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My challenge:

Develop a program analysis for reasoning about:

Space-consumption in a lazy language

State and control in a language with effects
Security in a language with stack inspection
Blame in a language with behavioral contracts

Safe parallelism in a language with futures
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Prequel:

Syntactic &
Functional
Correspondence




»» Term = Symbol

i | (app Term Term)
- | (lam Symbol Term)
(struct app (1 r))

(struct lam (x e))



(define (lookup p x)
(match p
[(list-rest (cons y Vv) p)

(1T (eq? y x) v (lookup p x))1))

(define (extend p x v)
(cons (cons x Vv) p))



The Functional
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;,» H.0. Definitional interpreter
(define (eval.0 e)
., term env -> value
(define (ev e p)
(match e

[(app 1 r) ((ev 1 p) (ev r p))]
[(lam x e) (A (v) (ev e (extend p X Vv)))]

[X (lookup p x)1))

(ev.e "()))
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;,» H.0. Definitional interpreter
(define (eval.0 e)
., term env -> value
(define (ev e p)
(match e

[(app 1 r) ((ev 1 p) (ev r p))]
[(lam x e) @A) (v) (ev e (extend p x v)))]

[x (lookup p\X)1)) _/ /
(ev e '()))

(struct clos (x e p))
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,, F.O. Definitional interpreter
» defunctionalize eval.O
(define (eval.1 e)

(struct clos (x e p))

+ term env -> value
(define (ev e p)
(match e

((app 1 r) (ap (ev 1 p) (ev r p))]
(lam x e) (clos x e p)]

X (lookup p x)1))

' value value -> value
(define (ap T v)
(match f
[(clos x e p)
(ev e (extend p x Vv))]))

(ev.e "()))
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;; H.O0. CBV 1nterpreter

:+ CPS_V transform eval.1

(define (eval.2 e)
(struct clos (x e p))

» term env cont -> value
(define (ev e p K)
(match e
((app 1 r) (ev 1 p (A (f) (evrp (A (v) (ap T v k)))))]
(lam x e) (kK (clos x e p))]
(X (kK (lookup p x))1))

;» value value cont -> value
(define (ap T v k)
(match f
[(clos x e p)
(ev e (extend p x Vv) K)1))

(ev.e "() (A (X) X)))
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;; H.O0. CBV 1nterpreter

:+ CPS_V transform eval.1

(define (eval.2 e)
(struct clos (x e p))

r+ term env cont -> value
(define (ev e p K)

(match e
((app 1 r) (ev 1 p A (f) (ev r p (A (v) (ap T v k)))))]
‘(lam x e) (K (clos e p))]
X (k (lookup p x))]

:» value value cont -> value
(define (ap f v k) (struct K1 (r p K))
(match f
[(clos x e p)
(ev e (extend p x Vv) K)1))

(ev.e "() (A (X) X)))
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;; H.O0. CBV 1nterpreter

:+ CPS_V transform eval.1

(define (eval.2 e)
(struct clos (x e p))

;; term env cont -> value (struct K2 (f k))

(define (ev e p k)

(match e /4:7

(app 1 r) (ev 1 p @ (f) (ev r p (@A (V)
‘(lam x e) (K (clos e p))]
(X (K (lookup p x))]

*+ value value cont -> value

SN

(ap T v K)))))]

(define (ap T v k) (struct K1 (r p k))

(match f
[(clos x e p)
(ev e (extend p x Vv) K)1))

(ev.e "() (A (X) X)))
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;; H.O0. CBV 1nterpreter

:+ CPS_V transform eval.1

(define (eval.2 e)
(struct clos (x e p))

il o ot > valu seruct 2 (5
(match e /;:f “<::\\\\

(app 1 r) (ev 1 p @ (f) (ev r p (@A (V)
‘(lam x e) (K (clos e p))]
(X (K (lookup p x))]

*+ value value cont -> value

(ap T v K)))))]

(define (ap f v k) (struct K1 (r p k))

(match f
[(clos x e p)
(ev e (extend p x Vv) K)1))

(ev e "() A (x) X)))
(struct KO ())
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;; H.O0. CBV 1nterpreter

:+ CPS_V transform eval.1

(define (eval.2 e)
(struct clos (x e p))

il o ot > valu seruct 2 (5
(match e /;:f “<::\\\\

(app 1 r) (ev 1 p @ (f) (ev r p (@A (V)
((lam X e)‘¥K (clos e p))]
x YK (Lookup p x))]

*+ value value cont -> value

(ap T v K)))))]

(define (ap f v k) (struct K1 (r p k))

(match f
[(clos x e p)
(ev e (extend p x v) K)1))

(ev e "() A (x) X)))
(struct KO ())
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., F.0. CBV 1interpreter
;; defunctionalize eval.2
(define (eval.3 e)
(struct clos (x e p))
(struct KO ())
(struct K1 (r p K))
(struct K2 (f k))

*+ term env cont -> value
(define (ev e p k)
(match e

[Capp L r) (ev 1 p (K1 r p k))]
[(lam x e) (co Kk (clos x e p))]

[X (co kK (lookup p x))1))

;; value value cont -> value
(define (ap f v k)
(match f
[(clos x e p)
(ev e (extend p x v) K)]1))

;» cont value -> value
(define (co Kk v)
(match «
[(KO) v]
[(KT r p k) (evr p (K2 v k))]

[(K2 T k) (ap T v K)]))

(ev e "() (KO)))
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,, F.O0. CBV 1nterpreter

,, 1nline ap

(define (eval.4 e)
(struct clos (x e p))
(struct KO ())
(struct K1 (r p K))
(struct K2 (f k))

'+ term env cont -> value
(define (ev e p k)

(match e
[(app 1 r) (ev 1 p (K1 r p K))]
[(lam x e) (co Kk (clos x e p))]
(X (co kK (lookup p x))1))

,, cont value -> value
(define (co Kk V)
(match «
[ (KO) V]
((KT r p k) (evrrp (K2 v k))]
(K2 (clos x e p) K)
(ev e (extend p x v) kK)1))

(ev e '() (K0))) .



The Syntactic
Correspondence



e = x| Ar.e| (ee)

c == (&p)](cc)

v = (Ax.e,p)

& w= [[1 &) [ (E¢)
(z, p) p()

((eo e1),p) v ((eo; p) (e1,p))
(Ax.e,p)v) v (e, plr— v])

Ele] —y E[] iff e v

eval(e) = v iff (e,0) —5 v

Vv
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- (Clo =

r o7 ‘

(clo Term Env)
(app Clo Clo)

(struct clo (e p))

e Ctx =

| A |

-+ Val =

-+ Redex

'hole
(app Val Ctx)
(app Ctx Clo)

(clo Lam Env)

= (app Val Val)
(clo (app Term Term) Env)
(clo Symbol Env)

20



'+ redex -> clo
(define (contract r)
(match r

[(app (clo (lam x e) p) V)
(clo e (extend p x v))]
[(clo (app €0 el1) p)
(app (clo e0 p) (clo el p))]
[(clo x p)
(lookup p x)1))

21



' clo -> cxt * redex + val
(define (decompose c)
(match c

[(clo (lam x e) p) c]
[(app (clo (lam x e) p) v)
(cons 'hole c)]
[(clo (app e0 el) p)
(cons 'hole c)]

[(clo x p)
(cons 'hole c)]

[(app cO c1)
(match cO
[(clo (lam x e) p)
(match (decompose c1)
[(cons E r) (cons (app cO E) r)l)]

[

(match (decompose c0)
[(cons E r) (cons (app E c1) r)1)1)1))

22



»+ ctx clo -> clo
(define (plug E c)
(match E
[ "hole c]

[(app (clo (lam x e) p) E)

(app (clo (lam x e) p) (plug E c))]
[(app E cO)

(app (plug E c) c0)]))

23



+ clo -> clo
(define (reduce c)
(match (decompose c)
[(cons E r) (plug E (contract r))]

[v v]))

'+ term -> clo
(define (ev e)
(define (loop c)
(match c
[(clo (lam x e) p) c]
[_ (loop (reduce c))]))

(loop (clo e '())))

24
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,, F.O0. CBV 1nterpreter

,, 1nline ap

(define (eval.4 e)
(struct clos (x e p))
(struct KO ())
(struct K1 (r p K))
(struct K2 (f k))

'+ term env cont -> value
(define (ev e p k)

(match e
[(app 1 r) (ev 1 p (K1 r p K))]
[(lam x e) (co Kk (clos x e p))]
(X (co kK (lookup p x))1))

,, cont value -> value
(define (co Kk V)
(match «
[ (KO) V]
((KT r p k) (evrrp (K2 v k))]
(K2 (clos x e p) K)
(ev e (extend p x v) kK)1))

(ev e () (KO))) 2
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., F.0. CBV interpreter
,; store-passing

(define (eval.5 e)
(define (alloc x o)
(cond [(empty? o) 0]
[else (add1 (apply max (map car ¢)))]1))

(struct clos (x e p))

(struct KO ())
(struct K1 (r p K))
(struct K2 (f k))

,; term env sto cont -> value
(define (ev e p 0 K)
(match e
[(app 1 r) (ev 1 p o (KT r p K))]
[(lam x e) (co Kk (clos x e p) 0)]
[X (co kK (lookup o (lookup p x)) 0)]))

., cont value sto -> value
(define (co Kk v 0)
(match «

[(KO) V]
[(KT r p k) (evrpo (K2vVvK))]
[(K2 (clos x e p) K)
(define a (alloc x 0))
(ev e (extend p x a) (extend o a v) K)]))

(ev.e "() "() (KO)))

28



;v F.O. CBV 1nterpreter
;; store-allocated continuations
(define (eval.6 e)
(define (alloc x o)
(cond [(empty? o) O]
[else (add1 (apply max (map car ¢)))]1))

(struct clos (x e p))
(struct KO ())
(struct K1 (r p a))
(struct K2 (f a))

;7 term env sto cont -> value
(define (ev e p 0 K)
(match e

[(app 1 1)
(define a (alloc k o))
(ev 1 p (extend o0 a k) (K1 r p a))l
[(1lam X e)
(co kK (clos x e p) 0)]
[X (co kK (lookup o (lookup p x)) 0)1))

;; cont value sto -> value
(define (co k v 0)
(match «

[(KO) v]
[(KT r p a)
(ev rpo (K2va))l
[(K2 (clos x e p) b)
(define a (alloc x 0))
(define k (lookup o b))
(ev e (extend p x a) (extend o a v) K)]))

(ev.e "() "() (KO)))
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(define-language A
[X varliable-not-otherwise-mentioned]
[e X (app e e) (lam x e)]

[V (clos x e p)]
[G (ev e p O K)
(CO K V 0)

V]
[k (KO)
(K1 e p a)
(K2 v a)]
[p ((x @) ...)]
[oc ((@a s) ...)]
[S VvV K]
[(a b) naturall)

30



(define-metafunction A
[(lookup ((any_0 any_1) any ...) any_0) any_1]
[(lookup (any_O0 any_1 ...) any_2)
(lookup (any_1 ...) any_2)])

(define-metafunction A
[(extend (any ...) any_0 any_1)
((any_0 any_1) any ...)])

31



(define step
(reduction-relation

A\ #:domaln C
(--> (ev (app e_0 e_1) p 0 K)
(ev e_ 0 p (extend o a k) (K1 e_1 p a))
(where a (alloc kK 0)))
(--> (ev (lam x e) p o0 k)
(co kK (clos x e p) 0))
(--> (ev X p 0 K)
(co K (lookup o (lookup p x)) 0))
(--> (co (KO) v o) v)
(--> (co (K1 e pa) v o)

(eve p o (K2va)))

(co (K2 (clos x e p) b) v 0)

(ev e (extend p x a) (extend o a V) K)
(where a (alloc x 0))

(where k (lookup o b)))))

32



(define-metafunction A
[(alloc any ()) O]
[(alloc any ((a any_0) ...))
, (add1 (apply max (term (a

cee)))) 1)
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(define-metafunction A

[(1n] e) (ev e () () (KO))I)

(traces step

(term (1nj (app (lam y (app (app vy V) V))
(lam x x)))))

(app (lam y (app (app y y) ¥))
(lam y (app (app y y) y)) 0
(lam x x)) ((0 (K0)))
0O (K1 (lam x x) () 0))
@)
(K0))

———

{ )
/

Font Size !

| Reduce | found 18 terms

| Fix Layout | | dot *| ™ Top to Bottom




(define-language A

[ X
[ e
[ v

LG

[ K

Lp

varliable-not-otherwise-mentioned]
X (app e e) (lam x e)]

(clos x e p)l

(ev e p 0 K)

(CO K V 0)

V]

(KO)

(K1 e p a)

(K2 v a)]

((xa) ...)]

[o ((a s) ...)]

[S

V K]

[(a b) naturall)
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(define-language A
[Xx varlable-not-otherwise-mentioned]
[e x (app e e) (lam x e)]
[V (clos x e p)]
[G (ev e p O K)
(CO K V 0)
V]
[k (KO)
(K1 e p a)
(K2 v a)]
[p ((x @) ...)]
[0 ((a (5 ...)) ...)] <m—
[S V K]
[(a b) naturall)



(define step

(reduction-relation
A\ #:domaln ¢

(-->

(ev (app e_0 e_1) p 0 K) l

(ev e_0 p (extend-sto o0 a k) (K1 e_1 p a))

(where a (alloc k 0)))

(ev (lam x e) p 0 K)

(co Kk (clos x e p) 0))

(ev X p 0 K)

(CO K V 0)

(where (s 0 ... vs 1 ...) h
(lookup o (lookup p x))))

(co (KO) v o) v)

(co (KT e pa) v o)

(ev.e p o (K2 v a)))

(co (K2 (clos x e p) b) v o)

(ev e (extend p x a) (extend-sto o a v) K)
(where a (alloc x 0))

(where (s 0 ... K s 1 ...)
(Lookup 6 b)))))
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»+ No abstraction
(define-metafunction A
[(alloc any ()) O]
[(alloc any ((a any_0) ...))
, (add1 (apply max (term (a

cee)))) 1)
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'+ Finite abstraction
(define-metafunction A
[(alloc any o) 0])
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*+ Pushdown abstraction
(define-metafunction A
[(alloc x o) O]
[(alloc k ()) 1]
[(alloc kK ((a any) ...))
, (add1 (apply max (term (a

cv0)))) 1)

40



'+ Smarter finite abstraction
(define-metafunction A
[(alloc x o) X]
[(alloc (KO) o) KO]
[(alloc (K1 e p a) o) e]
[(alloc (K2 (clos x e p) a))
(lam x e)])

41
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Analysis
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The Problem:

Modularity matters

* Some programs are open (c.f.: the we

* Good components are written in

nad

* Programs are big; analysis is hard.

* | ibraries matter.

).

anguages.



The black hole approach:
* Shivers, PhD 1991
* Serrano, SAC'95
* Ashley and Dybvig, TOPLAS'98

The componential approach:
* Flanagan, PhD 1997

The type-based approach:

* Banerjee, ICFP'97
* Banerjee and Jensen, MSCS'03
* Lee et al, IPL'02

The contract approach:
* Meunier, Findler, Felleisen, POPL'06
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Analysis

Think hard about

modularity
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Meunier, et al,

POPL'06: Modular SBA from Contracts

e1Zes

Source\ Sink 1nté+e_ (...e5 1nt£ b >£ b anyiggg (...es5 anye ts >é ts
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ind 1 {tF) Colts) = [h O} Colts) (Y Colts) = {(h O} Slty)
_ + — - —
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e1Zes e1 Zes
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Zes

(Cgm %fc%? el

)y

ETE‘ E*E g 5u
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Table 1. Constraints creation for source-sink pairs.
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Semantic Solutions to Program Analysis Problems
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David Van Horn
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Abstract

Problems in program analysis can be solved by developing novel
program semantics and deriving abstractions conventionally. For
over thirty years, higher-order program analysis has been sold as
a hard problem. Its solutions have required ingenuity and complex
models of approximation. We claim that this difficulty is due to
premature focus on abstraction and propose a new approach that
emphasizes semantics. Its simplicity enables new analyses that are
beyond the current state of the art.

Current Thoughts, New Ideas

Higher-order program analysis has been an important and recurring
topic at PLDI, starting with Shivers’ seminal paper [1] and contin-
uing through the present [2]. However, past approaches are limited
in the language features they can handle, require intricate formal
models that are difficult to develop, verify, and maintain, and do
not scale to new questions that we need to answer of programs.
We propose a new approach in which interesting analyses can be
developed by first developing interesting semantics and then using
known techniques to approximate as a final step.

As an example, Meunier, et al. [3] develop a modular program
analysis for higher-order behavioral software contracts. Meunier
gives an analysis in the form of a large constraint set system and,
separately, a dynamic reduction semantics. An important drawback
is the dissimilarity between the semantics and the analysis. Both are
complicated for the sake of establishing a correspondence, which
is accomplished by shoehorning the semantics into an analysis, and
tweaking to achieve modularity. Despite these efforts, the sound-
ness theorem does not hold. Worse, the system was then aban-
doned, as it could not be maintained, extended, or implemented.

In contrast, we have taken the semantics of Meunier’s language
and systematically derived a similar whole-program analysis based
on an abstract machine for the language [4]. The machine itself is
derived from the semantics through known techniques, making its
correctness proof straightforward. This step is purely a semantic
refactoring; it has nothing to do with approximation. The machine,
however, is in a form that abstracts naturally and transparently [5].

What remains is to make this analysis modular, enabling rea-
soning about programs that are missing some of their components.
We solve this problem purely on the semantic side of the equa-
tion by extending the dynamic semantics with reductions for pro-
grams with missing components. Missing components are regarded
as their contracts, which are given reduction rules corresponding to
the reductions that may be taken by any value satisfying those con-
tracts. As an example, consider the following program fragment
consisting of two modules with unknown implementations, keygen
and rsa, and a call to rsa to encrypt a string using a key from
keygen. Inputs and outputs are annotated with contracts, which are
user-defined predicates, i.e. prime?.

keygen() : prime? { e }
rsa(k: prime?, s: string?) : string? { e }
rsa(keygen(), "Plain");

Under our modular semantics, the program executes as follows:

rsa(keygen(), "Plain");

rsa([prime?], "Plain");

string?("Plain”); prime?([prime?]); [string?]
[string?]

ARG

The [-] notation denotes a contract treated as a value. Intuitively,
it represents the set of all values satisfying the contract. The imple-
mentation of keygen is missing, so we cannot know what it returns,
but by its specification, it produces a value satisfying prime?, hence
it produces [prime?]. To call rsa, we check string? of "Plain”
and prime? of [prime?], both of which succeed, so the program
produces [string?], an unknown string value. No contracts are
violated and thus expensive run-time checks can be eliminated.

To obtain an analysis, this modular reduction semantics is run
through the same derivation pipeline to reveal a modular program
analysis. The resulting analysis is easy to verify, extend, and imple-
ment, requiring no ingenuity in approximation methods.

The central lesson of this work is that problems in program
analysis can be solved by developing novel program semantics
and deriving abstractions conventionally. Generalizing this obser-
vation, we can see that this strategy applies to many analysis prob-
lems. Determine the question to be answered, design a semantics
that precisely answers this question during evaluation, as in our
modular semantics, and finally, use traditional transformations and
approximation methods to produce a computable analyzer.

This strategy has several advantages: (1) It is easier to get right.
Semantics and analysis correspond closely, making both easier to
verify and maintain. (2) Many existing semantics can be repurposed
for building analyses of everything from space behavior of lazy lan-
guages to security via stack inspection. (3) The PL community has
developed a host of intellectual tools for designing and reasoning
about semantics which we can re-use for program analysis.

Future Fun

We have taken this approach to leverage dynamic semantics for
predicting garbage collection, space consumption, and modularity.
There are many exciting opportunities we consider worth pursuing.

1. Using a parallel cost model semantics [6], we can design anal-
yses for predicting space usage of parallel functional programs.

2. Contracts are a form of specification, which we treat as values
in a novel semantics. What other kinds of specifications can
be treated as values? Giving reductions for values drawn from
Hoare-type theory [7] would give rich specifications for effect-
ful components, in turn yielding rich program analyzers.

3. Using a semantics with temporal predicates over program
events [8], we can develop higher-order temporal model check-
ers for history- and stack-based security mechanisms.

These problems seem daunting under current approaches to anal-
ysis design, but we conjecture that by taking a semantic approach
seriously, solutions will be more easily obtained.

Acknowledgments: We are inspired in part by work with M. Might.
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Abstract

We contribute a new approach to the modular verification of higher-
order programs that leverages behavioral software contracts as a
rich source of symbolic values. Our approach is based on the idea
of an abstract reduction semantics that gives meaning to programs
with missing or opaque components. Such components are approx-
imated by their contract and our semantics gives an operational in-
terpretation of contracts-as-values. The result is a executable se-
mantics that soundly approximates all possible instantiations of
opaque components, including contract failures. It enables auto-
mated reasoning tools that can verify the contract correctness of
components for all possible contexts. We show that our approach
scales to an expressive language of contracts including arbitrary
programs embedded as predicates, dependent function contracts,
and recursive contracts. We argue that handling such a feature-
rich language of specifications leads to powerful symbolic reason-
ing that utilizes existing program assertions. Finally, we derive a
sound and computable approximation to our semantics that facili-
tates fully automated contract verification.

1. Behavioral contracts as symbolic values

Whether in the context of dynamically loaded JavaScript programs,
low-level native C code, widely-distributed libraries, or simply in-
tractably large code bases, automated reasoning tools must cope
with access to only part of the program. To handle missing compo-
nents, the omitted portions are often assumed to have arbitrary be-
havior, greatly limiting the precision and effectiveness of the tool.
However, programmers who use these components do not make
such conservative assumptions. Instead, they attach specifications
to these components. These specifications increase our ability to
reason about programs that are only partially known. But reason-
ing solely at the level of specification can also make verification
and analysis challenging as well as requiring substantial effort to
write sufficient specifications.

To tackle these problems, we combine specification-based sym-
bolic reasoning about opaque components with semantics-based
concrete reasoning about available components. Our approach to
modular program verification is based on computing with speci-
fications as values. As specifications, we adopt higher-order be-
havioral software contracts. Contracts have two crucial advantages
for our strategy. First, they provide benefit to programmers outside
of verification, since they automatically and dynamically enforce
their described invariants. Because of this, modern languages such
as C#, Haskell and Racket come with rich contract libraries which
programmers already use [9, 15, 17]. Rather than requiring pro-
grammers to annotate code with assertions, we leverage the large
body of code that already attaches contracts at code boundaries.
For example, the Racket standard library features more than 4000
uses of contracts [16]. Second, the meaning of contracts as specifi-
cations is neatly captured by their dynamic semantics. As we shall
see, we are able to leverage the semantics of contract systems into
tools for verification of programs with contracts.

David Van Horn

Our plan is as follows: we give a reduction semantics for the
core of a higher-order programming language that includes mod-
ules and contracts (§4). Next, we take a symbolic execution ap-
proach to making our semantics modular (§5). This allows us to
give non-deterministic behavior to programs in which any number
of the component modules are omitted, represented only by their
specifications; here given as contracts. We accomplish this by treat-
ing contracts as abstract values, with the behavior of any of their
possible concrete instantiations.

Symbolic execution and refinement calculi have a long history
of semantics with abstract elements; contracts as abstract values
provides a rich domain of symbols, including precise specifications
for abstract higher-order values. These values present new compli-
cations to soundness, which we address with a demonic context, a
universal context for discovering blame for behavioral values (§6).

We note that this semantics is, in itself, a program verifier. The
execution of a modular program which runs without contract errors
on any path is a verification that the concrete portions of the pro-
gram never violate their contracts, no matter the instantiation of the
omitted portions. This immediately allows us to use contracts for
verification in two senses: to verify that programs do not violate
their contracts, and verifying rich properties of programs by ex-
pressing them as contracts. This technique is surprisingly effective,
particularly in systems with many layers, each of which use con-
tracts at their boundaries. For example, the following tail-recursive
implementation of insertion sort is verified to live up to its contract,
which states that it always produces a sorted list.

As the modular semantics is uncomputable, this verification
strategy is necessarily incomplete. To address this, we apply the
technique of abstracting abstract machines [34] to derive first an
abstract machine and then a computable approximation to our se-
mantics directly from our reduction system (§7).

Finally, we turn our semantics into a tool for program verifica-
tion which is integrated into the Racket [15] toolchain and IDE (§8).
Users can click a button and explore the behavior of their program
in the presence of opaque modules, either with a non-deterministic
and uncomputable semantics, or with a computable approximation.

1 1
(define-contract list/c

(rec/c X (or/c empty? (cons/c nat? X))))
(module insert (nat? (and/c list/c (pred sorted?))
-> (and/c list/c (pred sorted?)))
o)
(module insertion-sort
(list/c (and/c list/c sorted?)
-> (and/c list/c sorted?))
(A (1 acc)
(if (empty? 1) acc
(insertion-sort (cdr 1)
(insert (car 1) acc)))))
(module 1 list/c e)

(insertion-sort 1 empty)
L ]
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(define/contract dbl

((even? . -> ., even?) .

(A ()
(A (X)
(f (f x)))))

->

. (even? .

>

. even?))
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(define/contract dbl

((even? . -> ., even?) .

(A ()
(A (X)
(f (f x)))))

> (dbl (A (x) 7))
#<procedure>

->

. (even? .

->

. even?))
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(define/contract dbl

((even? . -> , even?) . -> . (even? . -> . even?))
(A (F)
(A (X)
T x)))))

> (dbl (A (x) 7))

#<procedure>

> ((dbl (A (x) 7)) 8)

@ Q contract violation: expected <even?>, given: 7
contract on dbl from (definition dbl), blaming 'dbl

contract:
(-> (-> even? even?) (-> even? even?))

at: unsaved-editor68934:7.19



TGRS

E.F := z|A|(EE)|(if EEE)|(0E) | (C<“*E)
UV == n|#t|#f | A\z.E) | ((C-->C)<="*V)

C,D := C’%C’| Azx.F |

0 = proc? | false? |addl | ...

A = V | blame”

..



Basic reductions Ec F

(Ayz.E) V) e [Ayz.E)/y|[V/z|E
(oV) ¢ A if 6(o, V) >
(ifVEF) ¢ FE if §(false?, V) > #f
(ifVEF) ¢ F if 6(false?, V) > #t
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Contract checking EcF
]

(|E| <Y V) ¢ (if (EV)V blame’)
(C—D<"V) ¢ (C--»D)<b" V)
| if 5(pro/c?, V)3 #t
(C-->D)<=“VYU) ¢ (DY (V (C<10)))
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i

f:prime?-»>1int
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\\\\\\\\\\»

f:prime?-»>1int
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prime?-»>int
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prime?-»>int

f — (prime?-1int)
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prime?-»>int

f — (prime?-1int)
(prime?-int) (5) —* int
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Applying abstract values
!

EcF
|

(VU
(VU

C
C

o/{D|C—De(C} ifé(proc?,‘/}) > #t

(Ayz.(y (z0))) U)

if §(proc?, V) > #t

61



Contract checking EFcF
| |
(C<t'Vv/e) € V/CifC e
(|E| <% V/C) € (if (EV/C) V' blame’)if |E| & C
where V' = V/CU{|E|}
(C—D<' VY € ((C--»D) <= V'Y if §(proc?, V) S #t
where V' = V/{C — D} |
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Scaling up



ME
(module f C'V)

z| [ |A|(EE) |(ift EEE)|(oE)
(C«<=4T E)

n|#t|#f | (Azx.E) | (V,V) | empty
(C-->2.0)<=4T V)

r|C—x.C| | Ax.E||(C,C)
cCAnC|CVvC|pxC

addl |car | cdr |+ |=|cons | 07

nat? | bool? | empty? | cons? | proc? | false?
V | blame}
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Applying abstract values EcF
e —

(o/CU) c o/{[V/z]|D | C—x.D € C} if §(proc?,e/C) > #t

S

(V U) ¢ (DEMONIC U) if §(proc?, V) o #t

DEMONIC = (A,z.AMB({(y (x ®)), (y (car z)), (y (cdr x))}))

AMB({E'}) E

AMB({E} U E) (if e F F') where F' = AMB(E)
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Improving precision via non-determinism EcF

o/CU{Ci V(2 ¢ o/CU{C:} i€ {1,2}
o/CU{ux.C} ¢ o/CU{[ux.C/x|C}
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Computable
approximation
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Basic reductions (E,p,k,0) — (F,0,1,5)
1

(EF), p,k,0) — (B, p,ar’(F,p, k), o[k — &])
<(1fEF1 FQ) pv’£70> — (E Ps If(Fl E27p7k) [k'_)HD
(0 E)", P, K, 0) —  (E,p,op (0 k),olk — &)
(0 EF)p,K,0) — (E,p,0pl‘(0, F, p, k), ok — k])
(z, p, K, 0> — (Viek,0) if (V, 0) € o(p(x))
(V. p,ar “(E,0,k),0) — (B, 0,fn"(V,p,k),0lk — &])
(V. p,fn’((\yz.E), 0, k), 0) — (B, olz—a,y = bk ola— (V,p),b— ((Ayz.E), 0)])
(V, p,fn(U, 0, k), 0) —  (blamef, d, mt, () if 6(proc?, U) > #f
(V,p,if(E, F,0,k),0) —  (F,0,k,0) if 6(false?, V) > #f
(V, p, |f(E' F,0,k),0) —  (F,o0,k,0) if5(fa15e7 V) S #t
(V, p,op(0,a),0) —  (A,0,k,0) if §(o, V) >
(((U,0),(V,p)),0,0p(car, a), o) —  (U,0,K,0)
(U, ), (V. ), 0, 0p(cdr, a), o) — (V.p,k,0)
(V, p,0pl* (0 E,0,k),0) — (B, 0,0pr'(0,V, p, k), 0)
(V. p, 0pr. ‘(cons, U, 0,a),0) — (U, 0),(V,p)),0,5,0)
(V. p, opr “(0,U, 0,a),0) —  (A0,k,0)
I<b1a.mez,,p,/< o) — (blamee/ 0, mt, 0) |
Module references
I 1
(1,0, 5,0) — (V.0,k,0) if (f7,V) € A(M)
{f4 0.k, 0) —  (V,0,chk]9(C,0, k), ok — K]) if (ff,(C<P9V)) e A(M) .
Contract checking
I 1
(C<]7E),p,k,0) — (B, p,chk]?(C, p, k), o[k — K])
(V. p,chk]"?(C, o, k), 0) —  (Vip,fn(U, 0,k), o[k’ = if(V/{C}, blame], p, k)])
where C'is flat and U = Fc(C, V)
(V,p, " ((C--»a.D) =} a), 0,k),0)  +—  (V,p,chki’(C, 0, k), o[k = (U, o' k"),
k" s chk! (D, o[z + b], k),
b= (V,p)])
where (U, ¢') € o(a)
(V,p,chk!(C —2.D, 0,k), o) —  (((C--»z.D)<=%a),0,1,0la — (V,p)])  if 6(proc?, V) > #t
(V, p, chkf 9(C—ux.D,o,k), o) — (blamefl,@, mt, () if §(proc?, V) > #f
(V. p, chkfg(CAD 0. k), o) — (V. p,chk]?(C, 0,0), 0i > Chkfg(D o k)l)
(V, p,chk]?(C'V D, 0,k),0) —  (V,p,ar(U, 0,i),0li — chk-or[/(V, p,C V D, 0,k)])
where U = Fc(C
(V, p, chk—orh (U,0,CV D,p k), o) —  (U/{C},0,k,0) if 6(false?, V) > #f
(V. p, Chk—orh (U,0,CV D,pk),o) — (U, o, chk{L’g(D, o k), o) if (false?, V) > #t |
Abstract values
I 1
(V,p,fn‘(e/C,0,k),0c) — (E, p,begin(U, o,k),0) if d(proc?,0/C) > #t
where £ = AMB({#t, DEMONIC(/A DOM(C),V)}) and U = ¢ /RNG(C)
(V, p,begin(E, 0, k), o) —  (E,o,k,0)
(o/CU{C1V (o}, p, 5, 0) —  (¢/CU{Ci},p,k,0)
(o/CU{px.C}, p kK, 0) —  (o/C U {[px.C/]C}, p, K, 0) |
Higher-order pair contract checking
I 1
(V, p,chk!{"((C, D), 0, k), o) —  (blame],, mt, () if 5(cons'? V) > #f
(V, p,chk!9((C,D), 0, k), o) — (U, p,op(car,i),ali — chk!9(C, o, k'), k" — chk-cons*?(D, o, U, p, k)])

if §(cons?, V) > #t, where U = V/{|cons?]}
(V. p, chk—consh (C,0,U,p', k),0) — (U, p',op(cdr,i),oi — chk{L’g(C’, 0,k"), k" — opr(cons, V, p, k)])
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#lang s-exp "verified.rkt"
(define/contract even? (nat? -> bool?)

(A (n) (if (zero? n) #t (odd? (sub1 n)))))
(define/contract odd? (nat? -> bool?)

(A (n) (if (zero? n) #f (even? (sub1 n)))))

(define/contract dbl ((even? -> even?) -> (even? -> even?))

(A () (A (x) (F (F x)))))
((dbl (A (x) 7)) 8)

Welcome to DrRacket, version 5.1.1.6--2011-02-02(-/f) [S3m].

Language: s-exp "verified.rkt" [custom]; memory limit: 1024 MB.
"(blame |t| dbl (A (x) 7) (pred even?) 7)

> ((dbl (A (x) 2)) 8)

2

> ((dbl (A (x) 2)) 5)

"(blame |t| dbl 5 (pred even?) 5)

> |

Determine language from so...¥ ; 1011.10 MB
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(@ (dbl ~ [t]) (A (x) 7) [t])
8

1t

((((pred (even? A dbl) db.

->

(pred (even? A dbl) db!

->

((pred (even? A dbl) db.

-

(pred

(even? A dbl)
dbl)))
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(define-contract list/c
(rec/c X (or/c empty? (cons/c nat? X))))
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(define/contract sorted? (any? -> bool?) «)

(define/contract 1insert
(nat? (and/c list/c sorted?) -> (and/c list/c sorted?))

*)
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(define/contract insertion-sort

(list/c (and/c list/c sorted?) -> (and/c list/c sorted?))
(A (1 acc)

(1f (empty? 1)
acc
(insertion-sort (rest 1)

(insert (first 1) acc)))))
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(define/contract sort.0
(list/c -> (and/c list/c sorted?))

(A (1)

(1nsertion-sort 1 empty)))
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(define/contract 1 list/c °)

> (sort.0 1)
‘(e sorted? list/c)
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(define/contract foldl
any?
(A (f b 1s)
(1f (empty? 1ls)
b
(foldl f (f (first 1ls) b) (rest 1s)))))

(define/contract sort.1

(list/c -> (and/c list/c sorted?))
(A (1)
(foldl insert empty 1)))

> (sort.1 1)
‘(e sorted? list/c)
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(define/contract foldr
any?
(A (f b 1s)
(1f (empty? 1ls)
b
(f (first 1ls) (foldr f b (rest 1s))))))

(define/contract sort.2
(list/c -> (and/c list/c sorted?))

(A (1)
(foldr insert empty 1)))

> (sort.2 1)
‘(e sorted? list/c)
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