Complexity of Flow Analysis

David Van Horn and Harry Mairson
Overview

★ Monovariant flow analysis (0CFA) is complete for PTIME
 — Analysis & evaluation are identical on linear programs
 — 0CFA (and approximations) are inherently sequential

★ For any $k > 0$, kCFA is complete for time EXPTIME
 — Exact characterization of complexity of kCFA hierarchy
 — Validates observations that kCFA is intractable
Plan

★ Proving lower bounds — *programming with analysis*
 — What is kCFA?
 — Linearity and precision
 — Non-linearity and an exponential iterator
★ Simulating exponential Turing machines with kCFA
★ Conclusions
Programming with analysis

A lower bound establishes the minimum computational requirements it takes to solve a class of problems.

Another view: What kind of work can you do with an analysis?

Two approaches:
Programming with analysis

A lower bound establishes the minimum computational requirements it takes to solve a class of problems.

Another view: What kind of work can you do with an analysis?

Two approaches:

★ Subvert approximation: Analysis ⇒ Evaluation
A lower bound establishes the minimum computational requirements it takes to solve a class of problems.

Another view: What kind of work can you do with an analysis?

Two approaches:

★ Subvert approximation: Analysis \Rightarrow Evaluation
 — For any abstract interpretation, there is a subset of the language on which abstract and concrete coincide.
Programming with analysis

A lower bound establishes the minimum computational requirements it takes to solve a class of problems.

Another view: What kind of work can you do with an analysis?

Two approaches:

⋆ Subvert approximation: Analysis ⇒ Evaluation
 — For any abstract interpretation, there is a subset of the language on which abstract and concrete coincide.

⋆ Exploit approximation: Inexactness as combinatorial tool
Proving lower bounds

kCFA is provably intractable (EXPTIME-hard)

The *proof* goes by construction:
kCFA is *provably intractable* (EXPTIME-hard)

The *proof* goes by construction:
- given the description of a Turing machine and its input,
kCFA is *provably intractable* (EXPTIME-hard)

The *proof* goes by construction:

- given the description of a Turing machine and its input,
- produce an instance of the kCFA problem,
Proving lower bounds

kCFA is *provably intractable* (EXPTIME-hard)

The *proof* goes by construction:

- given the description of a Turing machine and its input,
- produce an instance of the kCFA problem,
- whose analysis faithfully simulates the TM on the input
Proving lower bounds

kCFA is \textit{provably intractable} (EXPTIME-hard)

The \textit{proof} goes by construction:

\begin{itemize}
 \item given the description of a Turing machine and its input,
 \item produce an instance of the kCFA problem,
 \item whose analysis faithfully simulates the TM on the input
 \item for an exponential number of steps.
\end{itemize}
Proving lower bounds

$k\text{CFA}$ is provably intractable \((\text{EXPTIME}-\text{hard})\)

The proof goes by construction:

- given the description of a Turing machine and its input,
- produce an instance of the \(k\text{CFA}\) problem,
- whose analysis faithfully simulates the TM on the input
- for an exponential number of steps.

A compiler!
Proving lower bounds

\(k \text{CFA is } \textit{provably intractable} (\text{EXPTIME}-\text{hard}) \)

The \textit{proof} goes by construction:

\begin{itemize}
 \item given the description of a Turing machine and its input,
 \item produce an instance of the \(k \text{CFA} \) problem,
 \item whose analysis faithfully simulates the TM on the input
 \item for an exponential number of steps.
\end{itemize}

\textbf{A (weird) compiler!}
Strange animals

A compiler:
⭐ Source: exponential TMs with input
⭐ Target: the λ-calculus
⭐ Interpreter: kCFA (as TM simulator)
∴ kCFA is complete for EXPTIME.
A compiler:
★ Source: exponential TMs with input
★ Target: the λ-calculus
★ Interpreter: kCFA (as TM simulator)
∴ kCFA is complete for EXPTIME.

Another compiler:
★ Source: circuit with inputs
★ Target: the linear λ-calculus
★ Interpreter: 0CFA (as λ-evaluator)
∴ 0CFA is complete for PTIME.
More strange animals

Other compilers (ICFP’07):

★ Source: Boolean formulas
★ Target: the λ-calculus
★ Interpreter: kCFA (as SAT solver)

$\therefore k$CFA is NP-hard.
More strange animals

Other compilers (Mairson, POPL’90):

★ Source: exponential TMs with input
★ Target: ML
★ Interpreter: type inference (as ML evaluator)

∴ ML type inference is complete for \textbf{EXPTIME}.
More strange animals

Other compilers (Henglein and Mairson, POPL’91):

★ Source: elementary TMs with input
★ Target: System F_i
★ Interpreter: type inference (as System F_i evaluator)

∴ System F_i type inference is $\text{DTIME}(K(i, n))$-hard.
More strange animals

Other compilers (Mairson, JFP’04):

⋆ Source: circuit with inputs
⋆ Target: the linear λ-calculus
⋆ Interpreter: type inference (as λ-evaluator)

∴ Simple type inference is complete for PTIME.
More strange animals

Other examples (Neergaard and Mairson, ICFP’04):

★ Source: elementary TMs with input
★ Target: the λ-calculus
★ Interpreter: rank-k \wedge-type inference (as λ-evaluator)

\therefore Rank-k \wedge-type inference is complete for $\text{DTIME}(K(k, n))$.
A complexity zoo of static analysis

\[0\text{CFA} \equiv \text{Simple closure analysis} \equiv \text{Sub-0CFA} \equiv \text{Simple type inference} \equiv \text{Linear } \lambda\text{-calculus} \equiv \text{MLL} \ldots \subset \]

\[k\text{CFA} \equiv \text{ML type inference} \ldots \subset \]

\[\text{Rank-}k \text{ intersection type inference} \ldots \subset \]

\[\text{Exact CFA} \equiv \text{Simply typed } \lambda\text{-calculus} \ldots \subset \]

\[\infty\text{CFA} \equiv \text{The } \lambda\text{-calculus} \ldots \]

"Program analysis is still far from being able to precisely relate ingredients of different approaches to one another."

(Nielson et al. 1999)
Plan

- Proving lower bounds — *programming with analysis*
 - What is kCFA?
 - Linearity and precision
 - Non-linearity and an exponential iterator
- Simulating exponential Turing machines with kCFA
- Conclusions
Flow analysis

Flow analysis is concerned with the sound approximation of run-time values at compile time.

Analysis answers decision problems such as:

\[\text{does expression } e \text{ possibly evaluate to value } v? \]

- The most approximate analysis always answers yes.
 — no resources to compute, but useless
- The most precise analysis answers yes iff \(e \) evaluates to \(v \).
 — useful, but unbounded resources to compute

For tractability, there is a necessary sacrifice of information in static analysis. (A blessing and a curse.)
Intuition— the more information we compute about contexts, the more precisely we can answer flow questions. But this takes work.
Intuition— the more information we compute about contexts, the more precisely we can answer flow questions. But this takes work.

It did not take long to discover that the basic analysis, for any $k > 0$, was intractably slow for large programs.

Polyvariance

During reduction, a function may copy its argument:

\[
((\lambda f. \cdot \cdot \cdot (f \text{e}_1)^{\ell_1} \cdot \cdot \cdot (f \text{e}_2)^{\ell_2} \cdot \cdot \cdot)(\lambda x. \text{e}))
\]

Contours (strings of application labels) let us talk about \text{e} in each of the distinct calling contexts.
Cache-based evaluator

\[
\begin{align*}
\text{Exp} & \quad e ::= t^\ell \\
\text{Term} & \quad t ::= x \mid e \cdot e \mid \lambda x. e
\end{align*}
\]

expressions (or labeled terms)

terms (or unlabeled expressions)

Evaluate the term \(t \), which is closed under environment \(ce \).

Write the result into location \((\ell, \delta)\) of the cache \(C \).

\(C(\ell, \delta) = v \) means \(t^\ell \) evaluates to \(v \) in context \(\delta \).
A cache-based evaluator:

\[C \in \text{Cache} = (\text{Lab} + \text{Var}) \times \text{Lab}^* \to (\text{Term} \times \text{Env}) \]

\[\mathcal{E}\llbracket (t^{\ell_1} t^{\ell_2})^{\ell} \rrbracket_{\delta}^{ce} = \mathcal{E}\llbracket t^{\ell_1} \rrbracket_{\delta}^{ce}; \mathcal{E}\llbracket t^{\ell_2} \rrbracket_{\delta}^{ce}; \]

let \(\langle \lambda x. t^{\ell_0}, ce' \rangle = C(\ell_1, \delta) \) in

\[C(x, \delta^{\ell}) \leftarrow C(\ell_2, \delta); \]

\[\mathcal{E}\llbracket t^{\ell_0} \rrbracket_{\delta^{\ell}}^{ce'}[x \mapsto \delta^{\ell}]; \]

\[C(\ell, \delta) \leftarrow C(\ell_0, \delta^{\ell}) \]
An abstraction of the cache-based evaluator:

\[\hat{C} \in \widehat{\text{Cache}} = (\text{Lab} + \text{Var}) \times \text{Lab} \leq^k \rightarrow \mathcal{P}(\text{Term} \times \text{Env}) \]

\[\mathcal{A}[\ell_1(\ell_2)t_1 t_2]^{ce}_{\delta} = \mathcal{A}[\ell_1]^{ce}_{\delta} ; \mathcal{A}[\ell_2]^{ce}_{\delta} ; \]

\textbf{foreach} \(\langle \lambda x.t_0^{\ell_0}, ce' \rangle \in \hat{C}(\ell_1, \delta) : \)

\[\hat{C}(x, \lceil \delta \ell \rceil^k_k) \leftarrow \hat{C}(\ell_2, \delta) ; \]

\[\mathcal{A}[\ell_0]^{ce'}[x\mapsto \lceil \delta \ell \rceil^k_k] ; \]

\[\hat{C}(\ell, \delta) \leftarrow \hat{C}(\ell_0, \lceil \delta \ell \rceil^k_k) \]
OCFA

An *abstraction* of the cache-based evaluator:

\[
\hat{C} \in \widehat{\text{Cache}} = (\text{Lab} + \text{Var}) \to \mathcal{P}(\text{Term})
\]

\[
\mathcal{A}[\ell](t_1 t_2) = \mathcal{A}[t_1]; \mathcal{A}[t_2];
\]

foreach \(\lambda x. t_0 \in \hat{C}(\ell_1) \):

\(\hat{C}(x) \leftarrow \hat{C}(\ell_2); \)

\(\mathcal{A}[t_0]; \)

\(\hat{C}(\ell) \leftarrow \hat{C}(\ell_0) \)

(An evaluator for linear \(\lambda \)-calculus).
Plan

- Proving lower bounds — *programming with analysis*
 - What is kCFA?
 - Linearity and precision
 - Non-linearity and an exponential iterator
- Simulating exponential Turing machines with kCFA
- Conclusions
Linearity and evaluation

Since in a *linear* λ-term,

- each abstraction can be applied to at most one argument
- each variable can be bound to at most one value

Analysis of a linear term coincides exactly with its evaluation.

\[
((\lambda f. \cdots (f e_1) \cdots (f e_2) \cdots))(\lambda x.e))
\]
Boolean logic

Coding Boolean logic in linear λ-calculus:

\[
\begin{align*}
\text{TT} & \equiv \lambda p. \text{let } \langle x, y \rangle = p \text{ in } \langle x, y \rangle \\
\text{FF} & \equiv \lambda p. \text{let } \langle x, y \rangle = p \text{ in } \langle y, x \rangle
\end{align*}
\]

True $\equiv \langle \text{TT}, \text{FF} \rangle$

False $\equiv \langle \text{FF}, \text{TT} \rangle$

Copy $\equiv \lambda b. \text{let } \langle u, v \rangle = b \text{ in } \langle u \langle \text{TT}, \text{FF} \rangle, v \langle \text{FF}, \text{TT} \rangle \rangle$

Implies $\equiv \lambda b_1. \lambda b_2. \text{ let } \langle p_1, q_1 \rangle = b_1 \text{ in }$

\[
\begin{align*}
\text{let } \langle u_2, v_2 \rangle = b_2 \text{ in } & \\
\text{let } \langle p_1, p_2 \rangle = u_1 \langle u_2, \text{TT} \rangle \text{ in } & \\
\text{let } \langle q_1, q_2 \rangle = v_1 \langle \text{FF}, v_2 \rangle \text{ in } & \\
\langle p_1, q_1 \circ p_2 \circ q_2 \circ \text{FF} \rangle &
\end{align*}
\]
0CFA and \textbf{PTIME}

\[\lambda e_1.\lambda e_2.\lambda e_3\lambda e_4.\lambda e_5.\lambda e_6. \]
Andgate \(e_2 \) \(e_3 \) (\(\lambda e_7 \).
Andgate \(e_4 \) \(e_5 \) (\(\lambda e_8 \).
Copygate \(f \) (\(\lambda e_9.\lambda e_{10} \).
Orgate \(e_1 \) \(e_9 \) (\(\lambda e_{11} \).
Orgate \(e_{10} \) \(e_6 \) (\(\lambda e_{12} \).
Orgate \(e_{11} \) \(e_{12} \) (\(\lambda o.o \))))))

\textbf{Theorem} 0CFA decision problem is complete for \textbf{PTIME}.

Plan

★ Proving lower bounds — *programming with analysis*
 — What is kCFA?
 — Linearity and precision
 — Non-linearity and an exponential iterator
★ Simulating exponential Turing machines with kCFA
★ Conclusions
Approximation as power tool

Hardness of kCFA relies on two insights:

1. Program points are approximated by an exponential number of closures.

2. Inexactness of analysis engenders reevaluation which provides computational power.
Abstract closures

Many closures can flow to a single program point:

\[(\lambda w. w x_1 x_2 \ldots x_n)\]

- \(n\) free variables
- an *exponential* number of possible associated environments mapping these variables to program points (contours of length 1 in 1CFA).
Toy calculation, with insights

Consider the following *non-linear* example

\[(\lambda f. (f \text{ True})(f \text{ False}))
(\lambda x. \\
(\lambda p.p(\lambda u. p(\lambda v. (\text{Implies } u \ v)))))(\lambda w.wx)\]
Toy calculation, with insights

Consider the following *non-linear* example

\[(\lambda f. (f \text{ True})(f \text{ False}))\]
\[(\lambda x. (\lambda p. p(\lambda u. p(\lambda v. \text{Implies} u v))))(\lambda w. wx))\]

Q: What does \(\text{Implies} u v\) evaluate to?
Toy calculation, with insights

Consider the following non-linear example

\[(\lambda f.(f \text{ True})(f \text{ False}))\]
\[(\lambda x. (\lambda p.p(\lambda u.p(\lambda v.(\text{Implies } u \ v)))))(\lambda w.wx))\]

Q: What does \text{Implies } u \ v evaluate to?
A: True: it is equivalent to \text{Implies } x \ x, a tautology.
Consider the following *non-linear* example

$$(\lambda f. (f \text{ True})(f \text{ False}))$$

$$(\lambda x. (\lambda p. (\lambda u. p(\lambda v. (\text{Implies } u v)))))(\lambda w. wx))$$

Q: What does $\text{Implies } u v$ evaluate to?
A: True: it is equivalent to $\text{Implies } x x$, a tautology.

Q: What flows out of $\text{Implies } u v$?
Toy calculation, with insights

Consider the following *non-linear* example

\[(\lambda f. (f \text{ True})(f \text{ False}))\]
\[(\lambda x. (\lambda p. p(\lambda u. p(\lambda v. (\text{Implies } u v)))))(\lambda w. wx))\]

Q: What does $\text{Implies } u v$ evaluate to?
A: **True**: it is equivalent to $\text{Implies } x x$, a tautology.

Q: What flows out of $\text{Implies } u v$?
A: **both True and False**: *Not true evaluation!*
Consider the following non-linear example

$$(\lambda f.(f \text{ True})(f \text{ False}))$$
$$(\lambda x.\ (\lambda p.p(\lambda u.p(\lambda v.(\text{Implies } u v)))))(\lambda w.wx))$$

Q: What does \text{Implies } u v evaluate to?
A: \text{True}: it is equivalent to \text{Implies } x x, a tautology.

Q: What flows out of \text{Implies } u v?
A: both \text{True} and \text{False}: \text{Not true evaluation!}

We are computing with the approximation (spurious flows).
Plan

★ Proving lower bounds — *programming with analysis*
 — What is kCFA?
 — Linearity and precision
 — Non-linearity and an exponential iterator
★ Simulating exponential Turing machines with kCFA
★ Conclusions
The idea:

★ Break machine ID into an exponential number of pieces

★ Do piecemeal transitions on pairs of puzzle pieces

\[\langle T, S, H, C, b \rangle \]

“At time \(T \), machine is in state \(S \), the head is at cell \(H \), and cell \(C \) holds symbol \(b \)"
Jigsaw puzzles, Machines

\[\langle T, S, H, C, b \rangle: \text{“At time } T, \text{ machine is in state } S, \text{ the head is at}\]
\[\text{cell } H, \text{ and cell } C \text{ holds symbol } b” \]

1) Compute:
\[\delta \langle T, S, H, H, b \rangle \langle T, S', H', C', b' \rangle = \]
\[\langle T + 1, \delta_Q(S, b), \delta_{LR}(S, H, b), H, \delta_{\Sigma}(S, b) \rangle \]
Jigsaw puzzles, Machines

$\langle T, S, H, C, b \rangle$: “At time T, machine is in state S, the head is at cell H, and cell C holds symbol b”

1) Compute:
$\delta \langle T, S, H, H, b \rangle \langle T, S', H', C', b' \rangle = \langle T + 1, \delta_Q(S, b), \delta_{LR}(S, H, b), H, \delta_\Sigma(S, b) \rangle$

2) Communicate:
$\delta \langle T + 1, S, H, C, b \rangle \langle T, S', H', C', b' \rangle = \langle T + 1, S, H, C', b' \rangle$

($H' \neq C'$)
Jigsaw puzzles, Machines

\[\langle T, S, H, C, b \rangle \text{: “At time } T, \text{ machine is in state } S, \text{ the head is at cell } H, \text{ and cell } C \text{ holds symbol } b \rangle \]

1) Compute:
\[
\delta \langle T, S, H, H, b \rangle \langle T, S', H', C', b' \rangle = \langle T + 1, \delta_Q(S, b), \delta_{LR}(S, H, b), H, \delta_{\Sigma}(S, b) \rangle
\]

2) Communicate:
\[
\delta \langle T + 1, S, H, C, b \rangle \langle T, S', H', C', b' \rangle = \langle T + 1, S, H, C', b' \rangle \quad (H' \neq C')
\]

3) Otherwise:
\[
\delta \langle T, S, H, C, b \rangle \langle T', S', H', C', b' \rangle = \langle \text{some goofy null value} \rangle \quad (T \neq T' \text{ and } T \neq T' + 1)
\]

The real deal

Setting up initial ID, iterator, and test:

\[(\lambda f_1.(f_1 \ 0)(f_1 \ 1))\]
\[(\lambda z_1.\]
\[(\lambda f_2.(f_2 \ 0)(f_2 \ 1))\]
\[(\lambda z_2.\]
\[\ldots\]
\[(\lambda f_N.(f_N \ 0)(f_N \ 1))\]
\[(\lambda z_N.\]

(let \(\Phi = \text{coding of transition function of TM in} \)

\[\text{Widget}\left[\text{Extract}(Y \ \Phi (\lambda w.w \ 0 \ldots 0 Q_0 H_0 z_1 z_2 \ldots z_N 0))])\]...)

\[\langle T, S, H, C, b \rangle\]
The real deal

...let $\Phi = \text{coding of transition function of TM in Widget}$

$$\text{Extract}(Y \Phi (\lambda w.w \ 0 \ldots \ 0 \ Q_0 \ H_0 \ z_1z_2 \ldots z_N \ 0)))$$

$$\langle T, S, H, \ C, b \rangle$$

$$\Phi \equiv (\lambda p.p(\lambda x_1.\lambda x_2.\ldots\lambda x_m.p(\lambda y_1.\lambda y_2.\ldots\lambda y_m.($$

$$(\phi x_1x_2 \ldots x_my_1y_2 \ldots y_m))))$$
The real deal

...let $\Phi = \text{coding of transition function of TM in}$

$$\text{Widget}[\text{Extract}(Y \Phi (\lambda w . w \ 0 \ldots 0 \ Q_0 \ H_0 \ z_1 z_2 \ldots z_N \ 0))] \ldots \langle T, S, H, \ C, b \rangle$$

$$\Phi \equiv (\lambda p . p (\lambda x_1 . \lambda x_2 . \ldots . \lambda x_m . p (\lambda y_1 . \lambda y_2 . \ldots . \lambda y_m . (\phi x_1 x_2 . . . x_m y_1 y_2 . . . y_m))))$$

$\text{Widget}[E] \equiv \ldots f \ldots a \ldots$, where a flows as an argument to f iff a True value flows out of E.
The real deal

...let $\Phi = \text{coding of transition function of TM in}$

$$\text{Widget}[\text{Extract}(Y\Phi(\lambda w.\lambda w.0\ldots0Q_0H_0z_1z_2\ldots z_N0))\ldots]$$

$$\langle T, S, H, C, b \rangle$$

$$\Phi \equiv (\lambda p.\lambda x_1.\lambda x_2.\ldots\lambda x_m.\lambda y_1.\lambda y_2\ldots\lambda y_m.$$

$$(\phi x_1x_2\ldots x_my_1y_2\ldots y_m))$$

$\text{Widget}[E] \equiv \ldots f \ldots a \ldots$, where a flows as an argument to f iff a True value flows out of E.

Theorem In $k\text{CFA}$, a flows to f iff TM accept in 2^n steps.
...let $\Phi =$ coding of transition function of TM in

$$\text{Widget}[\text{Extract}(Y \Phi (\lambda w.w \ 0 \ldots 0 \ 0 Q_0 H_0 z_1z_2 \ldots z_N 0))].$$

$$\langle T, S, H, \ C, b \rangle$$

$$\Phi \equiv (\lambda p.p(\lambda x_1.\lambda x_2.\ldots \lambda x_m.p(\lambda y_1.\lambda y_2.\ldots \lambda y_m.(\phi x_1 x_2 \ldots x_m y_1 y_2 \ldots y_m))))$$

$\text{Widget}[E] \equiv \ldots f \ldots a \ldots,$ where a flows as an argument to f iff a True value flows out of E.

Theorem In $k\text{CFA}$, a flows to f iff TM accept in 2^n steps.

Theorem $k\text{CFA}$ decision problem is complete for EXPTIME.
Plan

★ Proving lower bounds — *programming with analysis*
 — What is \(k \text{CFA} \)?
 — Linearity and precision
 — Non-linearity and an exponential iterator
★ Simulating exponential Turing machines with \(k \text{CFA} \)
★ Conclusions
What makes kCFA hard?

This is not just a replaying of the previous proofs.
What makes kCFA hard?

This is not just a replaying of the previous proofs.

★ If the analysis were simulating evaluation,
What makes kCFA hard?

This is not just a replaying of the previous proofs.

★ If the analysis were simulating evaluation,
★ there would be one entry in each cache location,
What makes kCFA hard?

This is not just a replaying of the previous proofs.

- If the analysis were simulating evaluation,
- there would be one entry in each cache location,
- therefore bounded by a polynomial!
What makes kCFA hard?

This is not just a replaying of the previous proofs.

- If the analysis were simulating evaluation,
- there would be one entry in each cache location,
- therefore bounded by a polynomial!

Might and Shivers’ observation:
improved precision leads to analyzer speedups.
What makes kCFA hard?

This is not just a replaying of the previous proofs.

- If the analysis were simulating evaluation,
- there would be one entry in each cache location,
- therefore bounded by a polynomial!

Might and Shivers’ observation: improved precision leads to analyzer speedups.

Analytic understanding: What you pay for in kCFA is the junk (spurious flows).
What makes kCFA hard?

This is not just a replaying of the previous proofs.

★ If the analysis were simulating evaluation,
★ there would be one entry in each cache location,
★ therefore bounded by a polynomial!

Might and Shivers’ observation:
improved precision leads to analyzer speedups.

Analytic understanding:
What you pay for in kCFA is the junk (spurious flows).

Work harder to learn less.
Doggie bag

- Linearity is key in understanding static analysis
- 0CFA is inherently sequential
- There is no tractable algorithm for kCFA
- The approximation of kCFA is what makes it hard
The End

Thank you.