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interpreter.

C |=ce
� x` iff C(x, ce(x)) = C(`, �)

C |=ce
� (�x.e)` iff h�x.e, ce0i = C(`, �)

where ce0 = ce� fv(�x.e)
C |=ce

� (t`1 t`2)` iff C |=ce
� t`1 ^ C |=ce

� t`2 ^
let h�x.t`0 , ce0i = C(`1, �) in

C(`2, �) = C(x, �`) ^
C |=ce0[x7!�`]

�` t`0 ^
C(`0, �`) = C(`, �)

Clearly, because constructing a cache C is equivalent to evaluat-
ing a program, such a cache is not effectively computable. The next
section describes kCFA as a computable approximation.

2.2 An abstract interpreter

kCFA is a computable approximation to this instrumented inter-
preter. Rather than constructing an exact cache C, it constructs an
abstract cache b

C, which maps labels and variables, not to values,
but to sets of abstract values.

v̂ 2 d
Val = P(Term⇥CEnv)

b
C 2 \

Cache = (Lab + Var)⇥�! d
Val

Approximation arises from contours being bounded at length
k. If during the course of instrumented evaluation, the length of
the contour would exceed length k, then the kCFA abstract inter-
preter will truncate it to length k. In other words, only a partial
description of the context can be given, which results in ambigu-
ity. A subexpression may evaluate to two distinct values, but within
contexts which are only distinguished by k + 1 labels. Questions
about which value the subexpression evaluates to can only supply
k labels, so the answer must be both, according to a sound approx-
imation.

When applying a function, there is now a set of possible closures
that flow into the operator position. Likewise, there can be a mul-
tiplicity of arguments. What is the interpreter to do? The abstract
interpreter applies all possible closures to all possible arguments.

The abstract interpreter, the imprecise analog of E , is then:

AJx`Kce
� = b

C(`, �) b
C(x, ce(x))

AJ(�x.e)`Kce
� = b

C(`, �) {h�x.e, ce0i}
where ce0 = ce� fv(�x.e)

AJ(t`1t`2)`Kce
� = AJt`1Kce

� ;AJt`2Kce
� ;

foreach h�x.t`0 , ce0i 2 b
C(`1, �) :

b
C(x, d�`ek) b

C(`2, �);

AJt`0Kce0[x7!d�`ek]
d�`ek

;
b
C(`, �) b

C(`0, d�`ek)

We write b
C(`, �)  v̂ to indicate an updated cache where (`, �)

maps to b
C(`, �) [ v̂. The notation d�ek denotes � truncated to the

rightmost (i.e., most recent) k labels.
Compared to the exact evaluator, contours similarly distinguish

evaluation within contexts described by as many as k application
sites: beyond this, the distinction is blurred. The imprecision of
the analysis requires that A be iterated until the cache reaches a
fixed point, but care must taken to avoid looping in an iteration
since a single iteration of AJeKce

� may in turn make a recursive call
to AJeKce

� under the same contour and environment. This care is
the algorithmic analog of appealing to the coinductive hypothesis
in judging an analysis acceptable. These judgment rules are given
below.

An acceptable k-level control flow analysis for an expression e
is written b

C |=ce
� e, which states that b

C is an acceptable analysis of

e in the context of the current environment ce and current contour �
(for the top level analysis of a program, these will both be empty).

Just as we did in the previous section, we can write a specifica-
tion of acceptable caches rather than an algorithm that computes.
The resulting specification is what is found, for example, in Nielson
et al. (1999):

b
C |=ce

� x` iff b
C(x, ce(x)) ✓ b

C(`, �)
b
C |=ce

� (�x.e)` iff h�x.e, ce0i 2 b
C(`, �)

where ce0 = ce� fv(�x.e)
b
C |=ce

� (t`1 t`2)` iff b
C |=ce

� t`1 ^ b
C |=ce

� t`2^
8h�x.t`0 , ce0i 2 b

C(`1, �) :
b
C(`2, �) ✓ b

C(x, d�`ek)^
b
C |=ce0[x7!d�`ek]

d�`ek
t`0^

b
C(`0, d�`ek) ✓ b

C(`, �)

The acceptability relation is given by the greatest fixed point of
the functional defined according to the above clauses—and we are
concerned only with least solutions.5

2.3 Complexity of abstract interpretation

What is the difficulty of computing within this hierarchy? What are
the sources of approximation that render such analysis (in)tractable?
We consider these questions by analyzing the complexity of the fol-
lowing decision problem:

Control Flow Problem: Given an expression e, an abstract value
{v}, and a pair (`, �), is v 2 b

C(`, �) in the flow analysis of e?

Obviously, we are interested in the complexity of control flow
analysis, but our investigation also provides insight into a more gen-
eral subject: the complexity of computing via abstract interpreta-
tion. It stands to reason that as the computational domain becomes
more refined, so too should computational complexity. In this in-
stance, the domain is the size of the abstract cache b

C and the values
(namely, closures) that can be stored in the cache. As the table size
and number of closures increase6, so too should the complexity of
computation. From a theoretical perspective, we would like to un-
derstand better the tradeoffs between these various parameters.

3. Linearity and Boolean logic

It is straightforward to observe that in a linear �-term, where
each variable occurs at most once, each abstraction �x.e can be
applied to at most one argument, and hence the abstracted value
can be bound to at most one argument. (Note that this observation
is clearly untrue for the nonlinear �-term (�f.f(a(fb)))(�x.x),
as x is bound to b, and also to ab.) Generalizing this observation,
analysis of a linear �-term coincides exactly with its evaluation:

LEMMA 1. For any closed, linear expression e, EJeK;✏ = AJeK;✏ ,
and thus C = b

C.

A detailed proof of this lemma appears in Van Horn and Mairson
(2008).

A natural and expressive class of such linear terms are the ones
which implement Boolean logic. When we analyze the coding of a
Boolean circuit and inputs to it, the Boolean output will flow to a

5 To be precise, we take as our starting point uniform kCFA (Nielson and
Nielson 1997) rather than a kCFA in which \Cache = (Lab⇥CEnv)!
dVal. The differences are immaterial for our purposes. See Nielson et al.
(1999) for details and a discussion on the use of coinduction in specifying
static analyses.
6 Observe that since closure environments map free variables to contours,
the number of closures increases when we increase the contour length k.
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The theorem is proved by functional programming. We take the
view that the analysis itself is a functional programming language,
albeit with implicit bounds on the available computational re-
sources. Our result harnesses the approximation inherent in kCFA
as a computational tool to hack exponential time Turing machines
within this unconventional language. The hack used here is com-
pletely unlike the one used for the ML analysis, which depended
on complete developments of let-redexes. The theorem we prove
in this paper uses approximation in a way that has little to do with
normalization.

2. Preliminaries

2.1 Instrumented interpretation

kCFA can be thought of as an abstraction (in the sense of a com-
putable approximation) to an instrumented interpreter, which not
only evaluates a program, but records a history of flows. Every time
a subterm evaluates to a value, every time a variable is bound to a
value, the flow is recorded. Consider a simple example, where e is
closed and in normal form:

(�x.x)e

We label the term to index its constituents:

((�x.x0)1e2)3

The interpreter will first record all the flows for evaluating e
(there are none, since it is in normal form), then the flow of e’s
value (which is e, closed over the empty environment) into label 2
(e’s label) is recorded.

This value is then recorded as flowing into the binding of x.
The body of the �x expression is evaluated under an extended
environment with x bound to the result of evaluating e. Since it is
a variable occurrence, the value bound to x is recorded as flowing
into this variable occurrence, labeled 0. Since this is the result of
evaluating the body of the function, it is recorded as flowing out
of the �-term labeled 1. And again, since this is the result of the
application, the result is recorded for label 3.

The flow history is recorded in a cache, C, which maps labels
and variables to values. If the cache maps a variable to a value,
C(x) = v, it means that during evaluation of the program, the
variable x was bound to the value v at some point. If the cache
maps a label to a value, C(`) = v, it means that the subexpression
with that label evaluated to that value.

Of course, a variable may be bound to any number of values
during the course of evaluation. Likewise, a subexpression that
occurs once syntactically may evaluate to any number of values
during evaluation. So asking about the flows of a subexpression
is ambiguous without further information. Our simple example
does not reflect this possible ambiguity, but consider the following
example, where True and False are closed and in normal form:

(�f.f(f True))(�y.False)

During evaluation, y gets bound to both True and False—asking
“what was y bound to?” is ambiguous. But let us label the applica-
tions in our term:

((�f.(f(f True)1)2)(�y.False))3

Notice that y is bound to different values within different contexts.
That is, y is bound True when evaluating the application labeled
1, and to False when evaluating the application labeled 2. Both
of these occur while evaluating the outermost application, labeled
3. A string of these application labels, called a contour, uniquely
describes the context under which a subexpression evaluates.

3 · 2 · 1 describes ((�f.(f [ ]1)2)(�y.False))3

3 · 2 describes ((�f.[ ]2)(�y.False))3

So a question about what a subexpression evaluates to within a
given context has an unambiguous answer. The interpreter, there-
fore, maintains an environment that maps each variable to a de-
scription of the context in which it was bound. Similarly, flow ques-
tions about a particular subexpression or variable binding must be
accompanied by a description of a context. Returning to our exam-
ple, we would have C(y, 3 ·2 ·1) = True and C(y, 3 ·2) = False.

Typically, values are denoted by closures—a �-term together
with an environment mapping all free variables in the term to
values.3 But in the instrumented interpreter, rather than mapping
variables to values, environments map a variable to a contour—
the sequence of labels which describes the context of successive
function applications in which this variable was bound:4

� 2 � = Lab

n contour
ce 2 CEnv = Var! � contour environment

By consulting the cache, we can then retrieve the value. So if under
typical evaluation, a term labeled ` evaluates to h�x.e, ⇢i within
a context described by a string of application labels, �, then we
will have C(`, �) = h�x.e, cei, where the contour environment
ce, like ⇢, closes �x.e. But unlike ⇢, it maps each variable to a
contour describing the context in which the variable was bound. So
if ⇢(y) = h�z.e0, ⇢0i, then C(y, ce(y)) = h�z.e0, ce0i, where ⇢0 is
similarly related to ce0.

We can now write the instrumented evaluator. The syntax of the
language is given by the following grammar:

Exp e ::= t` expressions (or labeled terms)
Term t ::= x | e e | �x.e terms (or unlabeled expressions)

EJt`Kce
� evaluates t and writes the result into the table C at lo-

cation (`, �). The notation C(`, �)  v means that the cache is
updated so that C(`, �) = v. The notation �` denotes the concate-
nation of contour � and label `.

EJx`Kce
� = C(`, �) C(x, ce(x))

EJ(�x.e)`Kce
� = C(`, �) h�x.e, ce0i

where ce0 = ce� fv(�x.e)
EJ(t`1t`2)`Kce

� = EJt`1Kce
� ; EJt`2Kce

� ;
let h�x.t`0 , ce0i = C(`1, �) in

C(x, �`) C(`2, �);

EJt`0Kce0[x7!�`]
�`

C(`, �) C(`0, �`)

The cache constructed by

EJ((�f.(f(f True)1)2)(�y.False))3K;✏
includes the following entries:

C(f, 3) = �y.False

C(y, 3 · 2 · 1) = True

C(1, 3 · 2) = �y.False

C(y, 3 · 2) = False

In a more declarative style, we can write a specification of
acceptable caches—a cache is acceptable iff it records all of the
flows which occur during evaluation. The smallest cache satisfying
this acceptability relation is the one that is computed by the above

3 We abused syntax above by writing the closure of a closed term as the
term itself, rather than hTrue, ;i, for example. We continue with the abuse.
4 All of the syntactic categories are implicitly understood to be restricted
to the finite set of terms, labels, variables, etc. that occur in the program
of interest—the program being analyzed. As a convention, programs are
assumed to have distinct bound variable names and labels.
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interpreter.
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C |=ce
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evaluation within contexts described by as many as k application
sites: beyond this, the distinction is blurred. The imprecision of
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fixed point, but care must taken to avoid looping in an iteration
since a single iteration of AJeKce

� may in turn make a recursive call
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is written b
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b
C |=ce

� x` iff b
C(x, ce(x)) ✓ b

C(`, �)
b
C |=ce

� (�x.e)` iff h�x.e, ce0i 2 b
C(`, �)

where ce0 = ce� fv(�x.e)
b
C |=ce

� (t`1 t`2)` iff b
C |=ce

� t`1 ^ b
C |=ce

� t`2^
8h�x.t`0 , ce0i 2 b

C(`1, �) :
b
C(`2, �) ✓ b

C(x, d�`ek)^
b
C |=ce0[x7!d�`ek]

d�`ek
t`0^

b
C(`0, d�`ek) ✓ b

C(`, �)

The acceptability relation is given by the greatest fixed point of
the functional defined according to the above clauses—and we are
concerned only with least solutions.5

2.3 Complexity of abstract interpretation

What is the difficulty of computing within this hierarchy? What are
the sources of approximation that render such analysis (in)tractable?
We consider these questions by analyzing the complexity of the fol-
lowing decision problem:

Control Flow Problem: Given an expression e, an abstract value
{v}, and a pair (`, �), is v 2 b

C(`, �) in the flow analysis of e?

Obviously, we are interested in the complexity of control flow
analysis, but our investigation also provides insight into a more gen-
eral subject: the complexity of computing via abstract interpreta-
tion. It stands to reason that as the computational domain becomes
more refined, so too should computational complexity. In this in-
stance, the domain is the size of the abstract cache b

C and the values
(namely, closures) that can be stored in the cache. As the table size
and number of closures increase6, so too should the complexity of
computation. From a theoretical perspective, we would like to un-
derstand better the tradeoffs between these various parameters.

3. Linearity and Boolean logic

It is straightforward to observe that in a linear �-term, where
each variable occurs at most once, each abstraction �x.e can be
applied to at most one argument, and hence the abstracted value
can be bound to at most one argument. (Note that this observation
is clearly untrue for the nonlinear �-term (�f.f(a(fb)))(�x.x),
as x is bound to b, and also to ab.) Generalizing this observation,
analysis of a linear �-term coincides exactly with its evaluation:

LEMMA 1. For any closed, linear expression e, EJeK;✏ = AJeK;✏ ,
and thus C = b

C.

A detailed proof of this lemma appears in Van Horn and Mairson
(2008).

A natural and expressive class of such linear terms are the ones
which implement Boolean logic. When we analyze the coding of a
Boolean circuit and inputs to it, the Boolean output will flow to a

5 To be precise, we take as our starting point uniform kCFA (Nielson and
Nielson 1997) rather than a kCFA in which \Cache = (Lab⇥CEnv)!
dVal. The differences are immaterial for our purposes. See Nielson et al.
(1999) for details and a discussion on the use of coinduction in specifying
static analyses.
6 Observe that since closure environments map free variables to contours,
the number of closures increases when we increase the contour length k.
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#lang racket

;; Term = Symbol 
;;      | (app Term Term) 
;;      | (lam Symbol Term)
(struct app (l r))
(struct lam (x e))

(define (lookup ρ x)
  (match ρ
    [(list-rest (cons y v) ρ)
     (if (eq? y x) v (lookup ρ x))]))

(define (extend ρ x v)
  (cons (cons x v) ρ))

    

;; H.O. Definitional interpreter
(define (eval.0 e)
  ;; term env -> value
  (define (ev e ρ)
    (match e 
      [(app l r) ((ev l ρ) (ev r ρ))]
      [(lam x e) (λ (v) (ev e (extend ρ x v)))]
      [(var x) (lookup ρ x)]))
  
  (ev e '()))

;; F.O. Definitional interpreter
;; defunctionalize eval.0
(define (eval.1 e)
  (struct clos (x e ρ))  
  
  ;; term env -> value
  (define (ev e ρ)
    (match e
      [(app l r) (ap (ev l ρ) (ev r ρ))]
      [(lam x e) (clos x e ρ)]
      [x (lookup ρ x)]))
  
  ;; value value -> value
  (define (ap f v)
    (match f
      [(clos x e ρ)
       (ev e (extend ρ x v))]))
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#lang racket

;; Term = Symbol 
;;      | (app Term Term) 
;;      | (lam Symbol Term)
(struct app (l r))
(struct lam (x e))

(define (lookup ρ x)
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(define (eval.1 e)
  (struct clos (x e ρ))  
  
  ;; term env -> value
  (define (ev e ρ)
    (match e
      [(app l r) (ap (ev l ρ) (ev r ρ))]
      [(lam x e) (clos x e ρ)]
      [x (lookup ρ x)]))
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  (define (ap f v)
    (match f
      [(clos x e ρ)
       (ev e (extend ρ x v))]))
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;;      | (app Term Term) 
;;      | (lam Symbol Term)
(struct app (l r))
(struct lam (x e))

(define (lookup ρ x)
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    [(list-rest (cons y v) ρ)
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;; defunctionalize eval.0
(define (eval.1 e)
  (struct clos (x e ρ))  
  
  ;; term env -> value
  (define (ev e ρ)
    (match e
      [(app l r) (ap (ev l ρ) (ev r ρ))]
      [(lam x e) (clos x e ρ)]
      [x (lookup ρ x)]))
  
  ;; value value -> value
  (define (ap f v)
    (match f
      [(clos x e ρ)
       (ev e (extend ρ x v))]))

;; F.O. Definitional interpreter
;; defunctionalize eval.0
(define (eval.1 e)
  (struct clos (x e ρ))  
  
  ;; term env -> value
  (define (ev e ρ)
    (match e
      [(app l r) (ap (ev l ρ) (ev r ρ))]
      [(lam x e) (clos x e ρ)]
      [x (lookup ρ x)]))
  
  ;; value value -> value
  (define (ap f v)
    (match f
      [(clos x e ρ)
       (ev e (extend ρ x v))]))
  
  (ev e '()))

;; H.O. CBV interpreter
;; CPS_V transform eval.1
(define (eval.2 e)
  (struct clos (x e ρ))
  
  ;; term env cont -> value
  (define (ev e ρ κ)
    (match e
      [(app l r) (ev l ρ (λ (f) (ev r ρ (λ (v) (ap f v κ)))))]
      [(lam x e) (κ (clos x e ρ))]
      [x (κ (lookup ρ x))]))
  
  ;; value value cont -> value
  (define (ap f v κ)
    (match f
      [(clos x e ρ)
       (ev e (extend ρ x v) κ)]))
  
  (ev e '() (λ (x) x)))
   
;; F.O. CBV interpreter
;; defunctionalize eval.2
(define (eval.3 e)
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;; F.O. CBV interpreter
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;; F.O. CBV interpreter
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;; F.O. CBV interpreter
;; inline ap
(define (eval.4 e)
  (struct clos (x e ρ))  
  (struct K0 ())
  (struct K1 (r ρ κ))
  (struct K2 (f κ))
  
  ;; term env cont -> value
  (define (ev e ρ κ)
    (match e
      [(app l r) (ev l ρ (K1 r ρ κ))]
      [(lam x e) (co κ (clos x e ρ))]
      [x (co κ (lookup ρ x))]))
  
  ;; cont value -> value
  (define (co κ v)
    (match κ
      [(K0) v]
      [(K1 r ρ κ) (ev r ρ (K2 v κ))]
      [(K2 (clos x e ρ) κ) 
       (ev e (extend ρ x v) κ)]))
  
  (ev e '() (K0)))
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The Syntactic
Correspondence
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e ::= x | λx.e | (e e)
c ::= (e, ρ) | (c c)
v ::= (λx.e, ρ)

E ::= [ ] | (v E) | (E c)

(x, ρ) v ρ(x)
((e0 e1), ρ) v ((e0, ρ) (e1, ρ))

((λx.e, ρ) v) v (e, ρ[x !→ v])

E [c] !−→v E [c′] iff c v c′

eval(e) = v iff (e, ∅) !−→∗
v v

1



20

#lang racket

;; Term = Symbol 
;;      | (app Term Term) 
;;      | (lam Symbol Term)
(struct app (l r))
(struct lam (x e))

;; Clo = (clo Term Env)
;;     | (app Clo Clo)
(struct clo (e ρ))

;; Ctx = 'hole
;;     | (app Val Ctx)
;;     | (app Ctx Clo)

;; Val = (clo Lam Env)

;; Redex = (app Val Val)
;;       | (clo (app Term Term) Env) 
;;       | (clo Symbol Env)

(define (lookup ρ x)
  (match ρ
    [(list-rest (cons y v) ρ)
     (if (eq? y x) v (lookup ρ x))]))

(define (extend ρ x v)
  (cons (cons x v) ρ))

;; redex -> clo
(define (contract r)
  (match r
    [(app (clo (lam x e) ρ) v)
     (clo e (extend ρ x v))]
    [(clo (app e0 e1) ρ)
     (app (clo e0 ρ) (clo e1 ρ))]
    [(clo x ρ)
     (lookup ρ x)]))

;; clo -> cxt * redex + val
(define (decompose c)
  (match c
    [(clo (lam x e) ρ) c]
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#lang racket

;; Term = Symbol 
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;;       | (clo (app Term Term) Env) 
;;       | (clo Symbol Env)

(define (lookup ρ x)
  (match ρ
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     (if (eq? y x) v (lookup ρ x))]))
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  (cons (cons x v) ρ))

;; redex -> clo
(define (contract r)
  (match r
    [(app (clo (lam x e) ρ) v)
     (clo e (extend ρ x v))]
    [(clo (app e0 e1) ρ)
     (app (clo e0 ρ) (clo e1 ρ))]
    [(clo x ρ)
     (lookup ρ x)]))

;; clo -> cxt * redex + val
(define (decompose c)
  (match c
    [(clo (lam x e) ρ) c]
    [(app (clo (lam x e) ρ) v)
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;; clo -> cxt * redex + val
(define (decompose c)
  (match c
    [(clo (lam x e) ρ) c]
    [(app (clo (lam x e) ρ) v)
     (cons 'hole c)]
    [(clo (app e0 e1) ρ)
     (cons 'hole c)]
    [(clo x ρ)
     (cons 'hole c)]
    [(app c0 c1)
     (match c0
       [(clo (lam x e) ρ)
        (match (decompose c1)
          [(cons E r) (cons (app c0 E) r)])]
       [_
        (match (decompose c0)
          [(cons E r) (cons (app E c1) r)])])]))

;; ctx clo -> clo
(define (plug E c)
  (match E
    ['hole c]
    [(app (clo (lam x e) ρ) E)
     (app (clo (lam x e) ρ) (plug E c))]
    [(app E c0)
     (app (plug E c) c0)]))

;; clo -> clo
(define (reduce c)
  (match (decompose c)
    [(cons E r) (plug E (contract r))]
    [v v]))

;; term -> clo
(define (ev e)
  (define (loop c)
    (match c
      [(clo (lam x e) ρ) c]
      [_ (loop (reduce c))]))
  (loop (clo e '())))
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;; clo -> clo
(define (reduce c)
  (match (decompose c)
    [(cons E r) (plug E (contract r))]
    [v v]))

;; term -> clo
(define (ev e)
  (define (loop c)
    (match c
      [(clo (lam x e) ρ) c]
      [_ (loop (reduce c))]))
  (loop (clo e '())))
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;; clo -> cxt * redex + val
(define (decompose c)
  (match c
    [(clo (lam x e) ρ) c]
    [(app (clo (lam x e) ρ) v)
     (cons 'hole c)]
    [(clo (app e0 e1) ρ)
     (cons 'hole c)]
    [(clo x ρ)
     (cons 'hole c)]
    [(app c0 c1)
     (match c0
       [(clo (lam x e) ρ)
        (match (decompose c1)
          [(cons E r) (cons (app c0 E) r)])]
       [_
        (match (decompose c0)
          [(cons E r) (cons (app E c1) r)])])]))

;; ctx clo -> clo
(define (plug E c)
  (match E
    ['hole c]
    [(app (clo (lam x e) ρ) E)
     (app (clo (lam x e) ρ) (plug E c))]
    [(app E c0)
     (app (plug E c) c0)]))

;; clo -> clo
(define (reduce c)
  (match (decompose c)
    [(cons E r) (plug E (contract r))]
    [v v]))

;; term -> clo
(define (ev e)
  (define (loop c)
    (match c
      [(clo (lam x e) ρ) c]
      [_ (loop (reduce c))]))
  (loop (clo e '())))
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;; F.O. CBV interpreter
;; inline ap
(define (eval.4 e)
  (struct clos (x e ρ))  
  (struct K0 ())
  (struct K1 (r ρ κ))
  (struct K2 (f κ))
  
  ;; term env cont -> value
  (define (ev e ρ κ)
    (match e
      [(app l r) (ev l ρ (K1 r ρ κ))]
      [(lam x e) (co κ (clos x e ρ))]
      [x (co κ (lookup ρ x))]))
  
  ;; cont value -> value
  (define (co κ v)
    (match κ
      [(K0) v]
      [(K1 r ρ κ) (ev r ρ (K2 v κ))]
      [(K2 (clos x e ρ) κ) 
       (ev e (extend ρ x v) κ)]))
  
  (ev e '() (K0)))
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;; F.O. CBV interpreter
;; store-passing
(define (eval.5 e)
  (define (alloc x σ)
    (cond [(empty? σ) 0]
          [else (add1 (apply max (map car σ)))]))
  
  (struct clos (x e ρ))
  
  (struct K0 ())
  (struct K1 (r ρ κ))
  (struct K2 (f κ))
  
  ;; term env sto cont -> value
  (define (ev e ρ σ κ)
    (match e
      [(app l r) (ev l ρ σ (K1 r ρ κ))]
      [(lam x e) (co κ (clos x e ρ) σ)]
      [x (co κ (lookup σ (lookup ρ x)) σ)]))
  
  ;; cont value sto -> value
  (define (co κ v σ)
    (match κ
      [(K0) v]
      [(K1 r ρ κ) (ev r ρ σ (K2 v κ))]
      [(K2 (clos x e ρ) κ)
       (define a (alloc x σ))
       (ev e (extend ρ x a) (extend σ a v) κ)]))
  
  (ev e '() '() (K0)))
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;; F.O. CBV interpreter
;; store-allocated continuations
(define (eval.6 e)
  (define (alloc x σ)
    (cond [(empty? σ) 0]
          [else (add1 (apply max (map car σ)))]))
  
  (struct clos (x e ρ))  
  (struct K0 ())
  (struct K1 (r ρ a))
  (struct K2 (f a))
  
  ;; term env sto cont -> value
  (define (ev e ρ σ κ)
    (match e
      [(app l r) 
       (define a (alloc κ σ))
       (ev l ρ (extend σ a κ) (K1 r ρ a))]
      [(lam x e) 
       (co κ (clos x e ρ) σ)]
      [x (co κ (lookup σ (lookup ρ x)) σ)]))
  
  ;; cont value sto -> value
  (define (co κ v σ)
    (match κ
      [(K0) v]
      [(K1 r ρ a) 
       (ev r ρ σ (K2 v a))]
      [(K2 (clos x e ρ) b)
       (define a (alloc x σ))
       (define κ (lookup σ b))
       (ev e (extend ρ x a) (extend σ a v) κ)]))
  
  (ev e '() '() (K0)))

(eval.6 (app (lam 'x (app 'x 'x)) (lam 'y 'y)))
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#lang racket
(require redex)

(define-language Λ 
  [x variable-not-otherwise-mentioned]
  [e x (app e e) (lam x e)]
  [v (clos x e ρ)]
  [ς (ev e ρ σ κ)
     (co κ v σ)
     v]
  [κ (K0)
     (K1 e ρ a)
     (K2 v a)]
  [ρ ((x a) ...)]
  [σ ((a s) ...)]
  [s v κ]
  [(a b) natural])

(define-metafunction Λ
  lookup : ((any any) ...) any -> any
  [(lookup ((any_0 any_1) any ...) any_0) any_1]
  [(lookup (any_0 any_1 ...) any_2) 
   (lookup (any_1 ...) any_2)])

(define-metafunction Λ
  extend : (any ...) any any -> (any ...)
  [(extend (any ...) any_0 any_1)
   ((any_0 any_1) any ...)])

(define-metafunction Λ
  [(alloc any ()) 0]
  [(alloc any ((a any_0) ...))
   ,(add1 (apply max (term (a ...))))])



31

#lang racket
(require redex)

(define-language Λ 
  [x variable-not-otherwise-mentioned]
  [e x (app e e) (lam x e)]
  [v (clos x e ρ)]
  [ς (ev e ρ σ κ)
     (co κ v σ)
     v]
  [κ (K0)
     (K1 e ρ a)
     (K2 v a)]
  [ρ ((x a) ...)]
  [σ (m ...)]
  [m (a v) (a κ)]
  [(a b) natural])

(define-metafunction Λ
  [(lookup ((any_0 any_1) any ...) any_0) any_1]
  [(lookup (any_0 any_1 ...) any_2) 
   (lookup (any_1 ...) any_2)])

(define-metafunction Λ
  [(extend (any ...) any_0 any_1)
   ((any_0 any_1) any ...)])

(define-metafunction Λ
  [(alloc ()) 0]
  [(alloc ((a any) ...))
   ,(add1 (apply max (term (a ...))))])

(define step
  (reduction-relation 
   Λ #:domain ς
   (--> (ev (app e_0 e_1) ρ σ κ)         
        (ev e_0 ρ (extend σ a κ) (K1 e_1 ρ a))
        (where a (alloc σ)))
   (--> (ev (lam x e) ρ σ κ)
        (co κ (clos x e ρ) σ))
   (--> (ev x ρ σ κ)
        (co κ (lookup σ (lookup ρ x)) σ))
   (--> (co (K0) v σ) v)
   (--> (co (K1 e ρ a) v σ) 
        (ev e ρ σ (K2 v a)))
   (--> (co (K2 (clos x e ρ) b) v σ)
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(define step
  (reduction-relation 
   Λ #:domain ς
   (--> (ev (app e_0 e_1) ρ σ κ)         
        (ev e_0 ρ (extend σ a κ) (K1 e_1 ρ a))
        (where a (alloc κ σ)))
   (--> (ev (lam x e) ρ σ κ)
        (co κ (clos x e ρ) σ))
   (--> (ev x ρ σ κ)
        (co κ (lookup σ (lookup ρ x)) σ))
   (--> (co (K0) v σ) v)
   (--> (co (K1 e ρ a) v σ) 
        (ev e ρ σ (K2 v a)))
   (--> (co (K2 (clos x e ρ) b) v σ)
        (ev e (extend ρ x a) (extend σ a v) κ)
        (where a (alloc x σ))
        (where κ (lookup σ b)))))

(define-metafunction Λ 
  [(inj e) (ev e () () (K0))])

(traces step 
        (term (inj (app (lam y (app (app y y) y)) 
                        (lam x x)))))
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#lang racket
(require redex)

(define-language Λ 
  [x variable-not-otherwise-mentioned]
  [e x (app e e) (lam x e)]
  [v (clos x e ρ)]
  [ς (ev e ρ σ κ)
     (co κ v σ)
     v]
  [κ (K0)
     (K1 e ρ a)
     (K2 v a)]
  [ρ ((x a) ...)]
  [σ ((a s) ...)]
  [s v κ]
  [(a b) natural])

(define-metafunction Λ
  lookup : ((any any) ...) any -> any
  [(lookup ((any_0 any_1) any ...) any_0) any_1]
  [(lookup (any_0 any_1 ...) any_2) 
   (lookup (any_1 ...) any_2)])

(define-metafunction Λ
  extend : (any ...) any any -> (any ...)
  [(extend (any ...) any_0 any_1)
   ((any_0 any_1) any ...)])

(define-metafunction Λ
  [(alloc any ()) 0]
  [(alloc any ((a any_0) ...))
   ,(add1 (apply max (term (a ...))))])

(define step
  (reduction-relation 
   Λ #:domain ς
   (--> (ev (app e_0 e_1) ρ σ κ)         
        (ev e_0 ρ (extend σ a κ) (K1 e_1 ρ a))
        (where a (alloc κ σ)))
   (--> (ev (lam x e) ρ σ κ)
        (co κ (clos x e ρ) σ))
   (--> (ev x ρ σ κ)
        (co κ (lookup σ (lookup ρ x)) σ))
   (--> (co (K0) v σ) v)
   (--> (co (K1 e ρ a) v σ) 
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(define step
  (reduction-relation 
   Λ #:domain ς
   (--> (ev (app e_0 e_1) ρ σ κ)         
        (ev e_0 ρ (extend σ a κ) (K1 e_1 ρ a))
        (where a (alloc σ)))
   (--> (ev (lam x e) ρ σ κ)
        (co κ (clos x e ρ) σ))
   (--> (ev x ρ σ κ)
        (co κ (lookup σ (lookup ρ x)) σ))
   (--> (co (K0) v σ) v)
   (--> (co (K1 e ρ a) v σ) 
        (ev e ρ σ (K2 v a)))
   (--> (co (K2 (clos x e ρ) b) v σ)
        (ev e (extend ρ x a) (extend σ a v) κ)
        (where a (alloc σ))
        (where κ (lookup σ b)))))

(define-metafunction Λ 
  [(inj e) (ev e () () (K0))])

(traces step 
        (term (inj (app (lam y (app (app y y) y)) 
                        (lam x x)))))



35

#lang racket
(require redex)

(define-language Λ 
  [x variable-not-otherwise-mentioned]
  [e x (app e e) (lam x e)]
  [v (clos x e ρ)]
  [ς (ev e ρ σ κ)
     (co κ v σ)
     v]
  [κ (K0)
     (K1 e ρ a)
     (K2 v a)]
  [ρ ((x a) ...)]
  [σ ((a s) ...)]
  [s v κ]
  [(a b) natural])

(define-metafunction Λ
  lookup : ((any any) ...) any -> any
  [(lookup ((any_0 any_1) any ...) any_0) any_1]
  [(lookup (any_0 any_1 ...) any_2) 
   (lookup (any_1 ...) any_2)])

(define-metafunction Λ
  extend : (any ...) any any -> (any ...)
  [(extend (any ...) any_0 any_1)
   ((any_0 any_1) any ...)])

(define-metafunction Λ
  [(alloc any ()) 0]
  [(alloc any ((a any_0) ...))
   ,(add1 (apply max (term (a ...))))])
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#lang racket
(require redex)

(define-language Λ 
  [x variable-not-otherwise-mentioned]
  [e x (app e e) (lam x e)]
  [v (clos x e ρ)]
  [ς (ev e ρ σ κ)
     (co κ v σ)
     v]
  [κ (K0)
     (K1 e ρ a)
     (K2 v a)]
  [ρ ((x a) ...)]
  [σ ((a (s ...)) ...)]
  [s v κ]
  [(a b) natural])

(define-metafunction Λ
  [(lookup ((any_0 any_1) any ...) any_0) any_1]
  [(lookup (any_0 any_1 ...) any_2) 
   (lookup (any_1 ...) any_2)])

(define-metafunction Λ
  [(extend (any ...) any_0 any_1)
   ((any_0 any_1) any ...)])

(define-metafunction Λ
  [(alloc any) 0])
  
#;
(define-metafunction Λ
  [(alloc ()) 0]
  [(alloc ((a any) ...))
   ,(add1 (apply max (term (a ...))))])

(define step
  (reduction-relation 
   Λ #:domain ς
   (--> (ev (app e_0 e_1) ρ σ κ)         
        (ev e_0 ρ (extend-sto σ a κ) (K1 e_1 ρ a))
        (where a (alloc σ)))
   (--> (ev (lam x e) ρ σ κ)
        (co κ (clos x e ρ) σ))
   (--> (ev x ρ σ κ)
        (co κ v σ)
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(define step
  (reduction-relation 
   Λ #:domain ς
   (--> (ev (app e_0 e_1) ρ σ κ)         
        (ev e_0 ρ (extend-sto σ a κ) (K1 e_1 ρ a))
        (where a (alloc κ σ)))
   (--> (ev (lam x e) ρ σ κ)
        (co κ (clos x e ρ) σ))
   (--> (ev x ρ σ κ)
        (co κ v σ)
        (where (s_0 ... v s_1 ...)
               (lookup σ (lookup ρ x))))   
   (--> (co (K0) v σ) v)
   (--> (co (K1 e ρ a) v σ) 
        (ev e ρ σ (K2 v a)))
   (--> (co (K2 (clos x e ρ) b) v σ)
        (ev e (extend ρ x a) (extend-sto σ a v) κ)
        (where a (alloc x σ))
        (where (s_0 ... κ s_1 ...) 
               (lookup σ b)))))

(define-metafunction Λ 
  [(inj e) (ev e () () (K0))])

;;-----

(define-metafunction Λ
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#lang racket
(require redex)

(define-language Λ 
  [x variable-not-otherwise-mentioned]
  [e x (app e e) (lam x e)]
  [v (clos x e ρ)]
  [ς (ev e ρ σ κ)
     (co κ v σ)
     v]
  [κ (K0)
     (K1 e ρ a)
     (K2 v a)]
  [ρ ((x a) ...)]
  [σ ((a (s ...)) ...)]
  [s v κ]
  [(a b) natural])

(define-metafunction Λ
  [(lookup ((any_0 any_1) any ...) any_0) any_1]
  [(lookup (any_0 any_1 ...) any_2) 
   (lookup (any_1 ...) any_2)])

(define-metafunction Λ
  [(extend (any ...) any_0 any_1)
   ((any_0 any_1) any ...)])

;; No abstraction
(define-metafunction Λ
  [(alloc any ()) 0]
  [(alloc any ((a any_0) ...)) 
   ,(add1 (apply max (term (a ...))))])

#;
;; Finite abstraction
(define-metafunction Λ
  [(alloc any σ) 0])

#;
;; Pushdown abstraction
(define-metafunction Λ
  [(alloc x σ) 0]
  [(alloc κ ()) 1]
  [(alloc κ ((a any) ...))
   ,(add1 (apply max (term (a ...))))])
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#lang racket
(require redex)

(define-language Λ 
  [x variable-not-otherwise-mentioned]
  [e x (app e e) (lam x e)]
  [v (clos x e ρ)]
  [ς (ev e ρ σ κ)
     (co κ v σ)
     v]
  [κ (K0)
     (K1 e ρ a)
     (K2 v a)]
  [ρ ((x a) ...)]
  [σ ((a (s ...)) ...)]
  [s v κ]
  [(a b) natural])

(define-metafunction Λ
  [(lookup ((any_0 any_1) any ...) any_0) any_1]
  [(lookup (any_0 any_1 ...) any_2) 
   (lookup (any_1 ...) any_2)])

(define-metafunction Λ
  [(extend (any ...) any_0 any_1)
   ((any_0 any_1) any ...)])

#;
;; No abstraction
(define-metafunction Λ
  [(alloc any ()) 0]
  [(alloc any ((a any_0) ...)) 
   ,(add1 (apply max (term (a ...))))])

;; Finite abstraction
(define-metafunction Λ
  [(alloc any σ) 0])

#;
;; Pushdown abstraction
(define-metafunction Λ
  [(alloc x σ) 0]
  [(alloc κ ()) 1]
  [(alloc κ ((a any) ...))



40

   (lam x e)]) 

;; Pushdown abstraction
(define-metafunction Λ
  [(alloc x σ) 0]
  [(alloc κ ()) 1]
  [(alloc κ ((a any) ...))
   ,(add1 (apply max (term (a ...))))])

(define step
  (reduction-relation 
   Λ #:domain ς
   (--> (ev (app e_0 e_1) ρ σ κ)         
        (ev e_0 ρ (extend-sto σ a κ) (K1 e_1 ρ a))
        (where a (alloc κ σ)))
   (--> (ev (lam x e) ρ σ κ)
        (co κ (clos x e ρ) σ))
   (--> (ev x ρ σ κ)
        (co κ v σ)
        (where (s_0 ... v s_1 ...)
               (lookup σ (lookup ρ x))))   
   (--> (co (K0) v σ) v)
   (--> (co (K1 e ρ a) v σ) 
        (ev e ρ σ (K2 v a)))
   (--> (co (K2 (clos x e ρ) b) v σ)
        (ev e (extend ρ x a) (extend-sto σ a v) κ)
        (where a (alloc x σ))
        (where (s_0 ... κ s_1 ...) 
               (lookup σ b)))))
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#lang racket
(require redex)

(define-language Λ 
  [x variable-not-otherwise-mentioned]
  [e x (app e e) (lam x e)]
  [v (clos x e ρ)]
  [ς (ev e ρ σ κ)
     (co κ v σ)
     v]
  [κ (K0)
     (K1 e ρ a)
     (K2 v a)]
  [ρ ((x a) ...)]
  [σ ((a (s ...)) ...)]
  [s v κ]
  [(a b) any])

(define-metafunction Λ
  [(lookup ((any_0 any_1) any ...) any_0) any_1]
  [(lookup (any_0 any_1 ...) any_2) 
   (lookup (any_1 ...) any_2)])

(define-metafunction Λ
  [(extend (any ...) any_0 any_1)
   ((any_0 any_1) any ...)])

#;
;; No abstraction
(define-metafunction Λ
  [(alloc any ()) 0]
  [(alloc any ((a any_0) ...)) 
   ,(add1 (apply max (term (a ...))))])

#;
;; Finite abstraction
(define-metafunction Λ
  [(alloc any σ) 0])

;; Smarter finite abstraction
(define-metafunction Λ
  [(alloc x σ) x]
  [(alloc (K0) σ) K0]
  [(alloc (K1 e ρ a) σ) e]
  [(alloc (K2 (clos x e ρ) a))
   (lam x e)]) 
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The Problem:
Modularity matters

★ Some programs are open (c.f.: the web).
★ Good components are written in bad languages.
★ Programs are big; analysis is hard.
★ Libraries matter.
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★ Shivers, PhD 1991
★ Serrano, SAC’95
★ Ashley and Dybvig, TOPLAS’98

The black hole approach:

The componential approach:
★ Flanagan, PhD 1997

The type-based approach:
★ Banerjee, ICFP’97
★ Banerjee and Jensen, MSCS’03
★ Lee et al, IPL’02

The contract approach:
★ Meunier, Findler, Felleisen, POPL’06
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Analysis



46

Analysis

Think hard about 
modularity
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Source Sink int!
+
5 !−5

h 〈. . . e5 int
!+5 !−5
h 〉!

+
6 !−6

h any!
+
5 !−5

h 〈. . . e5 any
!+5 !−5
h 〉!

+
6 !−6

h

n!n
e1...

{!n}⊆ϕ(!−5 )

e1 . . . $% e5

⇒ {〈h,O〉}⊆ψ(!−5 )
{!n}⊆ϕ(!−5 )

e1 . . . $% e5

⇒ {〈h,O〉}⊆ψ(!−5 )

int!
+
1 !−1

f {!+1 }⊆ϕ(!−5 ) ⇒ {〈h,O〉}⊆ψ(!−5 ) {!+1 }⊆ϕ(!−5 ) ⇒ {〈h,O〉}⊆ψ(!−5 )

〈. . . e1 int
!+1 !−1
f 〉!

+
2 !−2

f

{!+1 }⊆ϕ(!−5 )

e1 $% e5

⇒ {〈h,O〉}⊆ψ(!−5 )
{!+1 }⊆ϕ(!−5 )

e1 $% e5

⇒ {〈h,O〉}⊆ψ(!−5 )

any!
+
1 !−1

f

{!+1 }⊆ϕ(!−5 ) ⇒ {〈h,R〉}⊆ψ(!−5 )

{!+1 }⊆ϕ(!−5 ) ⇒ {〈h,O〉}⊆ψ(!−5 )

〈. . . e1 any
!+1 !−1
f 〉!

+
2 !−2

f

{!+1 }⊆ϕ(!−5 )

e1 $% e5

⇒ {〈h,O〉}⊆ψ(!−5 )

(λxβ .e!)!λ
e1... {!λ}⊆ϕ(!−5 ) ⇒ {〈h,R〉}⊆ψ(!−5 )

{!λ}⊆ϕ(!−5 ) ⇒ ϕ(!+5 )⊆ϕ(β)

{!λ}⊆ϕ(!−5 ) ⇒ ϕ(!)⊆ϕ(!−5 )

{!λ}⊆ϕ(!−5 )

e1 . . . $% e5

⇒ {〈h,O〉}⊆ψ(!−5 )

(c
!+1 !−1
g →c

!+2 !−2
f )

!+3 !−3
f

{!+3 }⊆ϕ(!−5 ) ⇒ {〈h,R〉}⊆ψ(!−5 )

{!+3 }⊆ϕ(!−5 ) ⇒ {〈h,O〉}⊆ψ(!−5 )

{!+3 }⊆ϕ(!−5 ) ⇒ ϕ(!+5 )⊆ϕ(!−1 )

{!+3 }⊆ϕ(!−5 ) ⇒ ϕ(!+2 )⊆ϕ(!−5 )

〈. . . e3 (c
!+1 !−1
g →c

!+2 !−2
f )

!+3 !−3
f 〉!

+
4 !−4

f {!+3 }⊆ϕ(!−5 )

e3 $% e5

⇒ {〈h,O〉}⊆ψ(!−5 )

Source Sink (e!5 e!6 )!a (c
!+7 !−7
i →c

!+8 !−8
h )

!+5 !−5
h 〈. . . e5 (c

!+7 !−7
i →c

!+8 !−8
h )

!+5 !−5
h 〉!

+
6 !−6

h

n!n
e1... {!n}⊆ϕ(!5) ⇒ {〈λ,R〉}⊆ψ(!a) {!n}⊆ϕ(!−5 ) ⇒ {〈h,R〉}⊆ψ(!−5 )

int!
+
1 !−1

f

{!+1 }⊆ϕ(!5) ⇒ {〈λ,R〉}⊆ψ(!a) {!+1 }⊆ϕ(!−5 ) ⇒ {〈h,R〉}⊆ψ(!−5 )
〈. . . e1 int

!+1 !−1
f 〉!

+
2 !−2

f

any!
+
1 !−1

f

〈. . . e1 any
!+1 !−1
f 〉!

+
2 !−2

f

(λxβ .e!)!λ
e1...

{!λ}⊆ϕ(!5) ⇒ ϕ(!6)⊆ϕ(β)

{!λ}⊆ϕ(!5) ⇒ ϕ(!)⊆ϕ(!a)

{!λ}⊆ϕ(!−5 ) ⇒ ϕ(!+7 )⊆ϕ(β)

{!λ}⊆ϕ(!−5 ) ⇒ ϕ(!)⊆ϕ(!−8 )

{!λ}⊆ϕ(!−5 )

e1 . . . $% e5

⇒ {〈h,O〉}⊆ψ(!−5 )

(c
!+1 !−1
g →c

!+2 !−2
f )

!+3 !−3
f

{!+3 }⊆ϕ(!5) ⇒ ϕ(!6)⊆ϕ(!−1 )

{!+3 }⊆ϕ(!5) ⇒ ϕ(!+2 )⊆ϕ(!a)

{!+3 }⊆ϕ(!−5 ) ⇒ {〈h,O〉}⊆ψ(!−5 )

{!+3 }⊆ϕ(!−5 ) ⇒ ϕ(!+7 )⊆ϕ(!−1 )

{!+3 }⊆ϕ(!−5 ) ⇒ ϕ(!+2 )⊆ϕ(!−8 )

〈. . . e3 (c
!+1 !−1
g →c

!+2 !−2
f )

!+3 !−3
f 〉!

+
4 !−4

f {!+3 }⊆ϕ(!−5 )

e3 $% e5

⇒ {〈h,O〉}⊆ψ(!−5 )

Table 1. Constraints creation for source-sink pairs.

contract on the fly (with ! and !′ fresh) and uses it to check the do-
main and range of the function contract. For deeply nested function
contracts, the process is repeated recursively thereby creating a wit-
ness for each possible contract violation.5 In essence this process
simply makes explicit the sinks for the complex abstract values that

5 The debugger must then be careful to re-use the original any!
+
5 !−5

h contract

for both the domain and range of the new (any!
+
5 !−5

h →any!
+
5 !−5

h )!!
′

h con-
tract because the use of new any contracts for the domain and range makes
the analysis fail to terminate when a function with a recursive type flows

into any!
+
5 !−5

h .

flow into any!
+
5 !−5

h . The analysis therefore remains sound. Here we

forsake this process and re-use the any!
+
5 !−5

h contract and its labels
only to simplify the soundness proof.

5.2.2 Blame Constraints
The third example explains blame assignment:

Source Sink (c
!+
7 !−7

i →c
!+
8 !−8

h )
!+
5 !−5

h

int!
+
1 !−1

f {!+
1 }⊆ϕ(!−5 ) ⇒ {〈h,R〉}⊆ψ(!−5 )
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Source Sink int!
+
5 !−5

h 〈. . . e5 int
!+5 !−5
h 〉!

+
6 !−6

h any!
+
5 !−5

h 〈. . . e5 any
!+5 !−5
h 〉!

+
6 !−6
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{!+3 }⊆ϕ(!−5 ) ⇒ ϕ(!+2 )⊆ϕ(!−8 )
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!+1 !−1
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!+2 !−2
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!+3 !−3
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+
4 !−4

f {!+3 }⊆ϕ(!−5 )

e3 $% e5

⇒ {〈h,O〉}⊆ψ(!−5 )

Table 1. Constraints creation for source-sink pairs.

contract on the fly (with ! and !′ fresh) and uses it to check the do-
main and range of the function contract. For deeply nested function
contracts, the process is repeated recursively thereby creating a wit-
ness for each possible contract violation.5 In essence this process
simply makes explicit the sinks for the complex abstract values that

5 The debugger must then be careful to re-use the original any!
+
5 !−5

h contract

for both the domain and range of the new (any!
+
5 !−5

h →any!
+
5 !−5

h )!!
′
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tract because the use of new any contracts for the domain and range makes
the analysis fail to terminate when a function with a recursive type flows

into any!
+
5 !−5
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flow into any!
+
5 !−5

h . The analysis therefore remains sound. Here we

forsake this process and re-use the any!
+
5 !−5

h contract and its labels
only to simplify the soundness proof.

5.2.2 Blame Constraints
The third example explains blame assignment:
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!+
7 !−7
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Semantic Solutions to Program Analysis Problems
Sam Tobin-Hochstadt David Van Horn

PRL, Northeastern University

Abstract
Problems in program analysis can be solved by developing novel
program semantics and deriving abstractions conventionally. For
over thirty years, higher-order program analysis has been sold as
a hard problem. Its solutions have required ingenuity and complex
models of approximation. We claim that this difficulty is due to
premature focus on abstraction and propose a new approach that
emphasizes semantics. Its simplicity enables new analyses that are
beyond the current state of the art.

Current Thoughts, New Ideas
Higher-order program analysis has been an important and recurring
topic at PLDI, starting with Shivers’ seminal paper [1] and contin-
uing through the present [2]. However, past approaches are limited
in the language features they can handle, require intricate formal
models that are difficult to develop, verify, and maintain, and do
not scale to new questions that we need to answer of programs.
We propose a new approach in which interesting analyses can be
developed by first developing interesting semantics and then using
known techniques to approximate as a final step.

As an example, Meunier, et al. [3] develop a modular program
analysis for higher-order behavioral software contracts. Meunier
gives an analysis in the form of a large constraint set system and,
separately, a dynamic reduction semantics. An important drawback
is the dissimilarity between the semantics and the analysis. Both are
complicated for the sake of establishing a correspondence, which
is accomplished by shoehorning the semantics into an analysis, and
tweaking to achieve modularity. Despite these efforts, the sound-
ness theorem does not hold. Worse, the system was then aban-
doned, as it could not be maintained, extended, or implemented.

In contrast, we have taken the semantics of Meunier’s language
and systematically derived a similar whole-program analysis based
on an abstract machine for the language [4]. The machine itself is
derived from the semantics through known techniques, making its
correctness proof straightforward. This step is purely a semantic
refactoring; it has nothing to do with approximation. The machine,
however, is in a form that abstracts naturally and transparently [5].

What remains is to make this analysis modular, enabling rea-
soning about programs that are missing some of their components.
We solve this problem purely on the semantic side of the equa-
tion by extending the dynamic semantics with reductions for pro-
grams with missing components. Missing components are regarded
as their contracts, which are given reduction rules corresponding to
the reductions that may be taken by any value satisfying those con-
tracts. As an example, consider the following program fragment
consisting of two modules with unknown implementations, keygen
and rsa, and a call to rsa to encrypt a string using a key from
keygen. Inputs and outputs are annotated with contracts, which are
user-defined predicates, i.e. prime?.

keygen() : prime? { • }
rsa(k: prime?, s: string?) : string? { • }
rsa(keygen(), "Plain");

Under our modular semantics, the program executes as follows:

rsa(keygen(), "Plain");
→ rsa([prime?], "Plain");
→ string?("Plain"); prime?([prime?]); [string?]
→ [string?]

The [·] notation denotes a contract treated as a value. Intuitively,
it represents the set of all values satisfying the contract. The imple-
mentation of keygen is missing, so we cannot know what it returns,
but by its specification, it produces a value satisfying prime?, hence
it produces [prime?]. To call rsa, we check string? of "Plain"
and prime? of [prime?], both of which succeed, so the program
produces [string?], an unknown string value. No contracts are
violated and thus expensive run-time checks can be eliminated.

To obtain an analysis, this modular reduction semantics is run
through the same derivation pipeline to reveal a modular program
analysis. The resulting analysis is easy to verify, extend, and imple-
ment, requiring no ingenuity in approximation methods.

The central lesson of this work is that problems in program
analysis can be solved by developing novel program semantics
and deriving abstractions conventionally. Generalizing this obser-
vation, we can see that this strategy applies to many analysis prob-
lems. Determine the question to be answered, design a semantics
that precisely answers this question during evaluation, as in our
modular semantics, and finally, use traditional transformations and
approximation methods to produce a computable analyzer.

This strategy has several advantages: (1) It is easier to get right.
Semantics and analysis correspond closely, making both easier to
verify and maintain. (2) Many existing semantics can be repurposed
for building analyses of everything from space behavior of lazy lan-
guages to security via stack inspection. (3) The PL community has
developed a host of intellectual tools for designing and reasoning
about semantics which we can re-use for program analysis.

Future Fun
We have taken this approach to leverage dynamic semantics for
predicting garbage collection, space consumption, and modularity.
There are many exciting opportunities we consider worth pursuing.
1. Using a parallel cost model semantics [6], we can design anal-

yses for predicting space usage of parallel functional programs.
2. Contracts are a form of specification, which we treat as values

in a novel semantics. What other kinds of specifications can
be treated as values? Giving reductions for values drawn from
Hoare-type theory [7] would give rich specifications for effect-
ful components, in turn yielding rich program analyzers.

3. Using a semantics with temporal predicates over program
events [8], we can develop higher-order temporal model check-
ers for history- and stack-based security mechanisms.

These problems seem daunting under current approaches to anal-
ysis design, but we conjecture that by taking a semantic approach
seriously, solutions will be more easily obtained.
Acknowledgments:We are inspired in part by work with M. Might.
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Abstract Reduction Semantics for
Modular Higher-Order Contract Verification

Sam Tobin-Hochstadt David Van Horn

Abstract
We contribute a new approach to the modular verification of higher-
order programs that leverages behavioral software contracts as a
rich source of symbolic values. Our approach is based on the idea
of an abstract reduction semantics that gives meaning to programs
with missing or opaque components. Such components are approx-
imated by their contract and our semantics gives an operational in-
terpretation of contracts-as-values. The result is a executable se-
mantics that soundly approximates all possible instantiations of
opaque components, including contract failures. It enables auto-
mated reasoning tools that can verify the contract correctness of
components for all possible contexts. We show that our approach
scales to an expressive language of contracts including arbitrary
programs embedded as predicates, dependent function contracts,
and recursive contracts. We argue that handling such a feature-
rich language of specifications leads to powerful symbolic reason-
ing that utilizes existing program assertions. Finally, we derive a
sound and computable approximation to our semantics that facili-
tates fully automated contract verification.

1. Behavioral contracts as symbolic values
Whether in the context of dynamically loaded JavaScript programs,
low-level native C code, widely-distributed libraries, or simply in-
tractably large code bases, automated reasoning tools must cope
with access to only part of the program. To handle missing compo-
nents, the omitted portions are often assumed to have arbitrary be-
havior, greatly limiting the precision and effectiveness of the tool.
However, programmers who use these components do not make
such conservative assumptions. Instead, they attach specifications
to these components. These specifications increase our ability to
reason about programs that are only partially known. But reason-
ing solely at the level of specification can also make verification
and analysis challenging as well as requiring substantial effort to
write sufficient specifications.

To tackle these problems, we combine specification-based sym-
bolic reasoning about opaque components with semantics-based
concrete reasoning about available components. Our approach to
modular program verification is based on computing with speci-
fications as values. As specifications, we adopt higher-order be-
havioral software contracts. Contracts have two crucial advantages
for our strategy. First, they provide benefit to programmers outside
of verification, since they automatically and dynamically enforce
their described invariants. Because of this, modern languages such
as C#, Haskell and Racket come with rich contract libraries which
programmers already use [9, 15, 17]. Rather than requiring pro-
grammers to annotate code with assertions, we leverage the large
body of code that already attaches contracts at code boundaries.
For example, the Racket standard library features more than 4000
uses of contracts [16]. Second, the meaning of contracts as specifi-
cations is neatly captured by their dynamic semantics. As we shall
see, we are able to leverage the semantics of contract systems into
tools for verification of programs with contracts.

Our plan is as follows: we give a reduction semantics for the
core of a higher-order programming language that includes mod-
ules and contracts (§4). Next, we take a symbolic execution ap-
proach to making our semantics modular (§5). This allows us to
give non-deterministic behavior to programs in which any number
of the component modules are omitted, represented only by their
specifications; here given as contracts. We accomplish this by treat-
ing contracts as abstract values, with the behavior of any of their
possible concrete instantiations.

Symbolic execution and refinement calculi have a long history
of semantics with abstract elements; contracts as abstract values
provides a rich domain of symbols, including precise specifications
for abstract higher-order values. These values present new compli-
cations to soundness, which we address with a demonic context, a
universal context for discovering blame for behavioral values (§6).

We note that this semantics is, in itself, a program verifier. The
execution of a modular program which runs without contract errors
on any path is a verification that the concrete portions of the pro-
gram never violate their contracts, no matter the instantiation of the
omitted portions. This immediately allows us to use contracts for
verification in two senses: to verify that programs do not violate
their contracts, and verifying rich properties of programs by ex-
pressing them as contracts. This technique is surprisingly effective,
particularly in systems with many layers, each of which use con-
tracts at their boundaries. For example, the following tail-recursive
implementation of insertion sort is verified to live up to its contract,
which states that it always produces a sorted list.

As the modular semantics is uncomputable, this verification
strategy is necessarily incomplete. To address this, we apply the
technique of abstracting abstract machines [34] to derive first an
abstract machine and then a computable approximation to our se-
mantics directly from our reduction system (§7).

Finally, we turn our semantics into a tool for program verifica-
tion which is integrated into the Racket [15] toolchain and IDE (§8).
Users can click a button and explore the behavior of their program
in the presence of opaque modules, either with a non-deterministic
and uncomputable semantics, or with a computable approximation.

(define-contract list/c
(rec/c X (or/c empty? (cons/c nat? X))))

(module insert (nat? (and/c list/c (pred sorted?))
-> (and/c list/c (pred sorted?)))

•)
(module insertion-sort
(list/c (and/c list/c sorted?)

-> (and/c list/c sorted?))
(� (l acc)

(if (empty? l) acc
(insertion-sort (cdr l)

(insert (car l) acc)))))
(module l list/c •)
(insertion-sort l empty)
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#lang racket/load

(module dbl racket
  (provide dbl)
  
  
  (define/contract dbl 
    ((even? . -> . even?) . -> . (even? . -> . even?))
    (λ (f)
      (λ (x)               
        (f (f x)))))
  
  
  )

(require 'dbl)
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#lang racket/load

(module dbl racket
  (provide dbl)
  
  
  (define/contract dbl 
    ((even? . -> . even?) . -> . (even? . -> . even?))
    (λ (f)
      (λ (x)               
        (f (f x)))))
  
  
  )

(require 'dbl)

Welcome to DrRacket, version 5.1.1.6--2011-02-02(-/f) [3m].
Language: racket/load; memory limit: 1024 MB.
> (dbl (λ (x) 7))
#<procedure>
> ((dbl (λ (x) 7)) 8)

  contract violation: expected <even?>, given: 7
  contract on dbl from (definition dbl), blaming 'dbl
  contract: 
    (-> (-> even? even?) (-> even? even?))
  at: unsaved-editor68934:7.19
> 
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#lang racket/load

(module dbl racket
  (provide dbl)
  
  
  (define/contract dbl 
    ((even? . -> . even?) . -> . (even? . -> . even?))
    (λ (f)
      (λ (x)               
        (f (f x)))))
  
  
  )

(require 'dbl)

Welcome to DrRacket, version 5.1.1.6--2011-02-02(-/f) [3m].
Language: racket/load; memory limit: 1024 MB.
> (dbl (λ (x) 7))
#<procedure>
> ((dbl (λ (x) 7)) 8)

  contract violation: expected <even?>, given: 7
  contract on dbl from (definition dbl), blaming 'dbl
  contract: 
    (-> (-> even? even?) (-> even? even?))
  at: unsaved-editor68934:7.19
> 
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Contributions
• We propose abstract reduction semantics, a variant of opera-

tional semantics that treats specifications as values, to enable
modular reasoning about partial programs.

• We give a semantics for a representative core of an untyped
higher-order language with a rich language of contracts.

• We give an abstract semantics that equips symbolic values rep-
resented as sets of contracts with an operational interpretation,
allowing reasoning about opaque program components.

• We prove the semantics soundly predicts program behavior for
all possible instantiations of opaque components.

• We derive a sound and computable program analysis based on
the abstract reduction semantics that can serve as the basis for
automated program verification, optimization, and debugging.

• We provide a prototype implementation of an interactive verifi-
cation environment based on our theoretical models.
We begin by giving background on the key technical ideas

we employ (§2) and then give a whirlwind tour of the technical
development (§3), which presents the essence of our approach to
contract verification before we delve into the full development.

2. Our key technical tools
In this section, we provide background on contracts, and introduce
our key techniques and design choices.

Contracts The basic building block of our specification sys-
tem is behavioral software contracts. Originally introduced by
Meyer [26], contracts are executable specifications that sit at the
boundary between software components. In a first-order setting,
properly assessing which component violated a contract at run-time
is straightforward. Matters are complicated when higher-order val-
ues such as functions or objects are included in the language. Find-
ler and Felleisen [12] introduce the notion of blame and establish a
semantic framework for properly assessing blame at run-time in a
higher-order language, providing the theoretical basis for contract
systems such as Racket’s [15].

(module dbl (even? -> even?) -> (even? -> even?)
(λ (x) (λ (f) (f (f x)))))

top-level broke the contract on dbl; expected <even?>, given: 7

To illustrate, consider the dbl program above, which consists
of a module and top-level expression. Module dbl implements
twice-iterated application, operating on functions on even num-
bers. The top-level expression makes use of the dbl function, but
incorrectly—dbl is applied to a function that produces 7.

Contract checking and blame assignment in a higher-order pro-
gram is more complex since it is not decidable whether the argu-
ment of dbl is a function that consumes and produces even num-
bers. Higher-order contracts are pushed down into delayed lower-
order checks, but care must be taken to get blame right. In our ex-
ample, the top-level is blamed, and rightly so, even though even?
witnesses the violation when f is applied to x while executing dbl.

Semantics as a verification tool Muchnick and Jones [28] de-
scribe program analysis as “a tool for discovering properties the
run-time behavior of a program without actually running it.” Of
course, actually running the program is the best predictor of its
behavior. We instead run programs to verify them, but with com-
ponents omitted. While uncomputable in general, this is effective
for proving properties of programs relative to opaque components,
and supports abstraction to recover computability when needed. Put
simply, we make it possible to “actually run” modular programs,
producing a sound prediction of their behavior.

Abstract values and nondeterminism Our verification strategy is
aimed at programs which are partially opaque, so we must deter-
mine the operational behavior of opaque values. We choose to make
them into abstract values, which are pervasively non-deterministic
in their behavior. An example is that a test of an abstract boolean
might take the then or the else branch of an if expression.

Universal contexts To verify a module will not error and pro-
duce blame in the presence of opaque components requires quan-
tifying over all possible components to check the module. Instead,
we make use of the nondeterminism described above to create a
universal context, one that will cause a term to error if possible.

Run, don’t analyze The theme of the above two ideas is to per-
form verification by execution, whether it be in a particular context
or with particular inputs. Throughout our development, we avoid
analyses of programs in favor of running them. This us leads to use
δ to implement tests in if expressions and contract checking, and
to run modules in a universal context to check them for errors.

3. A whirlwind tour
In this section, we illustrate the kernel of our approach by slimming
the technical development to its bare essentials. We start by giving
a semantics for a core language with functions and contracts.

E,F ::= x | A | (E E) | (if E E E) | (o E) | (C⇐!,!E)
U, V ::= n | #t | #f | (λxx.E) | ((C !!"C)⇐!,!V )
C,D ::= C→C | #λxx.E$
o ::= proc? | false? | add1 | . . .
A ::= V | blame!

Our language includes usual elements such as constants and recur-
sive functions, as well as a contract check form (C ⇐ E), that
checks E produces a value satisfying C. Contract checks represent
an agreement between and expression and its context: the expres-
sion must produce a value meeting the specification C, while the
context must use the value only according to C. The parties of the
agreement are named by labels on the check, (C⇐!,!′ E); " refers
to the expression and "′ to the context. A contract system enforces
the agreement and blames the offending party when a check fails.

Contracts are written either as predicates, #λyx.E$, which are
arbitrary functions, or as function contracts, constructed from a pair
of domain and range contracts. A value satisfies a predicate con-
tract only if the predicate holds on the value. Predicates import the
full computational power of the language into the specification lan-
guage of contracts. Function contracts specify behavioral properties
of function values. A function satisfies a C →D contract if given
values satisfying C, it produces values satisfying D. Function con-
tracts may be thought of as specifying pre- and post-conditions.
However, in a higher-order setting it is impossible to verify pre-
and post-conditions against a function value. Instead, checks are
delayed until the function is applied, which pushes pre- and post-
conditions down to lower levels until only first-order properties, en-
coded as predicates, can be checked. The mechanism for delaying
pre- and post-condition checking is the “blessed” function value,
written ((C !!"D)⇐ V ), which represents a value that has been
partially checked against C→D; in particular V has been checked
for being a function (and not a number or boolean).

We formalize the semantics as a reduction relation, c:
Basic reductions E c F

((λyx.E) V ) c [(λyx.E)/y][V/x]E
(o V ) c A if δ(o, V ) % A

(if V E F ) c E if δ(false?, V ) % #f
(if V E F ) c F if δ(false?, V ) % #t
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Contributions
• We propose abstract reduction semantics, a variant of opera-

tional semantics that treats specifications as values, to enable
modular reasoning about partial programs.

• We give a semantics for a representative core of an untyped
higher-order language with a rich language of contracts.

• We give an abstract semantics that equips symbolic values rep-
resented as sets of contracts with an operational interpretation,
allowing reasoning about opaque program components.

• We prove the semantics soundly predicts program behavior for
all possible instantiations of opaque components.

• We derive a sound and computable program analysis based on
the abstract reduction semantics that can serve as the basis for
automated program verification, optimization, and debugging.

• We provide a prototype implementation of an interactive verifi-
cation environment based on our theoretical models.
We begin by giving background on the key technical ideas

we employ (§2) and then give a whirlwind tour of the technical
development (§3), which presents the essence of our approach to
contract verification before we delve into the full development.

2. Our key technical tools
In this section, we provide background on contracts, and introduce
our key techniques and design choices.

Contracts The basic building block of our specification sys-
tem is behavioral software contracts. Originally introduced by
Meyer [26], contracts are executable specifications that sit at the
boundary between software components. In a first-order setting,
properly assessing which component violated a contract at run-time
is straightforward. Matters are complicated when higher-order val-
ues such as functions or objects are included in the language. Find-
ler and Felleisen [12] introduce the notion of blame and establish a
semantic framework for properly assessing blame at run-time in a
higher-order language, providing the theoretical basis for contract
systems such as Racket’s [15].

(module dbl (even? -> even?) -> (even? -> even?)
(λ (x) (λ (f) (f (f x)))))

top-level broke the contract on dbl; expected <even?>, given: 7

To illustrate, consider the dbl program above, which consists
of a module and top-level expression. Module dbl implements
twice-iterated application, operating on functions on even num-
bers. The top-level expression makes use of the dbl function, but
incorrectly—dbl is applied to a function that produces 7.

Contract checking and blame assignment in a higher-order pro-
gram is more complex since it is not decidable whether the argu-
ment of dbl is a function that consumes and produces even num-
bers. Higher-order contracts are pushed down into delayed lower-
order checks, but care must be taken to get blame right. In our ex-
ample, the top-level is blamed, and rightly so, even though even?
witnesses the violation when f is applied to x while executing dbl.

Semantics as a verification tool Muchnick and Jones [28] de-
scribe program analysis as “a tool for discovering properties the
run-time behavior of a program without actually running it.” Of
course, actually running the program is the best predictor of its
behavior. We instead run programs to verify them, but with com-
ponents omitted. While uncomputable in general, this is effective
for proving properties of programs relative to opaque components,
and supports abstraction to recover computability when needed. Put
simply, we make it possible to “actually run” modular programs,
producing a sound prediction of their behavior.

Abstract values and nondeterminism Our verification strategy is
aimed at programs which are partially opaque, so we must deter-
mine the operational behavior of opaque values. We choose to make
them into abstract values, which are pervasively non-deterministic
in their behavior. An example is that a test of an abstract boolean
might take the then or the else branch of an if expression.

Universal contexts To verify a module will not error and pro-
duce blame in the presence of opaque components requires quan-
tifying over all possible components to check the module. Instead,
we make use of the nondeterminism described above to create a
universal context, one that will cause a term to error if possible.

Run, don’t analyze The theme of the above two ideas is to per-
form verification by execution, whether it be in a particular context
or with particular inputs. Throughout our development, we avoid
analyses of programs in favor of running them. This us leads to use
δ to implement tests in if expressions and contract checking, and
to run modules in a universal context to check them for errors.

3. A whirlwind tour
In this section, we illustrate the kernel of our approach by slimming
the technical development to its bare essentials. We start by giving
a semantics for a core language with functions and contracts.

E,F ::= x | A | (E E) | (if E E E) | (o E) | (C⇐!,!E)
U, V ::= n | #t | #f | (λxx.E) | ((C !!"C)⇐!,!V )
C,D ::= C→C | #λxx.E$
o ::= proc? | false? | add1 | . . .
A ::= V | blame!

Our language includes usual elements such as constants and recur-
sive functions, as well as a contract check form (C ⇐ E), that
checks E produces a value satisfying C. Contract checks represent
an agreement between and expression and its context: the expres-
sion must produce a value meeting the specification C, while the
context must use the value only according to C. The parties of the
agreement are named by labels on the check, (C⇐!,!′ E); " refers
to the expression and "′ to the context. A contract system enforces
the agreement and blames the offending party when a check fails.

Contracts are written either as predicates, #λyx.E$, which are
arbitrary functions, or as function contracts, constructed from a pair
of domain and range contracts. A value satisfies a predicate con-
tract only if the predicate holds on the value. Predicates import the
full computational power of the language into the specification lan-
guage of contracts. Function contracts specify behavioral properties
of function values. A function satisfies a C →D contract if given
values satisfying C, it produces values satisfying D. Function con-
tracts may be thought of as specifying pre- and post-conditions.
However, in a higher-order setting it is impossible to verify pre-
and post-conditions against a function value. Instead, checks are
delayed until the function is applied, which pushes pre- and post-
conditions down to lower levels until only first-order properties, en-
coded as predicates, can be checked. The mechanism for delaying
pre- and post-condition checking is the “blessed” function value,
written ((C !!"D)⇐ V ), which represents a value that has been
partially checked against C→D; in particular V has been checked
for being a function (and not a number or boolean).

We formalize the semantics as a reduction relation, c:
Basic reductions E c F

((λyx.E) V ) c [(λyx.E)/y][V/x]E
(o V ) c A if δ(o, V ) % A

(if V E F ) c E if δ(false?, V ) % #f
(if V E F ) c F if δ(false?, V ) % #t
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The first case implements function application via substitution.
The second case uses a δ relation to interpret primitives. The third
and fourth case handle conditional branching in the usual way, but
rely on δ to determine if the test value is true or false. We follow
LISP tradition and treat all non-#f values as true. (For this simple
model, we assume erroneous programs, such as (5 7), get stuck.)
To implement contract monitoring, we add the following:
Contract checking E c F

(!E"⇐!,!′ V ) c (if (E V ) V blame!)

(C→D⇐!,!′ V ) c ((C !!"D)⇐!,!′ V )
if δ(proc?, V ) % #t

(((C !!"D)⇐!,!′ V ) U) c (D⇐!,!′ (V (C⇐!′,!U)))

Checking a predicate is implemented by applying the predicate
and producing the value when it holds and blaming " otherwise.
Checking a function against a function contract produces a blessed
function. When a blessed function is applied, the delayed contract
checking is resumed by checking the pre-condition against the
argument, applying the function, and checking the post-condition
against the result. It is critical for proper blame assignment that the
check annotations are swapped when checking the argument.

All of these rules rely heavily on the δ metafunction, instead of
using syntactic tests on, e.g., values tested in if expressions. This,
along with the choice to make δ map to sets of values, sets up our
subsequent development, where δ is non-deterministic.

At this point, we have a standard semantics for a simple, yet
representative core of a higher-order language with contracts. We
now aim to construct an extension of the semantics that can give
meaning to programs that are missing components. The key idea
is “holes” in the program, written •, represent unknown, missing
components. Purely unknown values have arbitrary behavior, but
we will refine holes by attaching a set of contracts that specify an
agreement between the program and the missing component. Such
refinements can guide an operational characterization of program
even in the presence of the unknown. So for example, if we know
• satisfies !nat?"→!nat?" in (• 5), we conclude the application
produces an unknown value satisfying !nat?".

We extend values to include the opaque value • and values
refined by a set of contracts, written V/C. To give an operational
semantics to abstract values, which are values V̂ of the form •/C,
we need two things: (1) the δ relation must be extended to interpret
operations when applied to (partially) unknown values and (2) we
need to extend c to the case of applying an abstract function, i.e. an
opaque value that may represent a function. The extension to δ is
straightforward—when an operation is applied to an abstract value,
the result set may include multiple distinct values, and/or blame.
Applying abstract values E ĉ F

(V̂ U) ĉ •/{D | C→D ∈ C} if δ(proc?, V̂ ) % #t

(V̂ U) ĉ ((λyx.(y (x •))) U) if δ(proc?, V̂ ) % #t

When applying an abstract function, ĉ relates the term to two pos-
sible results. The first is an abstract value refined by the range con-
tracts of the function. The second produces no result, but recur-
sively applies the argument U . While the first possibility represents
a successful function application, the second simulates the argu-
ment escaping to an unknown context. In this simplified model, the
only behavioral values are functions, so we represent all possible
uses of the escaped value by iteratively applying it to •. This con-
struction represents a universal demonic context that will discover
a way to blame U if possible. Its only purpose is to uncover blame.

We also revise the contract checking reductions so that values
remember which contracts they have satisfied. A subsequent check

of a value against a contract it is known to satisfy always passes,
thus the semantics becomes more precise as it reduces.
Contract checking E ĉ F

(C⇐!,!′ V/C) ĉ V/C if C ∈ C
(!E"⇐!,!′ V/C) ĉ (if (E V/C) V ′ blame!) if !E" '∈ C

where V ′ = V/C ∪ {!E"}
(C→D⇐!,!′ V ) ĉ ((C !!"D)⇐!,!′ V ′) if δ(proc?, V ) % #t

where V ′ = V/{C→D}
We have now constructed an abstract reduction semantics that ap-
proximates the behavior of programs for all possible instantiations
of the opaque components. In particular, we can verify pieces of
programs by running them with missing components, refined by
contracts. If the abstract program does not blame the known com-
ponents, no context can cause those components to be blamed.

In the remainder of the paper, we scale these ideas up to an
expressive language of modules and contracts.

4. Semantics of modules and contracts
Having seen the crucial ideas, we now present the semantics our
language with modules and a rich language of contracts in full1

To our language with first-class, higher-order recursive proce-
dures, conditionals, base values and operations we add pairs, and
to our language of contracts we add dependent higher-order con-
tracts, contracts on pairs, recursive contracts, and the conjunction
and disjunction of contracts. Predicates, as before, are expressed as
arbitrary programs within the language itself. Programs are orga-
nized as a set of module definitions, which associate a module name
with a value and a contract. Contracts are established at module
boundaries and here express an agreement between a module and
the external context. The contract checking portion of the reduc-
tion semantics monitors these agreements, maintaining sufficient
information to blame the appropriate party in case a contract is not
upheld.

4.1 Syntax
The syntax of our language is given below. We write E for a
possibly-empty sequence of E, and treat these sequences as sets
where convenient. Portions highlighted in gray are internal to the
semantics and cannot appear in source programs. Applications are
labeled by the module in which they appear.

P,Q ::= ME
M,N ::= (module f C V )
E,F ::= x | f ! | A | (E E)! | (if E E E) | (oE)!

| (C⇐f,f
f E)

U, V ::= n | #t | #f | (λxx.E) | (V, V ) | empty
| ((C !!"x.C)⇐f,f

f V )
C,D ::= x | C→x.C | !λxx.E" | 〈C,C〉

| C ∧ C | C ∨ C | µx.C
o ::= add1 | car | cdr | + | = | cons | o?
o? ::= nat? | bool? | empty? | cons? | proc? | false?
A ::= V | blame!!

Contract checks, written (C⇐f,g
h E), check that E evaluates to

a value satisfying C. The additional label h represents the module
in which the contract originally appeared. Tracking this third label
provides two benefits. First, it allows the semantics to report the

1 Throughout, we assume a basic familiarity with reduction semantics and
abstract machines and refer the reader to Semantics Engineering with PLT
Redex [11] for background, notation, and terminology.
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f(5)

f:prime?!int 
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f(5)

f:prime?!int 
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prime?!int 



59

prime?!int 

f → (prime?!int)
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prime?!int 

(prime?!int)(5) int→
f → (prime?!int)

→*
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The next set of reduction rules defines the behavior of higher-
order contract checks; we assume in each case that the checked
contract is not flat.
Reduction for function contracts E c F

(((C !!"x.D)⇐f,g
h V ) U) c ([U/x]D⇐f,g

h (V (C⇐g,f
h U)))

(C→x.D⇐V ) c ((C !!"x.D)⇐V ) (∗)
if δ(proc?, V ) $ #t

(C→x.D⇐f,g
h V ) c blamefh if δ(proc?, V ) $ #f

The first rule creates blessed functions. These values represent
a function which has been wrapped with a function contract, but
where the domain and range contracts have not yet been applied
to the arguments or results of the function. In the first, we apply a
blessed function, producing a function application of the encapsu-
lated function, where the argument is checked against the domain
contract and the result is checked against the range. Note that the
argument is substituted into the range contract to support dependent
contracts. In the second rule, a value that is a function as determined
by the proc? primitive is wrapped to produce a blessed function.
The third rule blames the positive party of a function contract when
the supplied value is not in fact a function.
Higher-order pair contract reductions E c F

(〈C,D〉⇐V ) c (cons (C⇐(car V )) (D⇐(cdr V ))) (∗)
if δ(cons?, V ) $ #t

(〈C,D〉⇐f,g
h V ) c blamefh if δ(cons?, V ) $ #f

The remaining rules handle higher-order contracts that are not
immediately function contracts, such as pairs of function contracts.
The first two are for pair contracts. If the value is determined to be
a pair by cons?, then the components are extracted using car and
cdr and checked against the relevant portions of the contract. If the
value is not a pair, then the program reduces to blame, analogous
to the case for function contracts.
Other higher-order contract reductions E c F

(µx.C⇐V ) c ([µx.C/x]C⇐V )

(C ∧D⇐V ) c (D⇐(C⇐V ))

(C ∨D⇐V ) c (if (E V ) V (D⇐V )) (∗)
where E = FC(C)

The last three rules decompose combinations of higher-order con-
tracts. Recursive contracts are unrolled and conjunctions are de-
composed into successive checks. For higher-order contract dis-
junctions, we make use of the invariant that only the right disjunct
is higher-order and use FC to implement the check for the left.

4.5 Module references
To handle references to module-bound variables, we define a mod-
ule environment that describes the module context M . Using the
module reference annotation, the environment distinguishes be-
tween self references and external references. When an external
module is referenced, its value is wrapped in a contract check; a
self-reference is resolved to its (unchecked) value. This distinction
implements the notion of “contracts as boundaries” [12], in other
words, contracts are an agreement between the module and its con-
text, and the module can behave internally as it likes.
Module environment (fg, E) ∈ ∆(M)

∆(M) = {(ff, V ) | (module f C V ) ∈ M}
∪ {(fg, (C⇐f,g

f V )) | (module f C V ) ∈ M , f += g}

4.6 Basic operations
Typically, the interpretation of operations is defined by a function
δ that maps an operation and argument values to a result. So for
example, you might have δ(add1, 0) = 1. The result of applying a
primitive may either be a value in case the operation is defined on
its given arguments, or blame in case it is not. We do the same with
a slight twist: we choose to model δ more generally as a relation
between an operation, arguments, and a result. The example now
becomes (add1!, 0, 1) ∈ δ, which we also write δ(add1!, 0) $ 1
to be suggestive of the standard notation. Additionally, we define
here only the δ̃ relation which is a subset of the full δ relation; the
remainder, δ̂ handles abstract values, see section 5.5. A few selected
cases are given below as examples. Otherwise, the definition of δ̃ is
standard and we relegate the remainder to an appendix.

Primitive operations δ̃(o!,V ) $ A

δ̃(add1, n) $ n+ 1 δ̃(+, n,m) $ n+m
δ̃(car, (U, V )) $ U . . .
δ̃(cdr, (U, V )) $ V δ̃(o!,V ) $ blame!Λ

Labels on operations come from the application site of the opera-
tion in the program, e.g. (add1 5)! so that the appropriate module
can be blamed when primitive operations are misused, as in the last
case, and are omitted whenever they are irrelevant. When primitive
operations are misused, the violated contract is on Λ, standing for
the programming language itself, just as in the rule for application
of non-functions.

5. Contracts as abstract values
The previous section establishes as semantics for programs with
modules and contracts. We now extend the semantics to incorporate
opaque components, i.e. modules whose implementations are omit-
ted, written (modulef C •). Our semantics gives non-deterministic
behavior to these components, bounded by their specifications, that
is, their declared contracts.

V, U += • | V/C

To implement this idea, we add two new possibilities for values
to our language. The first is an abstract value, written •—this is
a value about which we know nothing. The second is a value
which we know to have satisfied a set of contracts, written V/C.
This knowledge about values is necessary for precise reasoning
about abstract values—once we know that a particular abstract
value satisfies ,even?-, that contract will not fail in future when
reapplied to the same value.

In the following, we assume that (V/C)/C′ = V/C ∪ C′ and
V = V/∅. Here, C ranges over sets of contracts. Without loss of
generality, we assume all conjunctions in C are flattened into the
set. We more generally refer to an abstract value for a value of the
form •/C, while a concrete value is any value V/C where V += •.
We let V̂ range over abstract values, Ṽ over concrete values, and
V over their union.

5.1 Opaque module references
Abstract values are introduced by reference to modules whose im-
plementation is not available, in which case we model the miss-
ing component by its specification. A module whose implementa-
tion is not available is opaque and transparent when it is available.
References to module-defined variables are now resolved through
the ∆̂(M) relation, which resolves references to transparent mod-
ules are handled just as before, and resolves opaque modules to
the check of an abstract value that consists solely of the module’s
contract.
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The first case implements function application via substitution.
The second case uses a δ relation to interpret primitives. The third
and fourth case handle conditional branching in the usual way, but
rely on δ to determine if the test value is true or false. We follow
LISP tradition and treat all non-#f values as true. (For this simple
model, we assume erroneous programs, such as (5 7), get stuck.)
To implement contract monitoring, we add the following:
Contract checking E c F

(!E"⇐!,!′ V ) c (if (E V ) V blame!)

(C→D⇐!,!′ V ) c ((C !!"D)⇐!,!′ V )
if δ(proc?, V ) % #t

(((C !!"D)⇐!,!′ V ) U) c (D⇐!,!′ (V (C⇐!′,!U)))

Checking a predicate is implemented by applying the predicate
and producing the value when it holds and blaming " otherwise.
Checking a function against a function contract produces a blessed
function. When a blessed function is applied, the delayed contract
checking is resumed by checking the pre-condition against the
argument, applying the function, and checking the post-condition
against the result. It is critical for proper blame assignment that the
check annotations are swapped when checking the argument.

All of these rules rely heavily on the δ metafunction, instead of
using syntactic tests on, e.g., values tested in if expressions. This,
along with the choice to make δ map to sets of values, sets up our
subsequent development, where δ is non-deterministic.

At this point, we have a standard semantics for a simple, yet
representative core of a higher-order language with contracts. We
now aim to construct an extension of the semantics that can give
meaning to programs that are missing components. The key idea
is “holes” in the program, written •, represent unknown, missing
components. Purely unknown values have arbitrary behavior, but
we will refine holes by attaching a set of contracts that specify an
agreement between the program and the missing component. Such
refinements can guide an operational characterization of program
even in the presence of the unknown. So for example, if we know
• satisfies !nat?"→!nat?" in (• 5), we conclude the application
produces an unknown value satisfying !nat?".

We extend values to include the opaque value • and values
refined by a set of contracts, written V/C. To give an operational
semantics to abstract values, which are values V̂ of the form •/C,
we need two things: (1) the δ relation must be extended to interpret
operations when applied to (partially) unknown values and (2) we
need to extend c to the case of applying an abstract function, i.e. an
opaque value that may represent a function. The extension to δ is
straightforward—when an operation is applied to an abstract value,
the result set may include multiple distinct values, and/or blame.
Applying abstract values E ĉ F

(V̂ U) ĉ •/{D | C→D ∈ C} if δ(proc?, V̂ ) % #t

(V̂ U) ĉ ((λyx.(y (x •))) U) if δ(proc?, V̂ ) % #t

When applying an abstract function, ĉ relates the term to two pos-
sible results. The first is an abstract value refined by the range con-
tracts of the function. The second produces no result, but recur-
sively applies the argument U . While the first possibility represents
a successful function application, the second simulates the argu-
ment escaping to an unknown context. In this simplified model, the
only behavioral values are functions, so we represent all possible
uses of the escaped value by iteratively applying it to •. This con-
struction represents a universal demonic context that will discover
a way to blame U if possible. Its only purpose is to uncover blame.

We also revise the contract checking reductions so that values
remember which contracts they have satisfied. A subsequent check

of a value against a contract it is known to satisfy always passes,
thus the semantics becomes more precise as it reduces.
Contract checking E ĉ F

(C⇐!,!′ V/C) ĉ V/C if C ∈ C
(!E"⇐!,!′ V/C) ĉ (if (E V/C) V ′ blame!) if !E" '∈ C

where V ′ = V/C ∪ {!E"}
(C→D⇐!,!′ V ) ĉ ((C !!"D)⇐!,!′ V ′) if δ(proc?, V ) % #t

where V ′ = V/{C→D}
We have now constructed an abstract reduction semantics that ap-
proximates the behavior of programs for all possible instantiations
of the opaque components. In particular, we can verify pieces of
programs by running them with missing components, refined by
contracts. If the abstract program does not blame the known com-
ponents, no context can cause those components to be blamed.

In the remainder of the paper, we scale these ideas up to an
expressive language of modules and contracts.

4. Semantics of modules and contracts
Having seen the crucial ideas, we now present the semantics our
language with modules and a rich language of contracts in full1

To our language with first-class, higher-order recursive proce-
dures, conditionals, base values and operations we add pairs, and
to our language of contracts we add dependent higher-order con-
tracts, contracts on pairs, recursive contracts, and the conjunction
and disjunction of contracts. Predicates, as before, are expressed as
arbitrary programs within the language itself. Programs are orga-
nized as a set of module definitions, which associate a module name
with a value and a contract. Contracts are established at module
boundaries and here express an agreement between a module and
the external context. The contract checking portion of the reduc-
tion semantics monitors these agreements, maintaining sufficient
information to blame the appropriate party in case a contract is not
upheld.

4.1 Syntax
The syntax of our language is given below. We write E for a
possibly-empty sequence of E, and treat these sequences as sets
where convenient. Portions highlighted in gray are internal to the
semantics and cannot appear in source programs. Applications are
labeled by the module in which they appear.

P,Q ::= ME
M,N ::= (module f C V )
E,F ::= x | f ! | A | (E E)! | (if E E E) | (oE)!

| (C⇐f,f
f E)

U, V ::= n | #t | #f | (λxx.E) | (V, V ) | empty
| ((C !!"x.C)⇐f,f

f V )
C,D ::= x | C→x.C | !λxx.E" | 〈C,C〉

| C ∧ C | C ∨ C | µx.C
o ::= add1 | car | cdr | + | = | cons | o?
o? ::= nat? | bool? | empty? | cons? | proc? | false?
A ::= V | blame!!

Contract checks, written (C⇐f,g
h E), check that E evaluates to

a value satisfying C. The additional label h represents the module
in which the contract originally appeared. Tracking this third label
provides two benefits. First, it allows the semantics to report the

1 Throughout, we assume a basic familiarity with reduction semantics and
abstract machines and refer the reader to Semantics Engineering with PLT
Redex [11] for background, notation, and terminology.
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The first case implements function application via substitution.
The second case uses a δ relation to interpret primitives. The third
and fourth case handle conditional branching in the usual way, but
rely on δ to determine if the test value is true or false. We follow
LISP tradition and treat all non-#f values as true. (For this simple
model, we assume erroneous programs, such as (5 7), get stuck.)
To implement contract monitoring, we add the following:
Contract checking E c F

(!E"⇐!,!′ V ) c (if (E V ) V blame!)

(C→D⇐!,!′ V ) c ((C !!"D)⇐!,!′ V )
if δ(proc?, V ) % #t

(((C !!"D)⇐!,!′ V ) U) c (D⇐!,!′ (V (C⇐!′,!U)))

Checking a predicate is implemented by applying the predicate
and producing the value when it holds and blaming " otherwise.
Checking a function against a function contract produces a blessed
function. When a blessed function is applied, the delayed contract
checking is resumed by checking the pre-condition against the
argument, applying the function, and checking the post-condition
against the result. It is critical for proper blame assignment that the
check annotations are swapped when checking the argument.

All of these rules rely heavily on the δ metafunction, instead of
using syntactic tests on, e.g., values tested in if expressions. This,
along with the choice to make δ map to sets of values, sets up our
subsequent development, where δ is non-deterministic.

At this point, we have a standard semantics for a simple, yet
representative core of a higher-order language with contracts. We
now aim to construct an extension of the semantics that can give
meaning to programs that are missing components. The key idea
is “holes” in the program, written •, represent unknown, missing
components. Purely unknown values have arbitrary behavior, but
we will refine holes by attaching a set of contracts that specify an
agreement between the program and the missing component. Such
refinements can guide an operational characterization of program
even in the presence of the unknown. So for example, if we know
• satisfies !nat?"→!nat?" in (• 5), we conclude the application
produces an unknown value satisfying !nat?".

We extend values to include the opaque value • and values
refined by a set of contracts, written V/C. To give an operational
semantics to abstract values, which are values V̂ of the form •/C,
we need two things: (1) the δ relation must be extended to interpret
operations when applied to (partially) unknown values and (2) we
need to extend c to the case of applying an abstract function, i.e. an
opaque value that may represent a function. The extension to δ is
straightforward—when an operation is applied to an abstract value,
the result set may include multiple distinct values, and/or blame.
Applying abstract values E ĉ F

(V̂ U) ĉ •/{D | C→D ∈ C} if δ(proc?, V̂ ) % #t

(V̂ U) ĉ ((λyx.(y (x •))) U) if δ(proc?, V̂ ) % #t

When applying an abstract function, ĉ relates the term to two pos-
sible results. The first is an abstract value refined by the range con-
tracts of the function. The second produces no result, but recur-
sively applies the argument U . While the first possibility represents
a successful function application, the second simulates the argu-
ment escaping to an unknown context. In this simplified model, the
only behavioral values are functions, so we represent all possible
uses of the escaped value by iteratively applying it to •. This con-
struction represents a universal demonic context that will discover
a way to blame U if possible. Its only purpose is to uncover blame.

We also revise the contract checking reductions so that values
remember which contracts they have satisfied. A subsequent check

of a value against a contract it is known to satisfy always passes,
thus the semantics becomes more precise as it reduces.
Contract checking E ĉ F

(C⇐!,!′ V/C) ĉ V/C if C ∈ C
(!E"⇐!,!′ V/C) ĉ (if (E V/C) V ′ blame!) if !E" '∈ C

where V ′ = V/C ∪ {!E"}
(C→D⇐!,!′ V ) ĉ ((C !!"D)⇐!,!′ V ′) if δ(proc?, V ) % #t

where V ′ = V/{C→D}
We have now constructed an abstract reduction semantics that ap-
proximates the behavior of programs for all possible instantiations
of the opaque components. In particular, we can verify pieces of
programs by running them with missing components, refined by
contracts. If the abstract program does not blame the known com-
ponents, no context can cause those components to be blamed.

In the remainder of the paper, we scale these ideas up to an
expressive language of modules and contracts.

4. Semantics of modules and contracts
Having seen the crucial ideas, we now present the semantics our
language with modules and a rich language of contracts in full1

To our language with first-class, higher-order recursive proce-
dures, conditionals, base values and operations we add pairs, and
to our language of contracts we add dependent higher-order con-
tracts, contracts on pairs, recursive contracts, and the conjunction
and disjunction of contracts. Predicates, as before, are expressed as
arbitrary programs within the language itself. Programs are orga-
nized as a set of module definitions, which associate a module name
with a value and a contract. Contracts are established at module
boundaries and here express an agreement between a module and
the external context. The contract checking portion of the reduc-
tion semantics monitors these agreements, maintaining sufficient
information to blame the appropriate party in case a contract is not
upheld.

4.1 Syntax
The syntax of our language is given below. We write E for a
possibly-empty sequence of E, and treat these sequences as sets
where convenient. Portions highlighted in gray are internal to the
semantics and cannot appear in source programs. Applications are
labeled by the module in which they appear.

P,Q ::= ME
M,N ::= (module f C V )
E,F ::= x | f ! | A | (E E)! | (if E E E) | (oE)!

| (C⇐f,f
f E)

U, V ::= n | #t | #f | (λxx.E) | (V, V ) | empty
| ((C !!"x.C)⇐f,f

f V )
C,D ::= x | C→x.C | !λxx.E" | 〈C,C〉

| C ∧ C | C ∨ C | µx.C
o ::= add1 | car | cdr | + | = | cons | o?
o? ::= nat? | bool? | empty? | cons? | proc? | false?
A ::= V | blame!!

Contract checks, written (C⇐f,g
h E), check that E evaluates to

a value satisfying C. The additional label h represents the module
in which the contract originally appeared. Tracking this third label
provides two benefits. First, it allows the semantics to report the

1 Throughout, we assume a basic familiarity with reduction semantics and
abstract machines and refer the reader to Semantics Engineering with PLT
Redex [11] for background, notation, and terminology.
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The first case implements function application via substitution.
The second case uses a δ relation to interpret primitives. The third
and fourth case handle conditional branching in the usual way, but
rely on δ to determine if the test value is true or false. We follow
LISP tradition and treat all non-#f values as true. (For this simple
model, we assume erroneous programs, such as (5 7), get stuck.)
To implement contract monitoring, we add the following:
Contract checking E c F

(!E"⇐!,!′ V ) c (if (E V ) V blame!)

(C→D⇐!,!′ V ) c ((C !!"D)⇐!,!′ V )
if δ(proc?, V ) % #t

(((C !!"D)⇐!,!′ V ) U) c (D⇐!,!′ (V (C⇐!′,!U)))
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Checking a function against a function contract produces a blessed
function. When a blessed function is applied, the delayed contract
checking is resumed by checking the pre-condition against the
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using syntactic tests on, e.g., values tested in if expressions. This,
along with the choice to make δ map to sets of values, sets up our
subsequent development, where δ is non-deterministic.

At this point, we have a standard semantics for a simple, yet
representative core of a higher-order language with contracts. We
now aim to construct an extension of the semantics that can give
meaning to programs that are missing components. The key idea
is “holes” in the program, written •, represent unknown, missing
components. Purely unknown values have arbitrary behavior, but
we will refine holes by attaching a set of contracts that specify an
agreement between the program and the missing component. Such
refinements can guide an operational characterization of program
even in the presence of the unknown. So for example, if we know
• satisfies !nat?"→!nat?" in (• 5), we conclude the application
produces an unknown value satisfying !nat?".

We extend values to include the opaque value • and values
refined by a set of contracts, written V/C. To give an operational
semantics to abstract values, which are values V̂ of the form •/C,
we need two things: (1) the δ relation must be extended to interpret
operations when applied to (partially) unknown values and (2) we
need to extend c to the case of applying an abstract function, i.e. an
opaque value that may represent a function. The extension to δ is
straightforward—when an operation is applied to an abstract value,
the result set may include multiple distinct values, and/or blame.
Applying abstract values E ĉ F

(V̂ U) ĉ •/{D | C→D ∈ C} if δ(proc?, V̂ ) % #t

(V̂ U) ĉ ((λyx.(y (x •))) U) if δ(proc?, V̂ ) % #t

When applying an abstract function, ĉ relates the term to two pos-
sible results. The first is an abstract value refined by the range con-
tracts of the function. The second produces no result, but recur-
sively applies the argument U . While the first possibility represents
a successful function application, the second simulates the argu-
ment escaping to an unknown context. In this simplified model, the
only behavioral values are functions, so we represent all possible
uses of the escaped value by iteratively applying it to •. This con-
struction represents a universal demonic context that will discover
a way to blame U if possible. Its only purpose is to uncover blame.

We also revise the contract checking reductions so that values
remember which contracts they have satisfied. A subsequent check

of a value against a contract it is known to satisfy always passes,
thus the semantics becomes more precise as it reduces.
Contract checking E ĉ F

(C⇐!,!′ V/C) ĉ V/C if C ∈ C
(!E"⇐!,!′ V/C) ĉ (if (E V/C) V ′ blame!) if !E" '∈ C

where V ′ = V/C ∪ {!E"}
(C→D⇐!,!′ V ) ĉ ((C !!"D)⇐!,!′ V ′) if δ(proc?, V ) % #t

where V ′ = V/{C→D}
We have now constructed an abstract reduction semantics that ap-
proximates the behavior of programs for all possible instantiations
of the opaque components. In particular, we can verify pieces of
programs by running them with missing components, refined by
contracts. If the abstract program does not blame the known com-
ponents, no context can cause those components to be blamed.

In the remainder of the paper, we scale these ideas up to an
expressive language of modules and contracts.

4. Semantics of modules and contracts
Having seen the crucial ideas, we now present the semantics our
language with modules and a rich language of contracts in full1

To our language with first-class, higher-order recursive proce-
dures, conditionals, base values and operations we add pairs, and
to our language of contracts we add dependent higher-order con-
tracts, contracts on pairs, recursive contracts, and the conjunction
and disjunction of contracts. Predicates, as before, are expressed as
arbitrary programs within the language itself. Programs are orga-
nized as a set of module definitions, which associate a module name
with a value and a contract. Contracts are established at module
boundaries and here express an agreement between a module and
the external context. The contract checking portion of the reduc-
tion semantics monitors these agreements, maintaining sufficient
information to blame the appropriate party in case a contract is not
upheld.

4.1 Syntax
The syntax of our language is given below. We write E for a
possibly-empty sequence of E, and treat these sequences as sets
where convenient. Portions highlighted in gray are internal to the
semantics and cannot appear in source programs. Applications are
labeled by the module in which they appear.

P,Q ::= ME
M,N ::= (module f C V )
E,F ::= x | f ! | A | (E E)! | (if E E E) | (oE)!

| (C⇐f,f
f E)

U, V ::= n | #t | #f | (λxx.E) | (V, V ) | empty
| ((C !!"x.C)⇐f,f

f V )
C,D ::= x | C→x.C | !λxx.E" | 〈C,C〉

| C ∧ C | C ∨ C | µx.C
o ::= add1 | car | cdr | + | = | cons | o?
o? ::= nat? | bool? | empty? | cons? | proc? | false?
A ::= V | blame!!

Contract checks, written (C⇐f,g
h E), check that E evaluates to

a value satisfying C. The additional label h represents the module
in which the contract originally appeared. Tracking this third label
provides two benefits. First, it allows the semantics to report the

1 Throughout, we assume a basic familiarity with reduction semantics and
abstract machines and refer the reader to Semantics Engineering with PLT
Redex [11] for background, notation, and terminology.
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Module environment (fg, E) ∈ ∆̂(M)

∆̂(M) = {(ff, Ṽ ) | (module f C Ṽ ) ∈ M}
∪ {(fg, (C⇐f,g

f Ṽ )) | (module f C Ṽ ) ∈ M , f $=g}
∪ {(fg, (C⇐f,g

f •/{C})) | (module f C •) ∈ M}

5.2 Remembering contracts
As computation is carried out, we can discover properties of ab-
stract values that may be useful in subsequently avoiding spurious
program execution. Our primary mechanism for remembering such
discoveries is to add properties, encoded as contracts, to values
(both abstract and concrete) as soon as the computational process
proves them. So for example, if a value passes a flat contract check,
we want to add the checked contract to the value’s remembered set.
Subsequent checks of the same contract will be avoided.

To accomplish this, we modify the rules that check first-order
properties of values to remember these properties. In particular, we
replace the rules in section 4 marked with (∗) with the following:
Remembering contracts E ĉ F

(C⇐f,g
h V ) ĉ (if (E V ) U blamefh)

where C is flat, E = FC(C) and U = V/{C} and V &∼ C

(C⇐f,g
h V ) ĉ V/{C} where C is flat, and V & C

(C⇐f,g
h V ) ĉ blamefh where C is flat, and V $& C

(C→x.D⇐V ) ĉ ((C !!"x.D)⇐U)
where δ(proc?, V ) ( #t and U = V/{C→x.D}

(〈C,D〉⇐V ) ĉ (cons (C⇐(car U)) (D⇐(cdr U)))
where δ(cons?, V ) ( #t and U = V/{+cons?,}

(C ∨D⇐V ) ĉ (if (E V ) U (D⇐V ))
where E = FC(C) and U = V/{C} and V &∼ C

(C ∨D⇐V ) ĉ V/{C} where C is flat and V & C

(C ∨D⇐V ) ĉ (D⇐V ) where C is flat and V $& C

Each of these rules is similar to its earlier counterpart except that it
replaces V with U , a new value that extends the set of remembered
contracts on V . We then use the remembered contracts to optimize
the reductions for flat contract checking by adding a proof system,
written V & C, when a value V definitely satisfies the contract C.
We provide the full details of the this proof system in section 5.5;
for the moment, the key property is that V/C & C holds. Similarly,
V $& C indicates that V definitely does not satisfy C, and V &∼ C
indicates that neither of these relations holds.

5.3 Reduction with abstract values
Having created abstract values via reference to opaque modules,
we must determine how they behave in computation. Fortunately,
in many cases our use of δ in the definition of reduction accom-
plishes this automatically. For example, if δ(false?, V̂ ) ( #t,
then (if V̂ E F ) .−→c F—no additional rules are required.

Function application, however, is not interpreted by δ. We there-
fore endow abstract functions, i.e. abstract values that answer #t to
proc?, with reductions that describe their behavior when applied.

When an abstract value is applied as function (V̂ U), the ar-
gument U crosses into an unknown component. It may be treated
arbitrary, so long as the component lives up to any commitments
its made on the domain of its inputs. So for example, applying the
function V̂ = •/{+cons?,→+nat?,}, V̂ may treat its input U
arbitrary, so long as it always treats it as a pair.

There are three possibilities that may occur in when applying
an abstract function: (1) the abstract function may produce a result
satisfying the specification of the functions output, (2) the function

may make use of its argument according to the specification of the
functions input, but if the input contains functions, this potentially
uncovers blame, or (3) the function errors internally or diverges.
The third case we ignore, since we do not attempt to predict the
behavior of components whose implementations we do not have.

We handle the other two possibilities by non-deterministically
considering both. In the case of (1), we simply produce an abstract
value that remembers all range contracts of the function. We handle
(2) by first placing the argument in a demonic context, then return-
ing the same value as in case (1). The demonic context is a universal
context that will produce blame if it there exists a context that pro-
duces blame originating from the value. If the universal demonic
context cannot produce blame, only the successful range value is
produced.
Applying abstract values E ĉ F

(•/C U) ĉ •/{[V/x]D | C→x.D ∈ C} if δ(proc?, •/C) ( #t

(V̂ U) ĉ (DEMONIC U) if δ(proc?, V̂ ) ( #t

DEMONIC = (λyx.AMB({(y (x •)), (y (car x)), (y (cdr x))}))

AMB({E}) = E
AMB({E} ·∪ E) = (if • E F ) where F = AMB(E)

The demonic context is implemented as a recursive function that
makes a non-deterministic choice as to how to treat its argument—
it either applies the argument to the least-specific value, •, or selects
one component of it, and then recurs on the result of its choice.
This subjects the input value to all possible behavior that a context
might have. Note that the demonic context might itself be blamed;
we implicitly label the expressions in the demonic context with a
distinguished label and disregard these spurious errors in the proof
of soundness. We use the AMB metafunction to implement the non-
determinism of demonic; AMB uses an if test of an opaque value,
which reduces to both branches.

5.4 Improving precision via non-determinism
Since our reduction rules, and in particular the δ relation, make use
of the remembered contracts on values, making these contracts as
specific as possible improves precision of the results.
Improving precision via non-determinism E ĉ F

•/C ·∪ {C1 ∨ C2} ĉ •/C ∪ {Ci} i ∈ {1, 2}
•/C ·∪ {µx.C} ĉ •/C ∪ {[µx.C/x]C}

These two rules increase the specificity of abstract values. The
first splits abstract values known to satisfy a disjunctive contract.
For example, •/{+nat?,∨ +bool?,} ĉ •/+nat?, and •/+bool?,.
This reifies the non-determinism of the value into non-determinism
in the reduction relation, and makes subsequent uses of δ more
precise on the two produced values. Similarly, we unfold recursive
contracts in abstract values; this exposes further disjunctions to
split, as with a contract for lists.

5.5 Base operations on abstract values
When applying base operations to abstract values, the results are
potentially complex. For example, (add1•) might produce any nat-
ural number, or it might go wrong, depending on what value • rep-
resents. We represent this in the abstract version of δ, written δ̂,
with a combination of non-determinism, where δ̂ relates an oper-
ation and its inputs to multiple answers, as well as abstract values
as results, to handle the arbitrary natural numbers or booleans that
might be produced.

The definition of δ̂ relies on a proof system relating predicates
and values, discussed below. Here, V & o? means that V is known
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Module environment (fg, E) ∈ ∆̂(M)

∆̂(M) = {(ff, Ṽ ) | (module f C Ṽ ) ∈ M}
∪ {(fg, (C⇐f,g

f Ṽ )) | (module f C Ṽ ) ∈ M , f $=g}
∪ {(fg, (C⇐f,g

f •/{C})) | (module f C •) ∈ M}

5.2 Remembering contracts
As computation is carried out, we can discover properties of ab-
stract values that may be useful in subsequently avoiding spurious
program execution. Our primary mechanism for remembering such
discoveries is to add properties, encoded as contracts, to values
(both abstract and concrete) as soon as the computational process
proves them. So for example, if a value passes a flat contract check,
we want to add the checked contract to the value’s remembered set.
Subsequent checks of the same contract will be avoided.

To accomplish this, we modify the rules that check first-order
properties of values to remember these properties. In particular, we
replace the rules in section 4 marked with (∗) with the following:
Remembering contracts E ĉ F

(C⇐f,g
h V ) ĉ (if (E V ) U blamefh)

where C is flat, E = FC(C) and U = V/{C} and V &∼ C

(C⇐f,g
h V ) ĉ V/{C} where C is flat, and V & C

(C⇐f,g
h V ) ĉ blamefh where C is flat, and V $& C

(C→x.D⇐V ) ĉ ((C !!"x.D)⇐U)
where δ(proc?, V ) ( #t and U = V/{C→x.D}

(〈C,D〉⇐V ) ĉ (cons (C⇐(car U)) (D⇐(cdr U)))
where δ(cons?, V ) ( #t and U = V/{+cons?,}

(C ∨D⇐V ) ĉ (if (E V ) U (D⇐V ))
where E = FC(C) and U = V/{C} and V &∼ C

(C ∨D⇐V ) ĉ V/{C} where C is flat and V & C

(C ∨D⇐V ) ĉ (D⇐V ) where C is flat and V $& C

Each of these rules is similar to its earlier counterpart except that it
replaces V with U , a new value that extends the set of remembered
contracts on V . We then use the remembered contracts to optimize
the reductions for flat contract checking by adding a proof system,
written V & C, when a value V definitely satisfies the contract C.
We provide the full details of the this proof system in section 5.5;
for the moment, the key property is that V/C & C holds. Similarly,
V $& C indicates that V definitely does not satisfy C, and V &∼ C
indicates that neither of these relations holds.

5.3 Reduction with abstract values
Having created abstract values via reference to opaque modules,
we must determine how they behave in computation. Fortunately,
in many cases our use of δ in the definition of reduction accom-
plishes this automatically. For example, if δ(false?, V̂ ) ( #t,
then (if V̂ E F ) .−→c F—no additional rules are required.

Function application, however, is not interpreted by δ. We there-
fore endow abstract functions, i.e. abstract values that answer #t to
proc?, with reductions that describe their behavior when applied.

When an abstract value is applied as function (V̂ U), the ar-
gument U crosses into an unknown component. It may be treated
arbitrary, so long as the component lives up to any commitments
its made on the domain of its inputs. So for example, applying the
function V̂ = •/{+cons?,→+nat?,}, V̂ may treat its input U
arbitrary, so long as it always treats it as a pair.

There are three possibilities that may occur in when applying
an abstract function: (1) the abstract function may produce a result
satisfying the specification of the functions output, (2) the function

may make use of its argument according to the specification of the
functions input, but if the input contains functions, this potentially
uncovers blame, or (3) the function errors internally or diverges.
The third case we ignore, since we do not attempt to predict the
behavior of components whose implementations we do not have.

We handle the other two possibilities by non-deterministically
considering both. In the case of (1), we simply produce an abstract
value that remembers all range contracts of the function. We handle
(2) by first placing the argument in a demonic context, then return-
ing the same value as in case (1). The demonic context is a universal
context that will produce blame if it there exists a context that pro-
duces blame originating from the value. If the universal demonic
context cannot produce blame, only the successful range value is
produced.
Applying abstract values E ĉ F

(•/C U) ĉ •/{[V/x]D | C→x.D ∈ C} if δ(proc?, •/C) ( #t

(V̂ U) ĉ (DEMONIC U) if δ(proc?, V̂ ) ( #t

DEMONIC = (λyx.AMB({(y (x •)), (y (car x)), (y (cdr x))}))

AMB({E}) = E
AMB({E} ·∪ E) = (if • E F ) where F = AMB(E)

The demonic context is implemented as a recursive function that
makes a non-deterministic choice as to how to treat its argument—
it either applies the argument to the least-specific value, •, or selects
one component of it, and then recurs on the result of its choice.
This subjects the input value to all possible behavior that a context
might have. Note that the demonic context might itself be blamed;
we implicitly label the expressions in the demonic context with a
distinguished label and disregard these spurious errors in the proof
of soundness. We use the AMB metafunction to implement the non-
determinism of demonic; AMB uses an if test of an opaque value,
which reduces to both branches.

5.4 Improving precision via non-determinism
Since our reduction rules, and in particular the δ relation, make use
of the remembered contracts on values, making these contracts as
specific as possible improves precision of the results.
Improving precision via non-determinism E ĉ F

•/C ·∪ {C1 ∨ C2} ĉ •/C ∪ {Ci} i ∈ {1, 2}
•/C ·∪ {µx.C} ĉ •/C ∪ {[µx.C/x]C}

These two rules increase the specificity of abstract values. The
first splits abstract values known to satisfy a disjunctive contract.
For example, •/{+nat?,∨ +bool?,} ĉ •/+nat?, and •/+bool?,.
This reifies the non-determinism of the value into non-determinism
in the reduction relation, and makes subsequent uses of δ more
precise on the two produced values. Similarly, we unfold recursive
contracts in abstract values; this exposes further disjunctions to
split, as with a contract for lists.

5.5 Base operations on abstract values
When applying base operations to abstract values, the results are
potentially complex. For example, (add1•) might produce any nat-
ural number, or it might go wrong, depending on what value • rep-
resents. We represent this in the abstract version of δ, written δ̂,
with a combination of non-determinism, where δ̂ relates an oper-
ation and its inputs to multiple answers, as well as abstract values
as results, to handle the arbitrary natural numbers or booleans that
might be produced.

The definition of δ̂ relies on a proof system relating predicates
and values, discussed below. Here, V & o? means that V is known
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Basic reductions 〈E, ρ,κ,σ〉 #−→ 〈F, $, ι, ς〉

〈(E F )!, ρ,κ,σ〉 #−→ 〈E, ρ, ar!(F, ρ, k),σ[k #→ κ]〉
〈(if E F1 F2), ρ,κ,σ〉 #−→ 〈E, ρ, if(F1, E2, ρ, k),σ[k #→ κ]〉
〈(o E)!, ρ,κ,σ〉 #−→ 〈E, ρ, op!(o, k),σ[k #→ κ]〉
〈(o E F )!, ρ,κ,σ〉 #−→ 〈E, ρ, opl!(o, F, ρ, k),σ[k #→ κ]〉
〈x, ρ,κ,σ〉 #−→ 〈V, $,κ,σ〉 if (V, $) ∈ σ(ρ(x))
〈V, ρ, ar!(E, $, k),σ〉 #−→ 〈E, $, fn!(V, ρ, k),σ[k #→ κ]〉
〈V, ρ, fn!((λyx.E), $, k),σ〉 #−→ 〈E, $[x #→ a, y #→ b],κ,σ[a #→ (V, ρ), b #→ ((λyx.E), $)]〉
〈V, ρ, fn!(U, $, k),σ〉 #−→ 〈blame!Λ, ∅,mt, ∅〉 if δ(proc?, U) ( #f
〈V, ρ, if(E,F, $, k),σ〉 #−→ 〈E, $,κ,σ〉 if δ(false?, V ) ( #f
〈V, ρ, if(E,F, $, k),σ〉 #−→ 〈F, $,κ,σ〉 if δ(false?, V ) ( #t
〈V, ρ, op!(o, a),σ〉 #−→ 〈A, ∅,κ,σ〉 if δ(o!, V ) ( A
〈((U, $), (V, ρ)), ∅, op(car, a),σ〉 #−→ 〈U, $,κ,σ〉
〈((U, $), (V, ρ)), ∅, op(cdr, a),σ〉 #−→ 〈V, ρ,κ,σ〉
〈V, ρ, opl!(o,E, $, k),σ〉 #−→ 〈E, $, opr!(o, V, ρ, k),σ〉
〈V, ρ, opr!(cons, U, $, a),σ〉 #−→ 〈((U, $), (V, ρ)), ∅,κ,σ〉
〈V, ρ, opr!(o, U, $, a),σ〉 #−→ 〈A, ∅,κ,σ〉
〈blame!!′ , ρ,κ,σ〉 #−→ 〈blame!!′ , ∅,mt, ∅〉

Module references

〈ff, ρ,κ,σ〉 #−→ 〈V, ∅,κ,σ〉 if (ff, V ) ∈ ∆̂(M)
〈fg, ρ,κ,σ〉 #−→ 〈V, ∅, chkf,gh (C, ∅, k),σ[k #→ κ]〉 if (ff, (C⇐f,g

h V )) ∈ ∆̂(M)

Contract checking

〈(C⇐f,g
h E), ρ,κ,σ〉 #−→ 〈E, ρ, chkf,gh (C, ρ, k),σ[k #→ κ]〉

〈V, ρ, chkf,gh (C, $, k),σ〉 #−→ 〈V, ρ, fn(U, $, k′),σ[k′ #→ if(V/{C}, blamefg , ρ, k)]〉
where C is flat and U = FC(C, V )

〈V, ρ, fn!(((C !!"x.D)⇐f,g
h a), $, k),σ〉 #−→ 〈V, ρ, chkg,fh (C, $, k′),σ[k′ #→ fn!(U, $′, k′′),

k′′ #→ chkf,gh (D, $[x #→ b], k),
b #→ (V, ρ)]〉

where (U, $′) ∈ σ(a)
〈V, ρ, chkf,gh (C→x.D, $, k),σ〉 #−→ 〈((C !!"x.D)⇐f,g

h a), $, ι,σ[a #→ (V, ρ)]〉 if δ(proc?, V ) ( #t

〈V, ρ, chkf,gh (C→x.D, $, k),σ〉 #−→ 〈blamefh, ∅,mt, ∅〉 if δ(proc?, V ) ( #f

〈V, ρ, chkf,gh (C ∧D, $, k),σ〉 #−→ 〈V, ρ, chkf,gh (C, $, i),σ[i #→ chkf,gh (D, $, k)]〉
〈V, ρ, chkf,gh (C ∨D, $, k),σ〉 #−→ 〈V, ρ, ar(U, $, i),σ[i #→ chk-orf,gh (V, ρ, C ∨D, $, k)]〉

where U = FC(C)
〈V, ρ, chk-orf,gh (U, $, C ∨D, ρ′, k),σ〉 #−→ 〈U/{C}, $,κ,σ〉 if δ(false?, V ) ( #f

〈V, ρ, chk-orf,gh (U, $, C ∨D, ρ′, k),σ〉 #−→ 〈U, $, chkf,gh (D, ρ′, k),σ〉 if δ(false?, V ) ( #t

Abstract values

〈V, ρ, fn!(•/C, $, k),σ〉 #−→ 〈E, ρ, begin(U, $, k),σ〉 if δ(proc?, •/C) ( #t
where E = AMB({#t, DEMONIC(

∧
DOM(C), V )}) and U = •/RNG(C)

〈V, ρ, begin(E, $, k),σ〉 #−→ 〈E, $,κ,σ〉
〈•/C ·∪ {C1 ∨ C2}, ρ,κ,σ〉 #−→ 〈•/C ∪ {Ci}, ρ,κ,σ〉
〈•/C ·∪ {µx.C}, ρ,κ,σ〉 #−→ 〈•/C ·∪ {[µx.C/x]C}, ρ,κ,σ〉

Higher-order pair contract checking

〈V, ρ, chkf,gh (〈C,D〉, $, k),σ〉 #−→ 〈blamefh, ∅,mt, ∅〉 if δ(cons?, V ) ( #f

〈V, ρ, chkf,gh (〈C,D〉, $, k),σ〉 #−→ 〈U, ρ, op(car, i),σ[i #→ chkf,gh (C, $, k′), k′ #→ chk-consf,gh (D, $, U, ρ, k)]〉
if δ(cons?, V ) ( #t, where U = V/{-cons?.}

〈V, ρ, chk-consf,gh (C, $, U, ρ′, k),σ〉 #−→ 〈U, ρ′, op(cdr, i),σ[i #→ chkf,gh (C, $, k′), k′ #→ opr(cons, V, ρ, k)]〉
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#lang s-exp "verified.rkt"

(define-contract list/c
  (rec/c X (or/c empty? (cons/c nat? X))))

(module sorted-ne? (any? -> bool?) •)
(module sorted? (list/c -> bool?) 
  (λ (l) 
    (if (empty? l) 
        #t 
        (sorted-ne? l))))

(module insert (nat? (and/c list/c sorted?)
                  -> (and/c list/c sorted?))
  •)

(module insertion-sort
  (list/c (and/c list/c sorted?) -> (and/c list/c sorted?))
  (λ (l acc)
    (if (empty? l) 
        acc
        (insertion-sort (rest l)
                        (insert (first l) acc)))))

(module sort.0
  (list/c -> (and/c list/c sorted?))
  (λ (l)
    (insertion-sort l empty)))

(module foldl 
  any?
  (λ (f b ls)
    (if (empty? ls) 
        b
        (foldl f (f (first ls) b) (rest ls)))))

(module foldr
  any?
  (λ (f b ls)
    (if (empty? ls)
        b
        (f (first ls) (foldr f b (rest ls))))))

(module sort.1
  (list/c -> (and/c list/c sorted?))
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#lang s-exp "verified.rkt"

(define-contract list/c
  (rec/c X (or/c empty? (cons/c nat? X))))

(define/contract sorted? (list/c -> bool?) 
  (λ (l) 
    (if (empty? l) 
        #t 
        (sorted-ne? l))))

(define/contract sorted? (any? -> bool?) •)

(define/contract insert
  (nat? (and/c list/c sorted?) -> (and/c list/c sorted?))
  •)

(define/contract insertion-sort
  (list/c (and/c list/c sorted?) -> (and/c list/c sorted?))
  (λ (l acc)
    (if (empty? l) 
        acc
        (insertion-sort (rest l)
                        (insert (first l) acc)))))

(define/contract sort.0
  (list/c -> (and/c list/c sorted?))
  (λ (l)
    (insertion-sort l empty)))

(define/contract foldl 
  any?
  (λ (f b ls)
    (if (empty? ls) 
        b
        (foldl f (f (first ls) b) (rest ls)))))

(define/contract foldr
  any?
  (λ (f b ls)
    (if (empty? ls)
        b
        (f (first ls) (foldr f b (rest ls))))))
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#lang s-exp "verified.rkt"

(define-contract list/c
  (rec/c X (or/c empty? (cons/c nat? X))))

(define/contract sorted? (list/c -> bool?) 
  (λ (l) 
    (if (empty? l) 
        #t 
        (sorted-ne? l))))

(define/contract sorted? (any? -> bool?) •)

(define/contract insert
  (nat? (and/c list/c sorted?) -> (and/c list/c sorted?))
  •)

(define/contract insertion-sort
  (list/c (and/c list/c sorted?) -> (and/c list/c sorted?))
  (λ (l acc)
    (if (empty? l) 
        acc
        (insertion-sort (rest l)
                        (insert (first l) acc)))))

(define/contract sort.0
  (list/c -> (and/c list/c sorted?))
  (λ (l)
    (insertion-sort l empty)))

(define/contract foldl 
  any?
  (λ (f b ls)
    (if (empty? ls) 
        b
        (foldl f (f (first ls) b) (rest ls)))))

(define/contract foldr
  any?
  (λ (f b ls)
    (if (empty? ls)
        b
        (f (first ls) (foldr f b (rest ls))))))
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#lang s-exp "verified.rkt"

(define-contract list/c
  (rec/c X (or/c empty? (cons/c nat? X))))

(define/contract sorted? (list/c -> bool?) 
  (λ (l) 
    (if (empty? l) 
        #t 
        (sorted-ne? l))))

(define/contract sorted? (any? -> bool?) •)

(define/contract insert
  (nat? (and/c list/c sorted?) -> (and/c list/c sorted?))
  •)

(define/contract insertion-sort
  (list/c (and/c list/c sorted?) -> (and/c list/c sorted?))
  (λ (l acc)
    (if (empty? l) 
        acc
        (insertion-sort (rest l)
                        (insert (first l) acc)))))

(define/contract sort.0
  (list/c -> (and/c list/c sorted?))
  (λ (l)
    (insertion-sort l empty)))

(define/contract l list/c •)

(define/contract foldl 
  any?
  (λ (f b ls)
    (if (empty? ls) 
        b
        (foldl f (f (first ls) b) (rest ls)))))

(define/contract foldr
  any?
  (λ (f b ls)
    (if (empty? ls)
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#lang s-exp "verified.rkt"

(define-contract list/c
  (rec/c X (or/c empty? (cons/c nat? X))))

(define/contract sorted? (list/c -> bool?) 
  (λ (l) 
    (if (empty? l) 
        #t 
        (sorted-ne? l))))

(define/contract sorted? (any? -> bool?) •)

(define/contract insert
  (nat? (and/c list/c sorted?) -> (and/c list/c sorted?))
  •)

(define/contract insertion-sort
  (list/c (and/c list/c sorted?) -> (and/c list/c sorted?))
  (λ (l acc)
    (if (empty? l) 
        acc
        (insertion-sort (rest l)
                        (insert (first l) acc)))))

(define/contract sort.0
  (list/c -> (and/c list/c sorted?))
  (λ (l)
    (insertion-sort l empty)))

(define/contract l list/c •)

(define/contract foldl 
  any?
  (λ (f b ls)
    (if (empty? ls) 
        b
        (foldl f (f (first ls) b) (rest ls)))))

(define/contract foldr
  any?
  (λ (f b ls)
    (if (empty? ls)

#lang racket
'(● sorted? list/c)
'empty

Welcome to DrRacket, version 5.1.1.6--2011-02-02(-/f) [3m].
Language: s-exp "verified.rkt" [custom]; memory limit: 1024 MB.
0
> (sort.0 l)
'(●
  (pred sorted?)
  (cons/c
   (pred nat? insert)
   (rec/c X (or/c (pred empty? insert) (cons/c (pred nat? insert) X))))
  (cons/c
   (pred nat? insertion-sort)
   (rec/c
    X
    (or/c (pred empty? insertion-sort) (cons/c (pred nat? insertion-sort) 
X))))
  (cons/c
   (pred nat? sort.0)
   (rec/c X (or/c (pred empty? sort.0) (cons/c (pred nat? sort.0) X)))))
'(●
  (pred sorted?)
  (cons/c
   (pred nat? insert)
   (rec/c X (or/c (pred empty? insert) (cons/c (pred nat? insert) X))))
  (cons/c
   (pred nat? insertion-sort)
   (rec/c
    X
    (or/c (pred empty? insertion-sort) (cons/c (pred nat? insertion-sort) 
X)))))
'(●
  (pred sorted?)
  (cons/c
   (pred nat? insert)
   (rec/c X (or/c (pred empty? insert) (cons/c (pred nat? insert) X))))
  (cons/c
   (pred nat? sort.0)
   (rec/c X (or/c (pred empty? sort.0) (cons/c (pred nat? sort.0) X)))))
'(●
  (pred sorted?)
  (cons/c
   (pred nat? insert)
   (rec/c X (or/c (pred empty? insert) (cons/c (pred nat? insert) X)))))
'(● (pred sorted?) (pred empty?))
'empty
> 
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#lang s-exp "verified.rkt"

(define-contract list/c
  (rec/c X (or/c empty? (cons/c nat? X))))

(define/contract sorted? (list/c -> bool?) 
  (λ (l) 
    (if (empty? l) 
        #t 
        (sorted-ne? l))))

(define/contract sorted? (any? -> bool?) •)

(define/contract insert
  (nat? (and/c list/c sorted?) -> (and/c list/c sorted?))
  •)

(define/contract insertion-sort
  (list/c (and/c list/c sorted?) -> (and/c list/c sorted?))
  (λ (l acc)
    (if (empty? l) 
        acc
        (insertion-sort (rest l)
                        (insert (first l) acc)))))

(define/contract sort.0
  (list/c -> (and/c list/c sorted?))
  (λ (l)
    (insertion-sort l empty)))

(define/contract foldl 
  any?
  (λ (f b ls)
    (if (empty? ls) 
        b
        (foldl f (f (first ls) b) (rest ls)))))

(define/contract foldr
  any?
  (λ (f b ls)
    (if (empty? ls)
        b
        (f (first ls) (foldr f b (rest ls))))))

(define/contract sort.1
  (list/c -> (and/c list/c sorted?))
  (λ (l)
    (foldl insert empty l)))

(define/contract l list/c •)
;(insertion-sort l empty)
(sort.0 l)

;(fl insert empty l)
;(sort l)
;(fl (λ (x y) (cons x y)) empty (cons 1 (cons 2 empty)))

Welcome to DrRacket, version 5.1.1.6--2011-02-02(-/f) [3m].
Language: racket [custom]; memory limit: 1024 MB.
'(● sorted? list/c)
'empty
> (sort.1 l)#lang racket
'(● sorted? list/c)
'empty
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(define/contract foldr
  any?
  (λ (f b ls)
    (if (empty? ls)
        b
        (f (first ls) (foldr f b (rest ls))))))

(define/contract sort.2
  (list/c -> (and/c list/c sorted?))
  (λ (l)
    (foldr insert empty l)))

(define/contract l list/c •)
;(insertion-sort l empty)
;(sort.0 l)

0

;(fl insert empty l)
;(sort l)
;(fl (λ (x y) (cons x y)) empty (cons 1 (cons 2 empty)))

#lang racket
'(● sorted? list/c)
'empty

Welcome to DrRacket, version 5.1.1.6--2011-02-02(-/f) [3m].
Language: racket [custom]; memory limit: 1024 MB.
'(● sorted? list/c)
'empty
> (sort.2 l)
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Analysis

Semantics

Think hard about 
modularity

The message:

thank you


