p.51/61

26

Toy calculation, with insights

Consider the following non-linear example

(λf.(f True)(f False))

(λx.

(λp.p(λu.p(λv.(Implies u v))))(λw.wx))

Q: What does Implies u v evaluate to ?
A: True: it is equivalent to Implies x x, a tautology.

Q: What flows out of Implies u v?
A: both True and False: Not true evaluation!

!The Complexity of Flow Analaysis in Higher-Order Languages – p.53/61

27

1CFA as SAT solver

(λf1.(f1 True)(f1 False))

(λx1.

(λf2.(f2 True)(f2 False))

(λx2.

(λf3.(f3 True)(f3 False))

(λx3.

· · ·

(λfn.(fn True)(fn False))

(λxn.

E[(λv.φ v)(λw.wx1x2 · · ·xn)]) · · ·))))

Approximation of closures as non-deterministic
computation!

International Conference on Functional Programming (ICFP), 2007 Relating Complexity and Precision in Control Flow Analysis – p.30/39

28

Jigsaw puzzles, Machines

The idea:
! Break machine ID into an exponential
number of pieces

! Do piecemeal transitions on pairs of
puzzle pieces

〈T, S, H, C, b〉

“At time T , machine is in state S, the head is at
cell H, and cell C holds symbol b”

The Complexity of Flow Analaysis in Higher-Order Languages – p.54/61

29

Jigsaw puzzles, Machines

〈T, S, H, C, b〉: “At time T , machine is in state S, the head is at
cell H, and cell C holds symbol b”

1) Compute:
δ〈T, S, H, H, b〉〈T , S′, H ′, C ′, b′〉 =

〈T + 1, δQ(S, b), δLR(S,H, b),H, δΣ(S, b)〉

2) Communicate:
δ〈T + 1, S, H,C, b〉〈T , S′, H ′, C ′, b′〉 = 〈T + 1, S, H, C ′, b′〉

(H ′ #= C ′)

3) Otherwise:
δ〈T , S,H,C, b〉〈T ′, S′, H ′, C ′, b′〉 = 〈some goofy null value〉

(T #= T ′ and T #= T ′ + 1)

The Complexity of Flow Analaysis in Higher-Order Languages – p.55/61

30

The real deal

Setting up initial ID, iterator, and test:

(λf1.(f1 0)(f1 1))

(λz1.

(λf2.(f2 0)(f2 1))

(λz2.

· · ·

(λfN .(fN 0)(fN 1))

(λzN .

(let Φ = coding of transition function of TM in
Widget[Extract(Y Φ (λw.w 0 . . .0 Q0 H0 z1z2 . . . zN 0))])) . . .))

〈T, S, H, C, b〉

The Complexity of Flow Analaysis in Higher-Order Languages – p.56/61

31

kCFA EvalkCFA EXPTIME

31

kCFA EvalkCFA EXPTIMEmCFA PTIME

Similar precision, better performance

PTIME

32

0CFA

Pr
ec

isi
on

1CFA

kCFA

Sub0CFA
Simple closure

...
...

EXPTIME
PTIME

PTIME

32

0CFA

Pr
ec

isi
on

1CFA

kCFA

Sub0CFA
Simple closure

...
...

EXPTIME
PTIME

mCFA

1CFA
...

