
Algorithmic

Trace Effect Analysis

A Thesis Presented

by

David Van Horn

to

The Faculty of the Graduate College

of

The University of Vermont

In Partial Fullfillment of the Requirements
for the Degree of Master of Science
Specializing in Computer Science

May, 2006

Accepted by the Faculty of the Graduate College, The University of Vermont, in partial fulfillment
of the requirements for the degree of Master of Science, specializing in Computer Science.

Thesis Examination Committee:

Advisor
Christian Skalka, Ph.D.

Abdullah Arslan, Ph.D.

Craig Damon, Ph.D.

Chairperson
Jun Yu, Ph.D.

Vice President for Research and
Frances E. Carr, Ph.D. Dean of the Graduate College

Date: March 29, 2006

Abstract

Trace effect analysis empowers programmers to make assertions on the temporal sequence of
atomic program events having occurred at any point in the computation of a program. A
polymorphic type and effect inference system automatically extracts an abstract interpretation
conservatively approximating the events and assertions that will arise at run-time. Such an in-
terpretation can then be model-checked to obtain a static verification of these temporal program
logics for higher-order programs of a λ-calculus extended with notions of atomic events, temporal
assertions, and computational traces.

The purpose of this thesis is to demonstrate that trace effect analysis is implementable and
to prove the implementation sound with respect to its logical specification. This thesis describes
both the logical and algorithmic type and effect system and applications of the analysis to the
static enforcement of security mechanisms. The systems use an effectual weakening rule, and
enjoy a unified representation of types resulting in concise specifications of programs. A type
inference algorithm is presented and an algorithmic soundness result is established with respect
to its logical counterpart. An implementations of the inference algorithm is provided. Finally,
extensions to the system are defined, discussed, and implemented.

for Jessie

ii

Acknowledgements

Three professors and their respective graduate seminars were vital to the development of this

thesis. I would like to acknowledge first and foremost, Professor Skalka’s seminar Types in

Programming Languages, held in Spring 2004. The course introduced me to constraint type

systems and their inference algorithms, as well as a number of type-theoretic concepts, which

have shaped my development of algorithmic trace effect analysis. Professor Damon’s seminar

Tractible Software Analysis in Spring 2005 was also fundamental. It was in this course that I

studied abstract interpretation and model checking, which have directly impacted this work. It

was also in this course that I was able to present early results from this thesis and the feedback

has been invaluable. Finally, Professor Arslan’s Spring 2005 Advanced Topics in Theory of

Computation allowed me to study complexity results for type reconstruction problems in the

λ-calculus and helped develop my theorem-proving skills. I am grateful to these three teachers

for accepting my invitation to sit on this thesis review committee.

I would also like to acknowledge the University of Vermont Computer Security Lab, which gave

me the opportunity to study programming language-based approaches to security and present

recent research in the field and the Computer Science Student Association, which allowed me to

invite a number of prominent researchers to visit the university.

I am deeply indebted to Professor Skalka, my adviser, for creating such a rich scholarly

environment in which to work. I thank him for garnering the financial support that made my

graduate studies possible and I thank him for the intellectual support that made my studies

compelling and fruitful.

None of this work could have been done without the support of my family and dearest friends.

They have kept me from total madness.

iii

Table of Contents

Acknowledgements . iii

List of Figures . vi

1 Introduction . 1
1.1 Trace Effect Analysis . 1
1.2 Motivations . 4
1.3 Model Checking . 6
1.4 Abstract Interpretation . 7
1.5 Approach . 9

1.5.1 Run-time traces . 10
1.5.2 Static approximation of trace effects . 11
1.5.3 Liveness and Safety, Local and Global . 13
1.5.4 Subeffecting disciplines . 13
1.5.5 The algorithm . 14

1.6 Outline . 16

2 Core Language . 17
2.1 Syntax . 17
2.2 Semantics . 19

3 Weaken Analysis . 21
3.1 Logical System . 21

3.1.1 Types and trace effects . 22
3.1.2 Trace effect interpretation . 24
3.1.3 Logical judgments . 25
3.1.4 Weakening and type containment . 27
3.1.5 Expressiveness of weakening . 30
3.1.6 Expressiveness of polymorphism . 31
3.1.7 Validity of trace effects and Type Safety 33

3.2 Algorithmic System . 34
3.2.1 Algorithmic judgments . 35
3.2.2 Relating logical and algorithmic judgments 38
3.2.3 Soundness . 47

3.3 Digressions . 64
3.3.1 The MGS algorithm . 64
3.3.2 Simplification . 67
3.3.3 Direct inference rules . 69

4 Implementation . 72
4.1 Overview . 72
4.2 Description of source code . 73

5 Conclusion . 75

iv

References . 76

A Source Code . 80
A.1 traceast.ml . 80
A.2 tracetype.ml . 80
A.3 traceinfer.ml . 82
A.4 tracetransform.ml . 92

v

List of Figures

1 Language syntax . 18
2 Language semantics . 18
3 Type syntax . 22
4 Logical weakening typing rules . 25
5 Type and effect constraints . 34
6 Algorithmic type inference rules . 35
7 Constraint set unification algorithm . 48
8 Most general solution algorithm . 48
9 Non-Most general solution algorithm . 64
10 Effect simplification rewrite rules . 68

vi

1 INTRODUCTION 1

1 Introduction

Many program correctness properties are expressible as temporal properties of program event

traces—the ordered sequence of steps taken during computation—such as the property that

files are opened before being read, memory allocation occurs before its use, and access control

properties such as privilege activation occurs before privileged action. Such well-formedness

properties of traces are expressible and enforceable as program monitors or checks in program

logics that occur at run-time (Schneider 2000). Checking these assertions incurs a run-time cost,

and ill-formed computations will be caught only once the program executes. However, static

program analyses, in the form of a programming language type system, allow for the conservative

verification of these properties without running the program. Such an analysis was proposed in

(Skalka and Smith 2004a), known as trace effect analysis, which uses a type and effect program

abstraction, coupled with model-checking to enforce temporal properties statically.

This thesis demonstrates the analysis can be fully automated in the form of a type inference

algorithm and that this algorithm soundly represents judgements in the analysis. Well-founded

automation is crucial for writing robust and secure programs and our results contribute to the

techniques of constructing reliable software.

1.1 Trace Effect Analysis

Trace effect analysis is a static programming language analysis for ensuring the correct behavior of

software with respect to temporal properties of programs. These temporal properties express the

well-formedness of program events, such as when files are opened or when resources are obtained.

By enforcing program event order specifications, it can be guaranteed, for example, that files

are opened before being read, or that privilege activation occurs before privileged resources are

1 INTRODUCTION 2

acquired. Such well-formedness properties can describe certain security mechanisms and can

be used to ensure handshake protocols are respected or to discover logical flaws in a program.

As an example of the kind of properties that can be enforced under this analysis, consider the

handshake protocols of secure socket layer (SSL). For a program sending and receiving data over

an SSL socket, e.g. a web browser that supports https, the relevant events are opening and

closing of sockets, and reading and writing of data packets. An example event trace produced

by a program execution could be:

ssl_open("snork.cs.jhu.edu",socket_1);
ssl_hs_begin(socket_1);
ssl_hs_success(socket_1);
ssl_put(socket_1);
ssl_get(socket_1);
ssl_open("moo.cs.uvm.edu",socket_2);
ssl_hs_begin(socket_2);
ssl_put(socket_2);
ssl_close(socket_1);
ssl_close(socket_2)

According to the SSL protocol, for a socket to be read from or written to, the socket must

first be opened, then a handshake must be initiated and confirmed successful. Only then can

data be transfered over the socket. The above trace is illegal; data is put on socket 2 before

notification has been received that handshake was successful on that socket.

By virtue of being a static analysis, reasoning is performed at compile time, i.e. it takes place

before program execution occurs, leading to the early detection of errors. Another consequence

of such static reasoning is any program deemed correct by the analysis will never violate its

specification at run time. Guarantees about program behavior hold in all possible circumstances

of the program execution and such guarantees can be known a priori.

1 INTRODUCTION 3

Common security mechanisms such as stack inspection which are found in the Java program-

ming language and .NET framework are enforced via run time inspection of the sequence of events

having occurred at the current point in time. However, these mechanisms are formalizable within

trace effect analysis and thus can be enforced at compile time, implying all run time inspections

are superfluous and can be eliminated. Any run time overhead associated with enforcing the

security mechanism can safely be eliminated.

The analysis consists of a program logic (a system of axioms and deduction rules) such that

if a program has a derivable logical judgment, the program meets its temporal specification.

Moreover, this analysis can be automated by an inference algorithm automatically constructing

such a proof for a program. This thesis proves the algorithm sound, which is to say any judgment

found by the algorithm is a valid logical judgment and represents a proof that the program

meets its specification. This proof discovery procedure has been implemented for a foundational

programming language with notions of atomic events, temporal assertions, and computational

traces. The programming language empowers programmers to make assertions on the temporal

sequence of atomic program events having occurred at any point in the computation of a program.

These assertions can be verified in a fully automated and sound manner.

This thesis provides algorithms realizing this analysis, given in the form of a type inference

system, which is used to extract a model of the program’s temporal behavior, and assertions

over that behavior. These program logics for higher-order programs can be verified using model

checking techniques and thus run-time checks are verified a priori and can safely be removed,

eliminating all run-time penalties and facilitating the early detection of errors. Such a mechanical

verification increases the reliability of programs, and contributes to sound approaches to the

construction of reliable software.

1 INTRODUCTION 4

1.2 Motivations

The primary motivation for this work is the need for approaches to construct reliable software.

There is an increasing reliance by society upon a computing infrastructure, and yet software

lacks the most basic assurances of its reliability. Since programming languages are the means

of articulating computational artifacts, we employ the analytic method to gain assurance in the

behavior of programs. The method allows us to reason about all possible executions of a program,

and to prove that the program meets it’s specification using a mechanical, automated process that

is well-founded mathematically, thus obtaining trustworthy software. The automatic mechanism

and establishment of its well-foundedness are a primary contribution of this thesis.

The need for soundly constructed and trustworthy software is apparent. The report “In-

formation Technology Research: Investing in Our Future” (President’s Information Technology

Advisory Committee 1999) makes the case quite clear. The report states, “technologies to build

reliable and secure software are inadequate,” and goes on to state:

Large software systems are beyond our capability to describe precisely. Consequently,
there is little automation of their construction, little re-use of previously developed
components, virtually no ability to perform accurate engineering analyses, and no
way to know the extent to which a large software system has been tested.

Having meaningful and standardized behavioral specifications would make it feasible
to determine the properties of a software system and enable more thorough and less
costly testing. Unfortunately such specifications are rarely used. Even less frequently
is there a correspondence between a specification and the software itself. Often soft-
ware behavior and flaws are observable only when the program is run, and even then
may be invisible except under certain unusual conditions. Programs written in such
circumstances frustrate attempts to create robust systems and are inherently fragile.

[I]t has become clear that the processes of developing, testing, and maintaining soft-
ware must change. We need scientifically sound approaches to software development
that will enable meaningful and practical testing for consistency of specifications and
implementations.

There have been significant advancements in “scientifically sound approaches to software

1 INTRODUCTION 5

development” with respect to reliability and security, but there is much left to do, including

the widespread adoption of such disciplines into everyday software development. Part of the

problem is that sound approaches to software development in general have not yet received their

due credit and adoption into mainstream development practices and programming languages.

For example, language-based security is predicated on language safety, i.e programs behave only

in a well-defined and consistent manner. Vulnerabilities caused in part by buffer overflows are

a ubiquitous subject of alerts issued by CERT (United States Computer Emergency Readiness

Team 2005), yet this problem has been solved by safe languages for decades.

Safety properties “assert that the system always stays within some allowed region” (Kupfer-

man and Vardi 2001). A “safe language” typically refers to a language in which it is impossible

to use data in an ill-defined way, and is therefore type and memory safe. Some languages, such

as ML (Milner, Tofte, Harper, and MacQueen 1997), establish this safety through a typing dis-

cipline. That is, programs in ML can be statically analyzed to infer a type and a type safety

result ensures that no well-typed program reaches an ill-formed state, and thus precludes many

vulnerabilities for exploitation such as buffer overflow. The theory of λtrace shares this theoretical

technique of formulating a syntactic type safety result as done in ML (Wright and Felleisen 1994).

However, compared to ML, type safety in this setting is a much richer notion; safety implies the

satisfaction of all checks in a program and the typing discipline is extended to enforce this richer

notion of safety.

The next two sections discuss and relate alternative approaches to reliable software con-

struction. For these approaches, the strengths and weaknesses are contrasted and we describe

how trace effect analysis synthesizes the best aspects and overcomes the weaknesses of these

approaches.

1 INTRODUCTION 6

1.3 Model Checking

Model checking has been put forth as an alternative to deductive methods in the verification

of software correctness, advocated on the grounds that automation of verification effectively

attenuates the high level of human guidance required of deductive methods. However, traditional

approaches to model checking require the formulation and extraction of a model of a program that

sufficiently captures the behavior of the program with respect to some domain of behavior that

is of interest. Although model checking can be fully automated, model extraction traditionally

is not. Model extraction requires significant human guidance, which is precisely what model

checking sought to avoid—worse, it is highly error-prone and, unlike deductive methods that can

be mechanically checked after construction, the extraction of an incorrect model can result in

unsound security judgments. Thus the need for sound automatic extraction techniques is well

documented in the model checking community (Holzmann and Smith 2001; Holzmann 2003).

The difficulty of correct model extraction arises from the semantic gap between real-world

programming languages, such as Java, and the temporal logics employed by various verification

tools. Thus, it is natural to turn to language based approaches to bridge this gap, as advocated

above.

Beyond the model extraction problem, model checking can often be infeasible when estab-

lishing safety properties of programs that should apply to all possible executions of a program.

As noted in (Kupferman and Vardi 2001):

A computation that violates a general linear property reaches a bad cycle, which
witnesses the violation of the property. Accordingly, current methods and tools for
model checking of linear properties are based on a search for bad cycles. A sym-
bolic implementation of such a search involves the calculation of a nested fixed-point
expression over the system’s state space, and is often infeasible.

1 INTRODUCTION 7

Our approach is to use type inference to provide a means for the accurate and sound automatic

extraction of a model from a program. Type safety results give “for all” guarantees about

programs, and without a costly search of the system’s state space. Type-based techniques such

as subtyping/subeffecting and parametric polymorphism are applied to improve the accuracy of

the extracted model, and thus combat the state explosion problem.

1.4 Abstract Interpretation

Abstract interpretation (Cousot and Cousot 1977; Jones and Nielson 1995; Nielson, Nielson,

and Hankin 1999) is a theory of discrete approximation of the semantics of programming or

specification languages. The fundamental idea of abstract interpretation is that programs are

interpreted, not using their standard operational semantics, but rather over an abstract domain.

As the domain becomes more abstract, the analysis becomes more tractable and less complete,

but properties of the abstraction will always hold in the concrete semantics.

The basic idea of static program analysis is to use the computer to verify that a piece of

software meets its specification—without actually executing the program. To do this, it is nec-

essary to state a formal computational model that describes the operations executed during a

computer’s running of a program, including the internal effects and interactions with the en-

vironment in all possible conditions. The semantics of a program is the computational model

describing the effective executions of the program in all possible environments and the specifica-

tion is a computational model describing the desirable execution of the program in all possible

environments. Verification, then, is a proof demonstrating that the semantics of the program is

“contained” by the semantics of the specification.

Unfortunately, the static analysis of programs is hard, and for any nontrivial specification,

1 INTRODUCTION 8

verification is intractable or undecidable. By considering only an approximation of possible

run-time behaviors, it may be possible to regain tractability by compromising on precision—

considering only a sound, finite, and approximate calculation of the programs’ executions.

In abstract interpretation, two worlds are postulated, the concrete, and the abstract, along

with mappings from sets of concrete values to the abstract value best describing the set, and

from abstract values to sets of concrete values.

The relation between these two worlds is typically made precise by demonstrating the concrete

semantics can be rebuilt from an abstraction of the program semantics,1 and this rebuilt semantics

should contain, at least, the original program semantics.2 Thus properties that hold for the

abstracted semantics, hold for the concrete semantics as well.

In this thesis, the concrete semantics of programs that are of interest are the traces of programs

and the computational model is formulated as a one-step relation on machine configurations. The

type and effect of a program are approximations of computation: the type approximates the set

of values the program evaluates to should the program halt, and the effect approximates the set of

possible traces generated at run-time. As such, this approximation is an abstract interpretation:

it is a high-level abstraction of the control flow of a program (Schmidt and Steffen 1998). The type

safety result shows that the static semantics of programs using trace effect analysis conservatively

approximates that of the run-time semantics.

Much of the work on abstract interpretation has been done in the setting of imperative

programs, first-order languages (that is, languages in which functions are not first-class values—

they cannot be stored in a data structure, passed to or returned from functions, and so on),

communicating sequential processes, parallel programs and logic programs.

1Known as a Galois connection (Melton, Schmidt, and Strecker 1986)
2Known as near commutativity.

1 INTRODUCTION 9

There has been some work in abstract interpretation in higher order settings, starting with

the work of Burn, Hankin, and Abramsky on strictness analysis (Burn, Hankin, and Abramsky

1986). Cousot and Cousot give an abstract interpretation of the simply typed, recursive λ

calculus using a denotational semantics approach (Cousot and Cousot 1994). The interpretation

generalizes strictness analysis, constant propagation, projection and PER-analysis. Shivers used

abstract interpretation to develop control flow analysis for higher order languages using a similar

denotational approach as Cousot and Cousot (Shivers 1991).

However, a small-step operational semantics approach, as employed in the paper, more natu-

rally exposes the intermediate states of an abstract machine, vital for effectual analysis such as

this. This approach has been taken by (Schmidt 1998b; Schmidt 1998a), however this was done

in the setting of flowchart (first-order) programs.

1.5 Approach

This section develops the high level overview of the system before the more technical chapters

that follow. This section introduces the type and effect approach, discusses the motivation behind

a subeffecting system, and describes the subeffecting discipline adopted in this thesis: weakening.

The section then includes a discussion of traditional type safety and how this concept is extended

to realize a verification of temporal specifications. Finally, this section describes how this system

improves upon and synthesizes the above approaches.

We take a language-based approach, integrating the necessary abstractions into a program-

ming language so that a programmer can articulate temporal properties as part of the program,

allowing the programmer to compose larger and more sophisticated abstractions using traditional

programming notions.

1 INTRODUCTION 10

Besides taking a language based approach, we take a foundational approach to studying event

traces in a higher order setting, i.e. the analysis is developed in a λ-calculus setting, a primordial

programming language representing the essence of higher order languages, such as functional

and object-oriented programming languages. The foundational approach is taken so that the

development of the analysis is feasible—the fundamental issues can be focused upon—and in

order to study the analysis in the setting of the computational core underlying all programming

languages. Further, the analysis of higher order programs has implications for both functional

and object oriented languages.

1.5.1 Run-time traces

Our fundamental abstraction is an event trace, and our language is endowed with notions of

events, and checks. An event is an abstract, atomic, program action, parameterized by a static

constant. They are inserted by the programmer or compiler and serve to record some program

action, such as opening a file, an access control privilege activation, or entry to or exit from a

critical region. Traces are ordered sequences of events; whenever an event is encountered during

program execution, it is appended to the current trace, and thus traces record the sequence of

program events in temporal order. Since computations may be non-terminating, running for an

arbitrarily long period, traces may be arbitrarily long sequences of events. A check is a predicate,

expressed in a temporal logic, over arbitrarily long sequences of events. A check is also an event

in that it is recorded in the computational trace, allowing policies to be expressed that assert

properties about the order in which checks occur, too.

Our approach is to formulate a language model λtrace, based on a λ-calculus3 endowed with

3For a concise introduction and exposition of the lambda calculus, see (Hankin 2004). For an encyclopedic
treatment, refer to (Barendregt 1984).

1 INTRODUCTION 11

notions of atomic events and temporal assertions over events. The language is given a concrete,

operational semantics. Reduction operates over a tuple of an expression being reduced and a

trace accumulating the temporal order of events occurring throughout reduction. When a check

expression occurs during computation, the logical formula is verified with respect to the current

trace. The language remains abstract with respect to the syntax and semantics of checks, thus

the meaning of a formula must be given in terms of a meaning function that gives true when

the formula is satisfied. By remaining abstract, a family of languages and analyses are defined,

which are parameterized by this logic. Any decidable temporal logic can be used to instantiate

the system. In (Skalka and Smith 2004a), the logic is instantiated with a variant of the µ-calculus

(Kozen 1983) known as the linear time µ-calculus (Esparza 1994).

If a check is encountered and the formula is satisfied, the reduction continues, otherwise a

bad state has been reached and the computation is “stuck.” Reduction may be stuck in other

instances as well, such as when a non-function value is applied to an argument. Our goal in

designing a type discipline is to make it impossible to assign a type to any program that might

reach a stuck state during reduction. That is, the notion of stuck states is extended to include

failure of temporal assertions.

1.5.2 Static approximation of trace effects

Computational traces that will arise at run-time can be conservatively approximated through

a type and effect system, in which the traditional notion of a program’s type is extended to

take into account the traces it generates as the effect of the program. These effects approximate

run-time traces soundly, which is to say the run-time behavior of a program must be contained

within its static approximation. Thus verification of the checks in a program’s abstraction implies

1 INTRODUCTION 12

verification of the checks in the concrete program. The analysis is imprecise in that unrealizable

traces may be included in the program’s approximation, thus leading to “false alarms” where a

valid program is rejected by the analysis. However, it will never be the case that a program is

verified by the analysis, but fails at run-time.

A traditional type system abstracts a program into the set of values it possibly computes.

A type and effect system pairs this abstraction with a description of the set of all possible

effects it may cause during computation (Amtoft, Nielson, and Nielson 1999; Nielson and Nielson

1999). In the case of λtrace, the effect of a program is the set of all traces that could possibly

be generated at run-time. The types of programs are the same as before, but now include an

effectual description of the program behavior, which is not only useful for verification, but has

value for the programmer’s understanding.

The effectual description of the program then becomes the input to a model checker which

will perform verification. The trace effects are interpretted as a labelled transition system (LTL)

generating sets of traces. Although trace effects can generate infinite sets of traces, verification

is still possible (Burkart, Caucal, Moller, and Steffen 2001). “Every computation that violates a

safety property has a finite prefix along which the property is violated” (Kupferman and Vardi

2001).4 Thus verification can be performed on trace effects by considering the finite prefixes of

the traces they generate.

The type system for λtrace is then constructed in such a way that it enjoys type safety, whereby

well-typed programs do not get stuck, implying that all checks are assured to pass at run-time.

This result is proved in (Skalka and Smith 2004a).

4This is the definition of safety properties due to Lamport.

1 INTRODUCTION 13

1.5.3 Liveness and Safety, Local and Global

There are two kinds of program properties distinguished in the literature due to Lamport: that

of liveness and safety (Lamport 1977). Informally, a safety property states that “something bad

will never happen.” On the other hand a liveness property states that “something good will

eventually happen.” These notions were later formalized by Alpern and Schneider (Alpern and

Schneider 1984). Such properties can hold either globally, that is for the entire behavior of the

program, or locally, which is to say the property holds for some specific region of the programs

execution. Such local safety properties are exemplified by access control systems such as stack

inspection and history based security mechanisms (Wallach and Felten 1998; Abadi and Fournet

2003; Edjlali, Acharya, and Chaudhary 1998). It should be clear that an analysis for reasoning

about local properties subsumes a global analysis simply by taking the region of interest to be

the entire program. Thus, the policies focused upon in trace effect analysis are of local safety,

that is over the temporal well-formedness of traces up to the current point in the computation

for all possible executions of the program.

1.5.4 Subeffecting disciplines

With any effect analysis, there is always a need for a “subeffecting” mechanism for the sake of

expressivity (Amtoft, Nielson, and Nielson 1999, pages 20–21). Without a notion of subeffecting,

all computational paths must induce the exact same effects—a requirement that cripples expres-

sivity, and allows virtually no interesting programs to be written. For instance, without a notion

of weakening, two branches of an if expression will be required to induce the same effects. At first

glance, this may seem not unlike requiring that both branches have the same type, certainly a

reasonable requirement. However a type represents a set of values, thus requiring both branches

1 INTRODUCTION 14

of an if to have the same type is to say that both branches must compute values within the

same set. Imagine the stronger restriction of requiring both branches to compute the exact same

value. This would be unreasonable; why should one write an if when both branches compute

the same value? To require all branches of programs to compute identical values could hardly

be considered a program! But this is analogous to what would happen without a subeffecting

discipline. If all paths are required to have the exact same effect, then all possible executions

of the program would produce this same effect. Analysis giving “for all” guarantees in such a

setting would be of scant use—there is only one possible effect caused by running the program.

Thus the power of our analysis stems from the points of approximation, which is precisely the

purpose subeffecting serves.

The system described in this thesis relies on a subeffecting discipline of weakening. Given

an expression that has some trace effect, it can be “weakened” by adding arbitrary effects, so

long as the set of traces described by the original trace effect are contained within the new trace

effect. When two expressions are required for the sake of typability to have the same effect, such

as the branches of an if, it is then possible to weaken the effects into agreement by enlarging one

of them to obtain the other.

1.5.5 The algorithm

The weakening system is presented first as a set of logical deduction rules.5 A term has a type if

there exists a derivation giving that type for the term. These logical systems provide the concep-

tual framework for proving properties of the analysis, such as progress and preservation, however

since they are non-deterministic, they don’t provide a means of mechanically constructing proofs

5We refrain from calling these inference rules so as not to be confused with the algorithmic rules for type
inference.

1 INTRODUCTION 15

from a term.

To reconstruct a type from a program algorithmically, a set of inference rules are given that

form the basis of a type inference algorithm. By establishing the soundness of these algorithms

with respect to the logical systems, it follows that properties proven of the logical system hold

for the algorithms as well. In the case of the weakening analysis, we give a proof showing that a

logical judgment can be constructed from a given algorithmic judgment.

The inference rules define a syntax-directed, deterministic algorithm for deducing a set of

constraints on the type along with a set of constraints on the effect of a program. Such an

approach is known as constraint type inference (Eifrig, Smith, and Trifonov 1995), albeit extended

for the setting of type and effect inference. A program is well-typed if these constraints can be

satisfied. Constraints on trace effects are given by the containment relation. Constraints on types

are equality constraints, and can be solved with the well-known technique of unification which

generates a substitution unifying the equations whenever one exists.6 Constraints on effects are

solved using a novel algorithm presented in (Skalka and Smith 2004a). Since effect constraints

may be recursive and moreover since equality of trace effects is undecidable, unification will not

suffice. The algorithm for solving effect constraint relies on an invariant on the form of constraint

inequalities. All effect constraints are variable in their upper bound. Informally speaking, the

least upper bound of all effects flowing into this variable are computed. Substituting this value

for the variable necessarily satisfies the inequation. Simply being able to infer such terms which

have undecidable identity is remarkable in its own right.

6According to (Pfenning 2002), the first unification algorithm was sketched as a footnote in Jacques Herbrand’s
Ph.D. thesis (1929), and was introduced into automated deduction by (Robinson 1971). The application to type
inference was first discovered in the setting of the simply-typed lambda calculus (i.e. the monomorphic calculus)
by (Hindley 1969; Milner 1978). Linear versions of the algorithm have been developed (Paterson and Wegman
1976).

1 INTRODUCTION 16

The type system employs let-polymorphism. As such, polymorphic values are second class

entities and can be introduced only via a “let” binding which assigns a polymorphic type to a

variable in the scope of the body of the let expression. This restricted version of polymorphism

is employed by Standard ML (Milner, Tofte, Harper, and MacQueen 1997).7

1.6 Outline

This thesis is organized as follows: The next section recalls and discusses the syntax and semantics

of the λtrace language as defined in (Skalka and Smith 2004a).

Section 3 recalls and discusses the type and effect system for trace analysis. This section

includes a discussion of the background needed in the development of our results. The logical

type and effect system is the presented. Having stated the logical system, the type inference

system is then described. Following this the inference algorithm is proved sound with respect to

the logical system, one of the novel contributions of this paper.

Section 4 describes the implementation of this type system. Section 5 provides a conclusion

and offers areas for future work. Implementations of all the algorithms discussed in this thesis

are included in Appendix A.

7The more powerful form of polymorphism which affords polymorphic values first-class status, know as poly-
variants or impredicative polymorphism (or System F), has an undecidable type inference problem (Wells 1999).

2 CORE LANGUAGE 17

2 Core Language

This section provides the syntax and operational semantics for the language model λtrace, a

syntactic extension of the λ-calculus,8 which represents the core of higher-order programming

languages, and provides a concise, mathematically oriented, characterization of computation.9

The syntactic extension includes syntactic productions for events, constants, and the language of

assertions. The semantics of λtrace is a modification of the contextual reduction relation for the

applicative order, call-by-value fragment of the calculus. The semantics are modified to maintain

a trace throughout reduction. Events and checks are recorded in the trace and checks reflect

upon the trace to assert properties. The syntax and semantics are made precise below.

Using a λ-calculus setting gains leverage into analyzing arbitrary programming languages;

the analysis can be scaled up by growing the language semantics or by giving a richer target

language a semantics in λtrace. As discussed in (Skalka, Smith, and Van Horn 2005), the analysis

is language neutral in another sense in that transformations over the language of effects can be

used to extend the features of the programming language in a modular fashion.

2.1 Syntax

The syntax of λtrace terms is given in Figure 1. The base values include booleans and unit.

The expression let x = v in e binds a polymorphic value v to the identifier x in the scope of e.

Recursive functions are given by the terms λzx.e, where x is the formal parameter of the function,

and z refers to the function itself within the scope of e. Application is written e e. The following

8The λ-calculus was first developed by Alonzo Church to study higher-order logics, but the system turned out
to be a boon to the understanding and implementation of programming languages.

9As contrasted with Turing machines, which are a machine-oriented characterizations of computation.

2 CORE LANGUAGE 18

c ∈ C atomic constants
b ::= true | false boolean values
v ::= x | λzx.e | c | b | ¬ | ∨ | ∧ | () values
e ::= v | e e | ev(e) | φ(e) | if e then e else e | let x = v in e expressions
η ::= ε | ev(c) | η; η traces
E ::= [] | v E | E e | ev(E) | φ(E) | ifE then e else e evaluation contexts

Figure 1: Language syntax

η, (λzx.e)v η, e[v/x][λzx.e/z] (β)
η,¬true η, false (notT)
η,¬false η, true (notF)
η,∧ true η, λx.x (andT)
η,∧ false η, λ .false (andF)
η,∨ true η, λ .true (orT)
η,∨ false η, λx.x (orF)

η, if true then e1 else e2 η, e1 (ifT)
η, if false then e1 else e2 η, e2 (ifF)

η, let x = v in e η, e[v/x] (let)
η, ev(c) η; ev(c), () (event)
η, φ(c) η; evφ(c), () if Π(φ(c), η̂ evφ(c)) (check)
η,E[e] → η′, E[e′] if η, e η′, e′ (context)

Figure 2: Language semantics

syntactic sugarings are assumed:

e1 ∧ e2 , ∧e1e2 e1 ∨ e2 , ∨e1e2 λx.e , λzx.e z not free in e

λ .e , λx.e x not free in e e1; e2 , (λ .e2)(e1)

Events ev are named entities parameterized by static constants c.10 These constants c ∈ C are

10We occasionally omit these constants and write ev in place of ev(c) when c is irrelevant to the discussion.

2 CORE LANGUAGE 19

abstract and could be taken to be strings or IP addresses, for example, and the parameterization

by constants adds to the expressive power of assertions. A trace η is an ordered sequences of

these events, which maintain the sequence of events experienced during program execution. The

notation η̂ is used to denote the sequence obtained from η by removing the delimiters “;”. Trace

assertions φ, also named and parameterized by constants c, implement checks. The syntax of

assertions is purposefully left unspecified.

2.2 Semantics

The operational semantics of λtrace is defined in Figure 2 as a small step reduction relation

and contextual relation → on configurations η, e, where η is the trace of run-time program events.

The syntax of evaluation contexts enforces a left-to-right, call-by-value deterministic reduction

strategy. The evaluation relation→? is the reflexive, transitive closure of the contextual reduction

relation.

Note that in the event reduction rule, an event ev(c) encountered during execution is added

to the end of the trace. The check rule specifies that when a configuration η, φ is encountered

during execution, the “check event” evφ(c) is appended to the end of η, and φ(c) is required to be

satisfied by the current trace η, according to a meaning function Π, where Π is defined such that

Π(φ(c), η̂) holds iff φ(c) is valid for η̂. As noted before, the syntax and semantics of checks are

left abstract for parameterization of the analysis, thus no definition of Π is given in this paper.

In case a check fails at runtime, execution is “stuck”; formally:

Definition 2.1 A configuration η, e is stuck iff e is not a value and there does not exist η′ and

e′ such that η, e→ η′, e′. If ε, e→? η, e′ and η, e′ is stuck, then e is said to go wrong.

The following example demonstrates the basics of syntax and operational semantics.

2 CORE LANGUAGE 20

Example 2.1 Let the function f be defined as:

f , λzx.ifx then ev1(c) else (ev2(c); z(true))

Then, in the operational semantics, we have:

ε, f(false) →? ev2(c); ev1(c), ()

The call to f with the argument true will cause the alternative branch of the conditional to

be taken, ev2(c) is then be appended to the current trace, and a recursive call is made with the

argument true. The consequent branch of the if will be taken, appending ev1(c) and returning

unit, the final value.

Programs can go wrong in a number of ways, such as by applying a non-function value,

branching on a non-boolean value, or, most importantly for the purposes of this work, asserting

a temporal property over the current trace which does not hold. Now that the operational

semantics of the language have been defined, the next section defines a logical type system such

that well typed programs do not go wrong. By demonstrating that type inference is sound with

respect to the logic, we conclude that typed infered programs do not go wrong, and therefore our

automated analysis is well-founded.

3 WEAKEN ANALYSIS 21

3 Weaken Analysis

In this section, we prove the soundness of a compile-time analysis algorithm conservatively ap-

proximating the traces generated by λtrace programs. This result demonstrates that trace effect

analysis can be effectively automated to prove temporal specifications of program events, the

main constribution of this thesis.

Section 3.1 describes a logical type and effect system for λtrace that statically identifies a

conservative approximation of the traces that would result during execution. The approximation

of this system relies on a notion of weakening as its subeffecting mechanism. Section 3.2 describes

the algorithm for proof inference and in Section 3.2.3 the soundness of the system is proved with

respect to the logical system. Composing the algorithmic soundness result with the logical safety

result of (Skalka and Smith 2004a) yields the safety of programs well-typed by type inference.

3.1 Logical System

This section describes the logical type theory for λtrace relying on weakening as its subeffecting

discipline. Much of this development was given in (Skalka and Smith 2004a), which are recalled

here in order to state the main results of this thesis in the following sections.

Section 3.1.1 defines the language of types and traces effects, Section 3.1.2 defines the inter-

pretation of the trace effect language, Section 3.1.3 gives the logical typing rules, Section 3.1.4

discusses the weakening subeffecting discipline and gives examples of the expressiveness it con-

tributes, and finally Section 3.1.7 defines trace effect validity and states the type safety property

of the system.

3 WEAKEN ANALYSIS 22

δ ∈ Vs, t ∈ Vτ , h ∈ VH , α, β ∈ Vs ∪ Vτ ∪ VH variables
s ::= δ | c singletons

τ ::= t | {s} | τ H−→ τ | bool | unit | s | H types
σ ::= ∀ᾱ.τ type schemes
H ::= ε | h | ev(s) | H;H | H|H | µh.H trace effects
Γ ::= ∅ | Γ;x : σ type environments

Figure 3: Type syntax

3.1.1 Types and trace effects

The languages of types, trace effects, and type environments are given in Figure 3. The language

of types, denoted T , includes variables, singleton sets, functions, booleans, and unit. For technical

reasons, trace effects and singletons are included in the language of types, although no program

will be assigned such a type (a program may be assigned a singleton set type, however). A type

is basic if it is a singleton, or the type bool, unit, or ε. A type is atomic if it is basic or a variable,

otherwise the type is composite.

A type scheme generalizes the free variables of a type. Vector notation is used for type

variables, where ᾱ is taken to mean α1 . . . αn and ∀ᾱ.τ is shorthand for ∀α1. . . .∀αn.τ . The free

variables of a type are given by the function fv : T → V, inductively defined as follows:

fv(τ) = ∅ if τ is basic
fv(α) = {α}

fv({s}) = fv(s)

fv(τ H−→ τ ′) = fv(τ) ∪ fv(H) ∪ fv(τ ′)
fv(ev(s)) = fv(s)

fv(H;H ′) = fv(H) ∪ fv(H ′)
fv(H|H ′) = fv(H) ∪ fv(H ′)
fv(µh.H) = fv(H) \ {h}

3 WEAKEN ANALYSIS 23

The function is extended to type schemes, environments, and judgments respectively as follows:

fv(∀ᾱ.τ) = fv(τ) \ ᾱ
fv(∅) = ∅

fv(Γ;x : σ) = fv(Γ) ∪ fv(σ)
fv(Γ,H ` e : τ) = fv(Γ) ∪ fv(H) ∪ fv(τ)

A type is closed whenever fv(τ) = ∅ and the set of closed types is denoted T̂ , known as the

ground types.

Type environments are mappings from expression variables to type schemes and represent

assumptions made about the type of variables. Environment lookup Γ(x) is defined as follows:

Γ;x : σ(x) = σ

Γ; y : σ(x) = Γ(x)

The types of Figure 3 are standard with the exception of singleton types and trace effects.

Singletons are explained below and trace effects are the subject of the following section.

When viewed as a set of values, assigning a type to an expression implies that the expression

evaluates to a value in that set (or diverges). In the case of a singleton set type {v}, the type is

inhabited by exactly one value, namely v. Thus a singleton set type is a very precise character-

ization of an expression; singleton set types are used to type constants which will parameterize

events and checks, adding to the expressiveness of the program logics.

3 WEAKEN ANALYSIS 24

3.1.2 Trace effect interpretation

Trace effects approximate traces and their syntax is very close to their trace counterparts. The

interpretation of trace effects is given as a Labelled Transition System (LTS) that generates sets

of traces including a distinguished ↓ symbol to denote termination.

Definition 3.1 The interpretation of trace effects is defined via strings, possibly terminated by

↓, (called traces) denoted θ, over the following alphabet:

s ::= ev(c) | ε | s s
a ::= s | s↓

We let Θ range over prefix-closed sets of traces.

Sets of traces are obtained by interpreting closed trace effects as programs in a simple nondeter-

ministic transition system:

Definition 3.2 (Trace effect transition relation)

ev(c)
ev(c)−−−→ ε H1|H2

ε−→ H1 H1|H2
ε−→ H2 µh.H

ε−→ H[µh.H/h] ε;H ε−→ H

H1;H2
a−→ H ′

1;H2 if H1
a−→ H ′

1

The sets of traces Θ associated with a closed trace effect is given by the following relation:

Definition 3.3 (Trace effect interpretation)

JHK = {a1 · · · an | H
a1−→ · · · an−−→ H ′} ∪ {a1 · · · an ↓ | H

a1−→ · · · an−−→ ε}

Any trace effect interpretation is clearly prefix-closed. In this interpretation, an infinite trace

is viewed as the set of its finite prefixes. Trace effect equivalence is undecidable, following from

3 WEAKEN ANALYSIS 25

Var
Γ(x) = ∀ᾱ.τ

Γ, ε ` x : τ [τ̄ /ᾱ]

Bool
Γ, ε ` b : bool

Unit
Γ, ε ` () : unit

And
Γ, ε ` ∧ : bool ε−→ bool ε−→ bool

Or
Γ, ε ` ∨ : bool ε−→ bool ε−→ bool

Not
Γ, ε ` ¬ : bool ε−→ bool

Const
Γ, ε ` c : {c}

Weaken
Γ,H ` e : τ H 4 H ′

Γ,H ′ ` e : τ

Event
Γ,H ` e : {s}

Γ,H; ev(s) ` ev(e) : unit

Check
Γ,H ` e : {s}

Γ,H; evφ(s) ` φ(e) : unit

If
Γ,H1 ` e1 : bool Γ,H2 ` e2 : τ Γ,H2 ` e3 : τ

Γ,H1;H2 ` if e1 then e2 else e3 : τ

Fix

Γ;x : τ1; z : τ1
H−→ τ2,H ` e : τ2

Γ, ε ` λzx.e : τ1
H−→ τ2

App

Γ,H1 ` e1 : τ ′ H3−−→ τ Γ,H2 ` e2 : τ ′

Γ,H1;H2;H3 ` e1 e2 : τ

Let
Γ, ε ` v : τ ′ ᾱ ∩ fv(Γ) = ∅ Γ;x : ∀ᾱ.τ ′,H ` e : τ

Γ,H ` let x = v in e : τ

Figure 4: Logical weakening typing rules

the undecidability results for the equivalent system of basic process algebras (Burkart, Caucal,

Moller, and Steffen 2001).

3.1.3 Logical judgments

Typing rules are given in Figure 4 in the form of a sequent calculus (Gentzen 1935). The rules are

essentially those of a let-polymorphic Hindley-Milner (HM) system extended with trace effects

and singleton types for constants. It should be noted that this type analysis is a conservative

extension of HM; any event and check free program which is typable in this system is HM-typable

and for any type derivable in HM, the same type is derivable in this system.

3 WEAKEN ANALYSIS 26

Judgments, or sequents, are of the form Γ,H ` e : τ , which can be read as “under assumptions

Γ, the expression e has type τ and trace effectH.” We let J range over judgments. Type schemes,

and thus judgments, are identified up to consistent renaming of bound variables.

A type judgment J is derivable iff there exists a tree of judgments having leaves which are the

axioms Var, Bool, Unit, And, Or, Not, or Const, each node is derivable by the application

of Weaken, Event, Check, If, Abs, App, or Let to the children of the node, and the tree is

rooted at J . Such a tree is a derivation, or in other words, J is derivable.

The Var rule is standard; the variable’s type is found in the environment and ∀-bound

variables are instantiated. A variable has no effect, hence ε is given as the term’s trace effect.

The rules Bool, Unit, And, Or, and Not are also standard rules and have no effect. Applying

the boolean functions also has no effect, hence they have ε as the latent effect labelled on their

function types. The rule Const is used to type constants, which parameterize events and checks.

Constants have a singleton type which identifies the constant value.

The rules Event and Check assign checks and events the type unit. The effect of the

expression is given by appending the event or check to the trace effect of the subexpression.

The If rule requires the two branches to have the same type and effect. The expression is

assigned the type of it’s branches, and the effect is the concatenation of the branch term’s effect

and the effect of the branches.

The Fix rule assigns a function type to lambda abstractions. The environment is extended

with an assumption about the lambda bound variables. The variable z is assumed to have the

type of the function itself. The effect of the body of the term becomes the latent effect of the

function, which will occur only when this function is applied. The function itself has no effect,

hence it is assigned ε.

3 WEAKEN ANALYSIS 27

The App rule assigns a type to the application of one term to another. The applied term

must have a functional type where the domain type matches the type of the applicand term. The

application is assigned the effect of concatenating the effect of the applied term, the applicand

term, and the latent effect which is realized when the function is applied.

The Let rule derives a type τ ′ for the syntactic value v and generalizes over the free variables

in τ ′. Notice, however, that the assumptions in Γ are never generalized, which would lead to

inconsistencies.

The Weaken rule is the subject of the following section.

3.1.4 Weakening and type containment

The Weaken rule relies on a notion of containment on types and trace effects, that is if Γ,H `

e : τ is derivable, then Γ,H ′ ` e : τ ′ is derivable whenever H ′ contains H and τ ′ contains τ .

For the purposes of the weakening system, type containment is taken simply to mean equality.

Effect containment is defined in terms of traces genenerated by a trace effect. A trace effect

H ′ contains H if the set of all traces generated by H is a subset of all traces generated by H ′,

that is JHK ⊆ JH ′K, however H and H ′ may include trace effect variables, in which case J·K is

undefined. In order for the containment relation to be meaningful, containment relies on a notion

of type interpretation which maps types to ground types. Two types are related by containment

if all interpretations of the types are equal, that is, for any consistent assignment of variables to

ground types, the resulting types will be syntactically identical (up to α-renaming). Likewise, H ′

contains H if JHK contains JH ′K for all consistent assigments of variables to ground trace effects

in H and H ′.

Definition 3.4 (Interpretation) An interpretation ρ : V → T̂ is a well-kinded total mapping

3 WEAKEN ANALYSIS 28

from type variables to ground types. By well-kinded it is meant that if αi ∈ Vs, then τi is of

singleton kind, if αi ∈ VH , then τi is of trace effect kind, and so on.

Interpretations are extended to total mappings from types to types as follows:

ρ(τ) = τ if τ is basic

ρ(τ H−→ τ ′) = ρ(τ)
ρ(H)−−−→ ρ(τ ′)

ρ({s}) = {ρ(s)}
ρ(ev(s)) = ev(ρ(s))

ρ(H1;H2) = ρ(H1); ρ(H2)
ρ(H1|H2) = ρ(H1)|ρ(H2)
ρ(µh.H) = µh.ρ′(H)

where dom(ρ′) = dom(ρ) \ {h}
and ∀α ∈ dom(ρ′), ρ(α) = ρ′(α)

Substitutions are extended to total mappings from type scheme to type schemes as follows:

ρ(∀α.τ) = ∀α.ρ′(τ)
where dom(ρ′) = dom(ρ) \ {α}
and ∀β ∈ dom(ρ′), ρ(β) = ρ′(β)

Having established the definition of interpretations, we can now formulate the containment

relation, which is a partial order on trace effects:

Definition 3.5 (Type containment) τ 4 τ ′ iff ρ(τ) = ρ(τ ′) for all interpretations ρ.

Definition 3.6 (Trace effect containment) H 4 H ′ iff Jρ(H)K ⊆ Jρ(H ′)K for all interpreta-

tions ρ.

The interaction of trace effect interpretation JHK and Weaken is fairly subtle. Weakening

allows us to replace the current trace effect with a less precise trace effect. At first glance, this

3 WEAKEN ANALYSIS 29

may seem unsound. Consider the following derivation where φ asserts that some event ev has

occurred:

∅, ε ` c : {c}
∅, ε; evφ(c) ` ev(c) : unit

Clearly the check should fail, since ev does not occur. However, it may seem Weaken can be

used to approximate the effect in such a way that ev is included in the effect. That is:

∅, ε ` c : {c} ε 4 ev
∅, ev ` c : {c}

∅, ev ; evφ(c) ` ev(c) : unit

However, this is not a legitimate derivation because ε 64 ev . To see why this is, recall from

Definition 3.3 that JεK = {↓}, JevK = {ev , ev ↓}, and {↓} 6⊆ {ev , ev ↓}. On the other hand, it is

possible to weaken as follows:

∅, ε ` c : {c} ε 4 ev |ε
∅, ev |ε ` c : {c}

∅, ev |ε; evφ(c) ` ev(c) : unit

If φ asserts ev must have occurred, then the trace effect will not be valid since:

Jev |ε; evφK = {ev , evevφ(c), evevφ(c) ↓, evφ(c), evφ(c) ↓}

and ev does not occur in all of the traces. Thus the rule for weakening allows for sound approx-

imations of trace effects.

Note that (Skalka and Smith 2004a) use the following rule:

3 WEAKEN ANALYSIS 30

Weaken
Γ,H ` e : τ

Γ,H|H ′ ` e : τ

Clearly the weakening rule based on containment generalizes this notion of weakening since

H 4 H|H ′.

It should be noted that the logical typing rules have been stated in such a way so as to

rely on the containment relation to acheive a subeffecting discipline. The logical system is

thus parameterized by the containment relation. The effectual weakening system is obtained by

taking containment to be equality on types and trace subsumption on effects. Other subeffecting

disciplines, such as subtyping, can be obtained simply by altering the containment relation. In

the case of subtyping, all that would need to be changed is the type containment relation which

would be given in terms of a partial order on ground types (a subtype relation), rather than

equality. The typing rules need not change, however. Similarly, the type inference algorithm for

a subtyping system can reuse the constraint inference rules, although other parts of the inference

must be changed since unification is no longer sufficient to resolve type constraints.

3.1.5 Expressiveness of weakening

As noted in Section 1, any effect analysis needs a notion of “subeffecting.” Without some notion

of subeffecting, all possible paths through a computation must induce the same effects, however

such a restriction is far too imposing to form the basis of a useful analysis. The system presented

in this section relies on a notion of weakening for subeffecting, which allows the effect of a program

to be weakened so that it may have any effect which contains the original, where containment is

formally given in Definition 3.6. To see how weakening is used, consider the following program:

3 WEAKEN ANALYSIS 31

Example 3.1

ifx then ev(c1) else ev(c2)

This program takes a boolean value x and branches based on x’s value, causing either effect

ev(c1) or ev(c2) to occur. In a logical system without subeffecting, e.g. in this system without

the Weaken rule, there would be no way to type this program since the effects of the branches

are not identical as required by the If rule. However, Weaken can be used to bring the effect

of each branch into agreement by giving the subterm ev(c1) the less precise effect ev(c1)|ev(c2),

and likewise for ev(c2). Now the whole program has the effect ev(c1)|ev(c2), which matches our

intuition about what the program will do.

3.1.6 Expressiveness of polymorphism

Another aspect of this type system that adds to its expressiveness is parametric polymorphism.

The expression let x = v in e binds the variable x to the polymorphic value v in the scope of the

expression e. The free type variables in the type of v are ∀-quantified and can take on different

instantiations at each occurrence of x in e. Consider the following program:

Example 3.2

let f = λx.(x();φ) in f(λx.ev1); f(λx.ev2)

This program binds f to a function of one argument that will first apply the argument

to (), then perform a check φ. This function f is then applied sequentially to the argument

λx.ev1 and λx.ev2. We would expect the trace of this program to be ev1;φ; ev2;φ. Note that

operationally the semantics of let x = v in e are equivalent to (λx.e) v, so in a system without

polymorphism, e.g. in this system without the Let rule, it would be possible to consider this

3 WEAKEN ANALYSIS 32

expression as syntactic sugar for (λf.f(λx.ev1); f(λx.ev2))(λx.x();φ). This expression is still

typable by relying on Weaken. The effect of ev1 can be weakened to ev1|ev2 and likewise for

ev2, which then allows f to have the type unit
(ev1|ev2);φ−−−−−−−→ unit, and the effect of the whole

program is (ev1|ev2);φ; (ev1|ev2);φ.

In a system with polymorphism, on the other hand, f can be given the type ∀h.unit
h;φ−−→ unit.

The two distinct applications of f can then instantiate h as ev1 and ev2 respectively, giving

the whole program the effect ev1;φ; ev2;φ. This effect is a tighter characterization of the run

time trace that will occur and thus may be valid in cases where the effect obtained without

polymorphism would be invalid. For example, if φ asserts that ev1 must have occurred, then the

less precise effect will not be valid and the program will be rejected by the analysis although its

clear that ev1 must always occur before φ. Also note that since polymorphism gives a tighter

characterization of the trace effect of the program, it not only increases the expressibility of the

analysis, but combats the state explosion problem when model checking effects for validity by

reducing the size of the state space.

Unlike the above example which was still typable, albeit less precisely, through the use of

Weaken rather than polymorphism, there are other cases in which polymorphism can be used

to type programs that would not otherwise be typable, The following example is such a case:

Example 3.3

let f = λx.ev(x) in f(c1); f(c2)

This program binds f to a function of one argument that, when applied, triggers an event

parameterized by the argument of the function. Relying on polymorphism results in the type

∀α.α ev(α)−−−→ unit for f , and each application of f can instantiate α to {c1} and {c2} respec-

3 WEAKEN ANALYSIS 33

tively. This program cannot be typed without polymorphism, since it would be equivalent to

(λf.f(c1); f(c2))(λx.ev(x)), and the term λf.f(c1); f(c2) is not well-typed since it applies f to

two arguments of disjoint type.

3.1.7 Validity of trace effects and Type Safety

The validity of a trace effect rests on the validity of the assertion events that occur in traces in

its interpretation. In particular, for any given predicate event in a trace, that predicate must

hold for the immediate prefix trace that precedes it:

Definition 3.7 A trace effect H is valid iff for all θevφ(c) ∈ JHK it is the case that:

Π(φ(c), θevφ(c))

holds. A type judgment Γ,H ` e : τ is valid iff it is derivable and H is valid.

An important aspect of this definition is that JHK contains prefix traces. Essentially, if

Γ,H ` e : τ is derivable, then JHK contains “snapshots” of e’s potential run-time trace at every

step of reduction, so that validity of H implies validity of any check that occurs at run-time,

“part-way through” the full program trace as approximated by H. This is formally realized in

the primary approximation result for trace effects:

Theorem 3.1 If Γ,H ` e : τ is derivable for closed e and ε, e→? η, e′ then η̂ ∈ JHK.

which, in turn, is the basis of a type safety result for λtrace:

Theorem 3.2 (Logical type safety) If Γ,H ` e : τ is valid for closed e then e does not go

wrong.

3 WEAKEN ANALYSIS 34

C ::= true | τ v τ | C ∧ C type and effect constraints
k ::= τ/C constrained types
ς ::= ∀ᾱ.k constrained type schemes

Figure 5: Type and effect constraints

Proofs and details of these results are given in (Skalka and Smith 2004b).

In the next section, an algorithm for inferring a logical judgment algorithmically is defined.

This is done by developing an alternative set of inference rules that are deterministic, which will

comprise the inference algorithm. We show that any algorithmic judgment can be projected into

the logical system in a derivability preserving way, ensuring that any algorithmic derivation has

a corresponding logical derivation, and thus the inference system is sound.

3.2 Algorithmic System

In this section, an algorithm for inferring a type and effect for programs is defined and proved

sound with respect to the logical system of Section 3, which is to say, this algorithm assigns a

type τ and valid effect H to an expression e under assumptions Γ, if Γ,H ` e : τ is valid.

The inference algorithm is described in Section 3.2.1 which infers constrained type schemes

for programs. Section 3.2.2 describes how these algorithmic judgements can be related to the

logical judgements of Section 3.1. Finally, Section 3.2.3 proves that algorithmic judgments are

sound with respect to the logical system.

3 WEAKEN ANALYSIS 35

Var
Γ(x) = ∀ᾱ.k

Γ, ε `ᾱ x : k[ᾱ′/ᾱ]

Const

Γ, ε `∅ c : {c}/true

Event
Γ,H `V e : τ/C

Γ,H; ev(δ) `V∪{δ} ev(e) : unit/C ∧ τ v {δ}

Check
Γ,H `V e : τ/C

Γ,H; evφ(δ) `V∪{δ} φ(e) : unit/C ∧ τ v {δ}

If
Γ,H1 `V1 e1 : τ1/C1 Γ,H2 `V2 e2 : τ2/C2 Γ,H3 `V3 e3 : τ3/C3 V1]V2]V3

Γ,H1;H2|H3 `V1∪V2∪V3∪{t} if e1 then e2 else e3 : t/C1,2,3 ∧ τ1 v bool ∧ τ2 v t ∧ τ3 v t

App
Γ,H1 `V1 e1 : τ1/C1 Γ,H2 `V2 e2 : τ2/C2 V1]V2

Γ,H1;H2;h `V1∪V2∪{t,h} e1 e2 : t/C1,2 ∧ τ1 v τ2
h−→ t

Fix

Γ;x : t; z : t h−→ t′,H `V e : τ/C

Γ, ε `V∪{t,t′,h} λzx.e : t h−→ t′/C ∧ τ v t′ ∧H v h

Let
Γ, ε `V1 v : τ ′/C ′ Γ;x : ∀ᾱ.τ ′/C ′,H `V2 e : τ/C ᾱ = fv(τ ′, C ′)− fv(Γ) V1]V2

Γ,H `V1∪V2 let x = v in e : τ/C ∧ C ′

Figure 6: Algorithmic type inference rules

3.2.1 Algorithmic judgments

The language of types and constraints are given in Figure 5. Type inference rules are given in

Figure 6 in a manner similar to (Eifrig, Smith, and Trifonov 1995).11 The algorithm works as

follows: inference rules are syntax-directed; there is a single rule which applies to each possible

shape of an expression. To type an expression e, given a context Γ, the rule corresponding to the

shape of e is applied, generating a constrained type scheme. Note that any syntactically well-

formed program can be assigned a constrained type, however for soundness, only well-typings

11In Figure 6, notation is abused by writing C1,2,...,n to mean
∧n

i=1 Ci so that the rules fit within the margins
of this paper. This notation is not used outside of this figure.

3 WEAKEN ANALYSIS 36

should be considered. Intuitively, this type scheme describes the set of all possible types that

could be assigned to the given expression and a program is well-typed if this set is non-empty.

A precise characterization of this set of types is given later.

This presentation of type inference differs slightly from (Skalka and Smith 2004a). In partic-

ular, a conjunctive representation of constraints is employed, rather than a set representation.

However, it is sometimes convenient to describe algorithms using the set representation defined

by the following notation:12

Definition 3.8 (Constraint set notation) Let Ĉ range over atomic constraints, i.e.:

Ĉ ::= true | τ v τ

and let C ,
∧j
i=1 Ĉi, D ,

∧k
i=1 D̂i, and E ,

∧l
i=1 Êi. Then define:

Ĉ ∈ C ⇐⇒ Ĉ ∈
j⋃
i=1

{
Ĉi

}

D ⊆ C ⇐⇒
k⋃
i=1

{
D̂i

}
⊆

j⋃
i=1

{
Ĉi

}

C \D = E ⇐⇒
j⋃
i=1

{
Ĉi

}
\

k⋃
i=1

{
D̂i

}
=

l⋃
i=1

{
Êi

}

The following shorthands are used in writing algorithmic judgments:

Definition 3.9 (Algorithmic judgment shorthand notation)

Γ ` e : τ , Γ ` e : τ/true ` e : τ/C , ∅ ` e : τ/C

12This notation is used, for example, in the definition of the MGS algorithm in Figure 8.

3 WEAKEN ANALYSIS 37

When choosing variable names during type inference, fresh names should be chosen at each

step. There are two notions of freshness, a name is locally fresh if it does not appear in any

subderivation from the current point in the derivation. If a derivation is viewed as a tree with

sets of variable names chosen at each node, local freshness is the property that no descendant

of the current node chooses the same name as chosen by the current node. A name is globally

fresh if it does not appear in any other part of the derivation, i.e. no descendant of any ancestor

of the current node chooses the same name as chosen by the current node. Local freshness is

not imposed by the typing rules, but a canonical strategy is assumed without loss of generality.

The canonical strategy is to always choose locally fresh names. This increases the completeness

of the algorithm; notice that were names chosen in a non-locally fresh way, programs would

be needlessly over-constrained, reducing the completeness of the analysis, but over constraining

never compromises the soundness of the algorithm.

Judgments derived under such a strategy give rise to a notion of canonical judgments, in which

each binding in the type environment quantifies over distinct variables from all other bindings in

the environment.

Definition 3.10 (Canonical judgment) A canonical judgment is a judgment having distinct

bound variables in the type environment. That is, a judgment:

x1 : ∀ᾱ1.k1; . . . ;xn : ∀ᾱn.kn,H `W e : k0

is canonical iff
n⋃
i=1

ᾱi ∩
n⋃
j=0

fv(kj) \ fv(ki) = ∅

It should be noted that a canonical derivation strategy preserves canonical judgments.

3 WEAKEN ANALYSIS 38

Global freshness, on the other hand, is enforced by the typing rules. Notice that judgments

explicitly pass the set of used variable names in judgments as done in (Pierce 2002). The re-

lation V]V ′ holds iff V ∩ V ′ = ∅. This makes explicit the disjunction of chosen names in each

subderivation during inference. To ease the notation, the V annotations are frequently omitted.

Both local and global freshness of names can easily be accomplished in a implementation by

using a procedure with local state, recording which names have been used, and never using those

names again. In essence, the typing rules just thread this state through the derivation.

We will return to why these freshness conditions are needed after introducing the notions of

substitutions, which are the fundamental to our inference method and constraint solutions.

3.2.2 Relating logical and algorithmic judgments

We now turn to relating the algorithmic system to the logical system of Section 3.1.

A solved form of an algorithmic derivation is any corresponding logical judgment. This section

demonstrates that given any valid algorithmic derivation, any solved form of the derivation is a

valid logical derivation. A proof is shown which gives a construction from a valid algorithmic

derivation into a particular solved form. From this particular solved form, all other instances of

the judgement are derivable. The notion of a derivation instance relies on substitutions, which

will be fundamental to the inference method.

Definition 3.11 (Substitution) A substitution ψ : V → T is a well-kinded, finite mapping

from type variables to types, written [τ1/α1, . . . , τn/αn] (or [τ̄ /ᾱ] to use the vector notation short-

hand), where α1 . . . αn are distinct type-variables, and dom([τ̄ /ᾱ]) = ᾱ.

Substitutions are extended to total mappings from types to types as follows:

3 WEAKEN ANALYSIS 39

ψ(τ) = τ if τ is basic
ψ(α) = α if α /∈ dom(ψ)

ψ(τ H−→ τ ′) = ψ(τ)
ψ(H)−−−→ ψ(τ ′)

ψ({s}) = {ψ(s)}
ψ(ev(s)) = ev(ψ(s))

ψ(H1;H2) = ψ(H1);ψ(H2)
ψ(H1|H2) = ψ(H1)|ψ(H2)
ψ(µh.H) = µh.ψ′(H)

where dom(ψ′) = dom(ψ) \ {h}
and ∀α ∈ dom(ψ′), ψ(α) = ψ′(α)

Substitutions are extended to total mappings from type scheme to type schemes as follows:

ψ(∀α.τ) = ∀α.ψ′(τ)
where dom(ψ′) = dom(ψ) \ {α}
and ∀β ∈ dom(ψ′), ψ(β) = ψ′(β)

Substitutions are extended to total mappings from type environments to type environments as

follows:

ψ(∅) = ∅
ψ(Γ;x : σ) = ψ(Γ);x : ψ(σ)

Finally, substitutions are extended to total mappings from judgments to judgments as follows:

ψ(Γ,H ` e : τ) = ψ(Γ), ψ(H) ` e : ψ(τ)

We say that ψ(τ) is an instance of τ , that ψ(σ) is an instance of σ, and so on.

Substitutions as defined in Definition 3.11 are extended to constraints and constrained type

3 WEAKEN ANALYSIS 40

schemes as follows.

ψ(true) = true

ψ(τ v τ ′) = ψ(τ) v ψ(τ ′)
ψ(C ∧ C ′) = ψ(C) ∧ ψ(C ′)
ψ(∀ᾱ.τ/C) = ∀ᾱ.ψ′(τ)/ψ′(C)

where dom(ψ′) = dom(ψ) \ ᾱ
and ∀α ∈ dom(ψ′), ψ(α) = ψ′(α)

We turn now to the notion of a solution to a constraint where constraints are interpreted based

on the containment relation, a partial ordering of ground types, as defined in Definition 3.5 and

Definition 3.6.

Definition 3.12 (Solution) A substitution ψ is a solution to a constraint C, written ψ ` C,

iff it is derivable according to the following rules:

ψ ` true
ψ(τ1) 4 ψ(τ2)
ψ ` τ1 v τ2

ψ ` C1 ψ ` C2

ψ ` C1 ∧ C2

Definition 3.13 (Constraint entailment) We write C
 D iff ψ ` C implies ψ ` D, and

C = D iff C
 D and D
 C.

A partial ordering on solutions in terms of their generality can now be defined. Later it is

shown that inference always returns a solution, whenever one exists, which is most general.

Definition 3.14 (Most general solution) If ψ and ψ′ are solutions of C, the ψ is more gen-

eral than ψ′ iff there exists a substitutions ψ′′ such that ψ′ = ψ′′ ◦ ψ. A substitution is a most

general solution (MGS) of C iff ψ is a solution of C and is more general than any other solution

3 WEAKEN ANALYSIS 41

of C.

Definition 3.15 (Satisfiable) A canonical derivable judgment,

J , x1 : ∀ᾱ1.τ1/C1; . . . ;xn : ∀ᾱn.τn/Cn,H `W e : τ0/C0

is satisfiable iff there exists ψ, such that,

ψ `
n∧
i=0

Ci

in which case it is said that J is satisfied under ψ, written ψ ` J .

Now that a notion of constraint solution and solution generality is defined, we may return to

the issue of variable name choice.

To see why both local and global freshness are needed consider the typing of let f = λx.x in ff ,

which is the identity function and the expression is expected to have type t → t. The following

derivation is derivable and canonical, that is, the choice of names takes a canonical strategy.13

Example 3.4 (Canonical derivation)

x : t `∅ x : t
`∅ λx.x : t −→ t

f : ∀t.t −→ t `{t′′} f : (t −→ t)[t′′/t] f : ∀t.t −→ t `{t′} f : (t −→ t)[t′/t]
f : ∀t.t −→ t `{t′,t′′,t′′′} ff : t′′′/t′′ −→ t′′ v (t′ −→ t′) −→ t′′′

`{t′,t′′,t′′′} let f = λx.x in ff : t′′′/t′′ −→ t′′ v (t′ −→ t′) −→ t′′′

Notice that [t′ −→ t′/t′′, t′ −→ t′/t′′′] is a most general solution of t′′ −→ t′′ v (t′ −→ t′) −→ t′′′

and yields t′ → t′ ≡α t→ t, the expected type.14

13Since none of the functions used in this and the following examples, the derivations omit each abstraction’s
“self” variable and all constraints on them. They could be easily included but would only clutter the presentation.

14The relation ≡α denotes syntactic equality up to a consistent renaming of bound variables.

3 WEAKEN ANALYSIS 42

The following example constructs a logical derivation that is a most general solved form of

the above derivation:

Example 3.5 (Most general solved form derivation)

x : t ` x : t
` λx.x : t −→ t

f : ∀t.t −→ t ` f : (t −→ t)[t′ −→ t′/t] f : ∀t.t −→ t ` f : (t −→ t)[t′/t]
f : ∀t.t −→ t ` ff : t′ −→ t′

` let f = λx.x in ff : t′ −→ t′

Notice that the most general solved form derivation of Example 3.5 is exactly the deriva-

tion obtained by applying the most general solution to each type in the algorithmic canonical

derivation of Example 3.4.

Now consider if local freshness were violated by choosing a name which has already appeared

in a subderivation of where the choice occurs. Suppose in the App rule another name instead of

t′′′ were chosen, such as t′, which has already appeared in the right subderivation.

Example 3.6 (Derivation violating local freshness)

x : t `∅ x : t
`∅ λx.x : t −→ t

f : ∀t.t −→ t `{t′′} f : t −→ t[t′′/t] f : ∀t.t −→ t `{t′} f : t −→ t[t′/t]
f : ∀t.t −→ t `{t′,t′′} ff : t′/t′′ −→ t′′ v (t′ −→ t′) −→ t′

`{t′,t′′} let f = λx.x in ff : t′/t′′ −→ t′′ v (t′ −→ t′) −→ t′

But the constraint t′′ −→ t′′ v (t′ −→ t′) −→ t′ has no solution. By not choosing canonically in

this example, an artificial constraint t′′′ = t′ has been induced, which over-constrains the type

needlessly—to the point of being unsatisfiable.15

Both of the previous derivations have chosen names in a globally fresh manner, which is to

say the implicit conditions on V]V ′ hold at each step of the derivation. Suppose this requirement

15Interestingly, things would have worked out fine and produced a most general solved form had the non-locally
fresh choice of t′′ been made in the App rule. In this case, the choice of names induces a constraint already
imposed by the term and is not over constraining, but rather contributing nothing.

3 WEAKEN ANALYSIS 43

were omitted. Returning to the above example, the name t′ could have been selected instead of

t′′. Notice that this and all other name choices in the derivation are locally fresh. The name

t′ is chosen in both branches of the App rule, but in either branch t′ does not appear in a

subderivation when the name is chosen. Thus the App condition t′]t′ would not hold.

Example 3.7 (Derivation violating global freshness)

x : t `∅ x : t
`∅ λx.x : t −→ t

f : ∀t.t −→ t `{t′} f : t −→ t[t′/t] f : ∀t.t −→ t `{t′} f : t −→ t[t′/t]
f : ∀t.t −→ t `{t′,t′′′} ff : t′′′/t′ −→ t′ v (t′ −→ t′) −→ t′′′

`{t′,t′′′} let f = λx.x in ff : t′′′/t′ −→ t′ v (t′ −→ t′) −→ t′′′

The constraint t′ −→ t′ v (t′ −→ t′) −→ t′′′ does not have a solution. In fact in this example the

choice of names has undone the flexibility afforded by polymorphism by unifying the separate

uses of a polymorphic value. It is as though the program were instead ((λf.f f) (λx.x)), which

is ill-typed.

In summary, type inference chooses variable names for the result type of an application, the

argument and return types of functions, the type of the branches in an if expression, and the

∀-quantified variables in type schemes. If names are not chosen in a fresh manner, what would

otherwise be distinct types in a program are forced to be unified. This needless unification can

cause programs to be algorithmically ill-typed when in fact there does exists a logical derivation

for the program, and would be algorithmically well-typed under a canonical naming strategy.

Particular choices of names can undo the expressiveness afforded by polymorphism by unifying

the distinct occurrences of a polymorphic value. It’s also possible that a non-fresh choice of

names has no effect, for example if it forces the unification of types which must be unified under

any naming strategy. The choice of variable names requires some special attention in the formal

development, although a canonical naming strategy is easily implemented through the use of

3 WEAKEN ANALYSIS 44

state such as a counter that is incremented when generating variable names.

In proving soundness, we are tasked with constructing a logical judgment, given an algorith-

mic judgment. Looking ahead, one technical difficulty is that in a constrained type scheme, not

all universally quantified type variables are polymorphic, unlike logical type schemes. Monomor-

phism can be indirectly imposed via monomorphic constraints. For example, the following scheme

quantifies over α, but the constraint imposes monomorphism:

∀α.α/α = β
h−→ bool

Such a difficulty is not novel to our system, as universally quantified variables may be

monomorphically constrained in an effect–free program, which is to say this technicality arises in

any constraint-based version of Milner’s type inference algorithm W for λ-calculus extended with

polymorphic-let. Although algorithm W has been proved sound and complete when eagerly uni-

fying constraints, first by Milner’s student Luis Damas in (Damas and Milner 1982; Damas 1985)

and later as a machine checkable proof in (Naraschewski and Nipkow 1998), the correspondence

between the constraint-based and eager versions of this algorithm long remained folklore without

a formally established soundness and completeness result (Lee and Yi 1998). Our soundness

result reproves Lee and Yi soundness result for the constraint-based W by virtue of the fact that

the type system is a conservative extension of HM.

To see how such a constrained type can arise, consider the example of typing let f =

λx.¬x in f . First, λx.¬x is typed, obtaining the following derivation of constraint inference

rules:

3 WEAKEN ANALYSIS 45

x : t ` ¬ : bool −→ bool x : t ` x : t
x : t ` ¬x : t′/bool −→ bool = t −→ t′

` λx.¬x : t −→ t′/bool −→ bool = t −→ t′

Now the body of the let expression, f , is typed. All type variables inferred in the constrained

type scheme above are ∀-quantified, giving ∀t, t′.t −→ t′/bool −→ bool = t −→ t′. Although this

type appears to be polymorphic due to the ∀-quantifier, the constraint imposes that t = bool and

t′ = bool, thus the type is equivalent to bool −→ bool/true, which is clearly monomorphic.

A notion of variance is used to distinguish between polymorphic and monomorphic quantified

type variables. Any quantified type variable which is monomorphically constrained is said to be

invariant.

Definition 3.16 (Variant) The variable α ∈ ᾱ is variant in ᾱ for C iff fv(τ) ∩ ᾱ = ∅ implies

α /∈ fv(ψ(τ)) for all most general solutions of C.

The notion of variance is more intuitive in light of the following characterization:

Proposition 3.1 If α is invariant in ᾱ for C ∧ C[β̄/ᾱ], then C ∧ C[β̄/ᾱ]
 α v α[β̄/ᾱ] when

β̄]fv(C).

The proof of this proposition appears later in Lemma 3.6 after the needed auxiliary lemmas

have been developed.

Revisiting our example, ∀t, t′.t −→ t′/bool −→ bool = t −→ t′, t, t′ are invariant in t, t′ for

bool −→ bool = t −→ t′. Suppose ψ solves bool −→ bool = t −→ t′ ∧ bool −→ bool = s −→ s′. By

Definition 3.12, ψ(bool −→ bool) = ψ(t −→ t′) and ψ(bool −→ bool) = ψ(s −→ s′), which implies

ψ(t) = ψ(s) and ψ(t′) = ψ(s′).

3 WEAKEN ANALYSIS 46

On the other hand, it should be clear that quantified variables in a polymorphic type are

variant. Consider the expression let f = λx.x in f . First, the subexpression λx.x is typed,

obtaining the following derivation:

x : t ` x : t
` λx.x : t −→ t

The free variables are then ∀-quantified giving ∀t.t −→ t/true and t is clearly variant in true–

there is no constraint to possibly impose monomorphism.

This example can be modified by η-expansion of the identity function in order to get a non-

trivial constraint, that is, consider typing let f = λx.(λy.y) x in f . The following derivation is

obtained when typing λx.(λy.y) x:

x : t; y : t′ ` y : t′

x : t ` λy.y : t′ −→ t′ x : t ` x : t
x : t ` (λy.y) x : t′′/t′ −→ t′ = t −→ t′′

` λx.(λy.y) x : t −→ t′′/t′ −→ t′ = t −→ t′′

The free variables are ∀-quantified, giving ∀t, t′, t′′.t −→ t′′/t′ −→ t′ = t −→ t′′. Suppose ψ

solves t′ −→ t′ = t −→ t′′ ∧ s′ −→ s′ = s −→ s′′. By definition, ψ(t′ −→ t′) = ψ(t −→ t′′) and

ψ(s′ −→ s′) = ψ(s −→ s′′), but it does not follow that ψ(t) = ψ(s), ψ(t′) = ψ(s′), or ψ(t′′) = ψ(s′′),

thus t is truly polymorphic.

We can now give a precise characterization of the set of types denoted by a constrained type

scheme. This set is determined by the set of substitutions which solve the accrued constraint.

For the constrained type scheme ∀ᾱ.τ/C, suppose ψ ` C, then it denotes the set of all instances

of ∀ᾱ′.ψ(τ) where ᾱ′ is variant in ᾱ for C. If there is no such ψ, then this set is empty; the

expression is ill-typed. Thus type inference is reduced to deciding if C has a solution. For

3 WEAKEN ANALYSIS 47

constructing ψ ` C, the unification algorithm and the MGSH algorithm are used, given in

Figure 7 and Figure 8, respectively.

A notion of solved form can be defined now that definitions of solutions and variant type

variables are in place. A solved form is the logical avitar of an algorithmic judgment. The

soundness proof constructs a solved form from the given algorithmic judgment and demonstrates

it’s derivability.

Definition 3.17 (Solved form) Given a derivable judgment, satisfied under ψ,

J , x1 : ∀ᾱ1.τ1/C1; . . . ;xn : ∀ᾱn.τn/Cn,H `W e : τ0/C0

The logical judgment,

J ′ , x1 : ∀ᾱ′1.ψ(τ1); . . . ;xn : ∀ᾱ′n.ψ(τn), ψ(H) ` e : ψ(τ0)

where all ᾱ′i are the variants in their respective ᾱi for ψ `
∧n
i=0 Ci, is a solved form of J under

ψ.

Now we can prove soundness in a manner allowing the induction to go through. In particular,

the result is parameterized by a “global” constraint CG, which can be specialized to the top-level

constraints for the top-level inference judgments.

3.2.3 Soundness

In this section, our main technical contributions are stated and proved. In particular the algo-

rithmic type safety result is demonstrated:

3 WEAKEN ANALYSIS 48

unify(true) = ∅
unify(C ∧ τ = τ) = unify(C)
unify(C ∧ β = τ) = fail if β ∈ fv(τ), else

unify(C[τ/β]) ◦ [τ/β]
unify(C ∧ τ = β) = fail if β ∈ fv(τ), else

unify(C[τ/β]) ◦ [τ/β]
unify(C ∧ {s1} = {s2}) = unify(C ∧ s1 = s2)

unify(C ∧ τ1
H−→ τ2 = τ ′1

H′

−−→ τ ′2) = unify(C ∧H = H ′ ∧ τ1 = τ ′1 ∧ τ2 = τ ′2)

Figure 7: Constraint set unification algorithm

MGS (C) = let ψ1 = unify(C \ C ′) in MGSH(ψ1(C ′)) ◦ ψ1

where C ′ = {H v H ′ | H v H ′ ∈ C}

bounds(h,C) = H1| · · · |Hn where {H1, . . . ,Hn} = {H | H v h ∈ C}

MGSH(∅) = ∅
MGSH(C) = let ψ = [h′|µh.bounds(h,C)/h] in

MGSH(ψ(C \ {H v h | H v h ∈ C})) ◦ ψ
where h′ fresh

Figure 8: Most general solution algorithm

Theorem 3.3 (Algorithmic type safety) If Γ,H `W e : τ/C is valid for closed e, then e

does not go wrong.

Proof. Immediate from Theorem 3.4 and Theorem 3.2. ut

This result is obtained by composing this the logical type safety result found in (Skalka and

Smith 2004a) and the following theorem:

Theorem 3.4 (Soundness of inference) If ∅,H `W e : τ/C is satisfiable, then ∅, ψ(H) `

3 WEAKEN ANALYSIS 49

e : ψ(τ) is derivable where ψ = MGS(C).

First, several lemmas needed to obtain the above result are proved.

Lemma 3.1 If ψ is a most general solution of C, then C
 τ v ψ(τ).

Proof. For this result, it is sufficient to demonstrate that for any ψ′ which is a solution of

C, it is the case that ψ′(τ) 4 ψ′(ψ(τ)). By definition of most general solution, Definition 3.14,

there exists ψ′′ such that ψ′ = ψ′′ ◦ ψ. Substituting equals for equals obtains ψ′′(ψ(τ)) 4

ψ′′(ψ(ψ(τ))), and by idempotency of solutions, ψ′′(ψ(τ)) 4 ψ′′(ψ(τ)) which is true by reflexivity

of containment. ut

Lemma 3.2 ψ ◦ [β̄/ᾱ] ` C iff ψ ` C[β̄/ᾱ].

Proof. ψ ◦ [β̄/ᾱ] ` C iff (ψ ◦ [β̄/ᾱ])(τ1) v (ψ ◦ [β̄/ᾱ])(τ2) for all τ1 v τ2 ∈ C, which is equivalent

to ψ(τ1[β̄/ᾱ]) v ψ(τ2[β̄/ᾱ]) and holds iff ψ(τ ′1) v ψ(τ ′2) for all τ ′1 v τ ′2 ∈ C[β̄/ᾱ]. ut

Lemma 3.3 If ψ ` C ∧ C[β̄/ᾱ] then ψ ◦ [β̄/ᾱ] ` C ∧ C[β̄/ᾱ].

Proof. First observe the following equivalence by Lemma 3.2:

ψ ` C[β̄/ᾱ] ⇐⇒ ψ ◦ [β̄/ᾱ] ` C

What remains is to show ψ ◦ [β̄/ᾱ] ` C[β̄/ᾱ]. By assumption, ψ ` C[β̄/ᾱ]. Observe that

C[β̄/ᾱ] = C[β̄/ᾱ][β̄/ᾱ], thus ψ ` C[β̄/ᾱ][β̄/ᾱ] and by Lemma 3.2, ψ ◦ [β̄/ᾱ] ` C[β̄/ᾱ]. ut

Note that this lemma does not apply in the other direction as evinced by the following counter

example:

3 WEAKEN ANALYSIS 50

ψ , [γ′/α] ◦ [γ/β]
C , α v γ

Thus ψ ◦ [β/α] ` C ∧ C[β/α], but ψ 6` C ∧ C[β/α] since γ′ 6v γ.

Lemma 3.4 If C ∧ C[β̄/ᾱ]
 τ1 v τ2 then C ∧ C[β̄/ᾱ]
 τ1[β̄/ᾱ] v τ2[β̄/ᾱ].

Proof. Suppose ψ is a solution of C∧C[β̄/ᾱ], then ψ◦ [β̄/ᾱ] is also a solution by Lemma 3.3, and

ψ ◦ [β̄/ᾱ] ` τ1 v τ2 by Definition 3.13. It follows by Lemma 3.2 that ψ ` τ1[β̄/ᾱ] v τ2[β̄/ᾱ]. ut

The implication can be proved in the opposite direction with the restriction β̄]fv(C, τ1, τ2).

Lemma 3.5 If C ∧C[β̄/ᾱ]
 τ1[β̄/ᾱ] v τ2[β̄/ᾱ] then C ∧C[β̄/ᾱ]
 τ1 v τ2 when β̄]fv(C, τ1, τ2).

Proof. Suppose ψ is a solution of C ∧ C[β̄/ᾱ]. By assumption, ψ ` C, and since β̄]fv(C),

then C[ᾱ/β̄] = C. Thus, ψ ◦ [ᾱ/β̄] ` C, but is also a solution of C[β̄/ᾱ], since ψ ` C implies

ψ ` C[β̄/ᾱ][ᾱ/β̄] when β̄]fv(C), so ψ ◦ [ᾱ/β̄] ` C[β̄/ᾱ] by Lemma 3.2. Therefore ψ ◦ [β̄/ᾱ] `

τ1[β̄/ᾱ] v τ2[β̄/ᾱ] by Definition 3.13. By Lemma 3.2, ψ ` τ1[β̄/ᾱ][β̄/ᾱ] v τ2[β̄/ᾱ][β̄/ᾱ], which is

to say ψ ` τ1 v τ2 since β̄]fv(τ1, τ2). ut

Notice that the condition β̄ /∈ fv(τ1, τ2) is necessary since this lemma doesn’t hold otherwise.

Let τ1 , α and τ2 , β, thus τ1[β/α] v τ2[β/α] = β v β. Any C gives C
 β = β, so any one

such that β /∈ fv(C) may be chosen. Let C , true. Any substitution solves C, including the

empty substitution, but then 6` α v β.

Corollary 3.1 C ∧ C[β̄/ᾱ]
 τ1 v τ2 iff C ∧ C[β̄/ᾱ]
 τ1[β̄/ᾱ] v τ2[β̄/ᾱ] and β̄ /∈ fv(C, τ1, τ2).

Proof. Immediate in the left to right direction from Lemma 3.4, and in the right to left direction

from Lemma 3.5. ut

We can now prove the earlier Proposition 3.1.

3 WEAKEN ANALYSIS 51

Lemma 3.6 If α is invariant in ᾱ for C∧C[β̄/ᾱ], then C∧C[β̄/ᾱ]
 α v α[β̄/ᾱ] when β̄]fv(C).

Proof. By assumption and Definition 3.16, there exists α′ /∈ ᾱ and most general solution ψ of

C ∧ [β̄/ᾱ] such that α ∈ ψ(ᾱ′). But C ∧ C[β̄/ᾱ]
 ᾱ′ v ψ(ᾱ′) by Lemma 3.1, so C ∧ C[β̄/ᾱ]

ᾱ′ v ψ(α′)[β̄/ᾱ] by Lemma 3.4. Thus, C ∧C[β̄/ᾱ]
 ψ(α′) v ψ(α′)[β̄/ᾱ] and since α ∈ ψ(α′) by

assumption, the result follows in a straightforward manner by induction on ψ(α′). ut

Lemma 3.7 Let β̄]fv(C) and ᾱ′ be invariant in ᾱ for C ∧ C[β̄/ᾱ] and [β̄/ᾱ] = [β̄′/ᾱ′, . . .],

then for all τ and most general solutions ψ of C ∧ C[β̄/ᾱ] it is the case that (ψ(τ))[ψ(β̄′)/ᾱ′] v

ψ(τ [β̄/ᾱ]).

Proof. By Lemma 3.1, C ∧ C[β̄/ᾱ]
 τ v ψ(τ), so C ∧ C[β̄/ᾱ]
 τ [β̄/ᾱ] v (ψ(τ))[β̄/ᾱ] by

Lemma 3.4. This and Definition 3.13 implies:

ψ(τ [β̄/ᾱ]) = ψ((ψ(τ))[β̄/ᾱ])

By Lemma 3.6 and Definition 3.13:

ψ((ψ(τ))[β̄/ᾱ]) = ψ((ψ(τ))[β̄/ᾱ])

Clearly ψ((ψ(τ))[β̄′/ᾱ′]) = (ψ(τ)[ψ(β̄′)/ᾱ′]. ut

The MGS algorithm is used to construct the most general solution of a constraint when one

exists. Although a constraint can in general be of the form H = H ′ or H v H ′, both of which are

undecidable, the algorithm exploits two invariants of inference generated constraints that allow

them to be solved programmatically. The first is that atomic constraints between non-effect

types are variable in effect. So for example, constraints between function types will always be of

the form:

3 WEAKEN ANALYSIS 52

τ1
h1−→ τ ′1 v τ2

h2−→ τ ′2

Where the constraints τ1 v τ2 and τ ′2 v τ ′1 will likewise be variable in effect. Such a constraint

can be solved through unification since one variable can be substituted for the other.

Definition 3.18 (Variable in effect) A type τ , which is not a trace effect, is variable in effect

iff H is a strict subterm of τ , implies H ∈ VH . This notion is extended to type environments

and constraints; an environment Γ is variable in effect iff it maps every expression variable in its

domain to a type which is variable in effect; a constraint C is variable in effect iff all inequalities

in C are between types which are variable in effect.

Lemma 3.8 (Variable in effect invariant of inference) If Γ,H `W e : τ/C is derivable

and Γ is variable in effect, then τ/C is variable in effect.

Proof. By induction on the derivation of Γ,H `W e : τ/C, reasoning by case analysis on the

last step used in the derivation.

• Var.

This case follows since Γ is variable in effect.

• Const, Event, Check, If, and App.

These case follow in a similar manner. In each case the antecedent(s) do not extend the

type environment, so the induction hypothesis applies. Then notice that the conjoined

constraints in the consequent are variable in effect, so the cases hold.

• Fix.

3 WEAKEN ANALYSIS 53

In the antecedent, the environment is extended with bindings which are variable in effect,

so the induction hypothesis applies, and the case holds since t h−→ τ/τ v t′ ∧ H v h is

variable in effect iff τ is, and τ is by the inductive hypothesis.

• Let.

The environment is extended with x : ∀ᾱ.τ ′/C ′ in the Fix case, but τ ′/C ′ is variable in

effect by the induction hypothesis, so τ/C ∧C ′ is variable in effect, which proves this case.

ut

Lemma 3.9 (Soundness of unify) For any variable in effect constraint C, unify(C) returns

a solution of C if one exists, and fails otherwise.

Proof. By straightforward extension of, for example, page 328 of (Pierce 2002).

The second invariant on constraints crucial to the decidability of type inference is that atomic

constraints between effects form a system of lower bounds on effect variables. This is to say that

all effect constraints are of the form H v h. Constraints in such a form are easily solvable by

joining all effects flowing in to a particular variable. For example, the following subsitution solves

a constraint of this form:

[(µh.H1|H2| . . . |Hn)/h] ` H1 v h ∧H2 v h ∧ . . . ∧Hn v h

Since:

Hi 4 µh.H1|H2| . . . |Hn

3 WEAKEN ANALYSIS 54

Note that the µ is needed since h may appear free in Hi. We refer to this invariant as “friendli-

ness”.

Definition 3.19 (Friendly) A constraint C is friendly iff all atomic constraints between trace

effects are of the form H v h. This notion is extended to environments; an environment is

friendly when it maps each variable to some τ/C where C is friendly.

Lemma 3.10 (Friendly invariant of inference) If Γ,H `W e : τ/C and Γ is friendly, then

C is friendly.

Proof. By induction on the derivation of Γ,H `W e : τ/C. In the Var case, C is friendly since

C = C ′[β̄/ᾱ] for some C ′ in Γ.

The only rule which extends Γ with a constraint type is Let. But then C ′ is friendly by the

inductive hypothesis, so Γ;∀ᾱ.τ ′/C ′ is friendly, and the inductive hypothesis applies, giving that

C ∧ C ′ is friendly. The rest of the cases follow straightforwardly by observing that in each case

the conjoined constraints in the consequent are friendly. ut

We now show that MGSH returns a most general solution. (The following two lemmas are

stated without proof, which remains for future work).

Lemma 3.11 (Correctness of MGSH) For any friendly effect constraint C, MGSH(C) is a

most general solution of C.

Lemma 3.12 (Correctness of MGS) For any friendly C, MGS (C) is a most general solution

of C.

We assume the idempotency of solutions. This is done without loss of generality. Observe

that any solution can be given as an idempotent solution: MGS returns a solution if one exists

by Lemma 3.12, and it is idempotent.

3 WEAKEN ANALYSIS 55

The following lemma is used to reconstruct the form of subderivations given a derivable

judgment by inversion of the typing relation.

Lemma 3.13 (Inversion of inference relation)

• if Γ,H `V x : τ/C, then H = ε, Γ(x) = ∀ᾱ.k, V = ᾱ and there exists [β̄/ᾱ] such that

τ/C = k[β̄/ᾱ] and β̄ /∈ fv(k).

• if Γ,H `V c : τ/C, then H = ε, τ = {c}, C = true, and V = ∅.

• if Γ,H `V ev(e) : τ/C, then τ = unit and there exists a judgment Γ,H ′ `V′ e : τ ′/C ′ such

that H = H ′; ev(δ), C = C ′ ∧ τ ′ v {δ}, and V ′ = V ∪ {δ}.

• if Γ,H `V φ(e) : τ/C, then τ = unit and there exists a judgment Γ,H ′ `V′ e : τ ′/C ′ such

that H = H ′; evφ(δ), C = C ′ ∧ τ ′ v {δ}, and V ′ = V ∪ {δ}.

• if Γ,H `V if e1 then e2 else e3 : τ/C, then τ = t and there exists judgments, Γ,H1 `V1 e1 :

τ1/C1, Γ,H2 `V2 e2 : τ2/C2, and Γ,H3 `V3 e3 : τ3/C3 such that V = V1 ∪ V2 ∪ V3 ∪ {t},

V1]V2]V3, H = H1;H2|H3, and C = C1 ∧ C2 ∧ C3 ∧ τ1 v bool ∧ τ2 v t ∧ τ3 v t.

• if Γ,H `V e1 e2 : τ/C, then τ = t and there exists judgments, Γ,H1 `V1 e1 : τ1/C1

and Γ,H2 `V2 e2 : τ2/C2 such that V = V1 ∪ V2 ∪ {t, h}, V1]V2, H = H1;H2;h, and

C = C1 ∧ C2 ∧ τ1 v τ2
h−→ t.

• if Γ,H `V λzx.e : τ/C, then τ = t
h−→ t′, H = ε, and there exists a judgment Γ;x : t; z :

t
h−→ t′,H ′ `V′ e : τ ′/C ′ such that C = C ′ ∧ τ ′ v t′ ∧H ′ v h, V = V ′ ∪ {t, t′, h}.

• if Γ,H `V let x = v in e : τ/C, then there exists judgments, Γ, ε `V1 v : τ ′/C ′ and

Γ;∀ᾱ.τ ′/C ′,H `V2 e : τ/C ′′ and there exists [ᾱ′/ᾱ] such that [ᾱ′/ᾱ]C ′ ∧ C ′′ = C, V =

V1 ∪ V2, and V1]V2.

3 WEAKEN ANALYSIS 56

Proof. Immediate from definition of the type inference relation given in Figure 6. ut

We now prove the following main lemma:

Lemma 3.14 If Γ,H `W e : τ/C is derivable, then so is any most general solved form of

Γ,H `W e : τ/C ∧ CG, where CG is arbitrary.

Proof. By induction on the derivation of J , Γ,H `W e : τ/C, reasoning by case analysis on

the last rule used in the derivation. In each case, a logical judgment is constructed such that it

is a most general solved form of Γ,H `W e : τ/C ∧CG under ψ and then is shown to be logically

derivable.

• Case: Var, e = x

Let:

Γ , x1 : ∀ᾱ1.τ1/C1; . . . ;xn : ∀ᾱn.τn/Cn
C ′ , C ∧ C1 ∧ . . . ∧ Cn ∧ CG

By Lemma 3.13, H = ε, τ/C = (τi/Ci)[β̄/ᾱi] and the last step in the derivation of J is:

Γ(x) = ∀ᾱi.τi/Ci
Γ, ε `ᾱi

x : (τi/Ci)[β̄/ᾱi]

where β̄ fresh and i ∈ {1..n}. Clearly there exists C ′′ such that:

C ′ = C ′′ ∧ Ci ∧ Ci[β̄/ᾱi]

Since Γ,H `W e : τ/C ∧ CG has a solved form, it is canonical, hence ᾱi ∩ fv(C ′′) = ∅,

implying C ′′[β̄/ᾱi] = C ′′ and:

3 WEAKEN ANALYSIS 57

C ′ = (C ′′ ∧ Ci) ∧ (C ′′ ∧ Ci)[β̄/ᾱ]

Furthermore, letting:

Γ′ , xi : ∀ᾱ′1.ψ(τ1); . . . ;xn : ∀ᾱ′n.ψ(τn)

where ᾱ′i are variant in ᾱi for C ′ for i ∈ {1..n}, we have that Γ′,H ` e : ψ(τ) is a solved

form of Γ,H `W e : τ/C ∧ CG. The following judgment can be derived by the logical rule

Var:

Γ′(x) = ∀ᾱ′i.ψ(τi)
Γ′, ε ` x : (ψ(τi))[ψ(β̄′)/ᾱ′i]

where [β̄/ᾱi] = [β̄′/ᾱ′i, . . .], and since:

ψ(τ) = ψ(τi[β̄/ᾱi])

By Lemma 3.7:

ψ(τ) = (ψ(τi))[ψ(β̄′)/ᾱ′i])

so this case holds.

• Case: Const, e = c

By Lemma 3.13, H = ε and τ/C = {c}/true. By assumption, CG has a most general

solution ψ, so Γ′, ψ(ε) `V c : ψ{c} is a most general solved form of Γ, ε `V c : {c}/CG and

3 WEAKEN ANALYSIS 58

is derivable by the logical rule Const since ψ(ε) = ε and ψ({c}) = {c}.

• Case: Event, e = ev(e′)

By Lemma 3.13, τ = unit and there exists a judgment

J1 = Γ,H ′ ` e′ : τ ′/C ′

where:

H = H ′; ev(δ)
C = C ′ ∧ τ ′ v {δ}

CG ∧ C ′ ∧ τ ′ v {δ} has a solution, so the inductive hypothesis applies to the judgment

Γ,H ′ ` e′ : τ ′/CG ∧ C ′ ∧ τ ′ v {δ}, which therefore has a derivable most general solved

form under ψ, namely Γ′, ψ(H ′) ` e′ : ψ(τ ′). Note that ψ(τ ′) = ψ({δ}) by the fact that ψ

is a solution of τ ′ v {δ} and the definition of v. But Γ′, ψ(H ′); ev(ψ(δ)) ` ev(e′) : unit is

derivable by the logical rule Event, and is a most general solved form of Γ,H ` e : τ since

ψ(H ′); ev(ψ(τ ′)) = ψ(H ′);ψ(ev(δ))
= ψ(H ′; ev(δ))
= ψ(H)

unit = ψ(unit)
= ψ(τ)

So the case holds.

• Case: Check, e = φ(e′)

3 WEAKEN ANALYSIS 59

The result follows by a similar argument to the Event case.

• Case: If, e = if e1 then e2 else e3

By Lemma 3.13, τ = t, and there exists judgments:

Ji , Γ,Hi `W ei : τi/Ci i ∈ {1..3}

where:

H = H1; (H2|H3)
C = C1 ∧ C2 ∧ C3 ∧ τ1 v bool ∧ τ2 v t ∧ τ3 v t

CG ∧ C1 ∧ C2 ∧ C3 ∧ τ1 v bool ∧ τ2 v t ∧ τ3 v t has a solution, so the inductive hypothesis

applies to the judgments Γ,Hi ` ei : τi/CG∧C1∧C2∧C3∧τ1 v bool∧τ2 v t∧τ3 v t, which

therefore have derivable most general solved forms under ψ, namely Γ′, ψ(Hi) ` ei : ψ(τi).

Note that we are free to choose the same most general solution in each case since the

constraint is the same. The logical rule Weaken can be used to construct the following

derivations:

Jw1 ,
Γ′, ψ(H2) ` e2 : ψ(t) ψ(H2) 4 ψ(H2)|ψ(H3)

Γ′, ψ(H2)|ψ(H3) ` e2 : ψ(t)

Jw2 ,
Γ′, ψ(H3) ` e3 : ψ(t) ψ(H3) 4 ψ(H2)|ψ(H3)

Γ′, ψ(H2)|ψ(H3) ` e3 : ψ(t)

Now that the effect of the branches are in agreement, the following derivation can be

constructed using the logical rule If:

3 WEAKEN ANALYSIS 60

Γ′, ψ(H1) ` e1 : bool Jw1 Jw2

Γ′, ψ(H1); (ψ(H2)|ψ(H3)) ` if e1 then e2 else e3 : ψ(t)

Which shows a most general solved form of Γ,H ` e : τ is derivable since:

ψ(H1); (ψ(H2)|ψ(H3)) = ψ(H1; (H2|H3))
= ψ(H)

ψ(t) = ψ(τ)

So the case holds.

• Case: App, e = e1 e2

By Lemma 3.13, τ = t, and there exists judgments:

Ji , Γ,Hi `W ei : τi/Ci i ∈ {1..2}

where:

H = H1;H2;h

C = C1 ∧ C2 ∧ τ1 v τ2
h−→ t

CG ∧ C1 ∧ C2 ∧ τ1 v τ2
h−→ t has a solution, so the inductive hypothesis applies to the

judgments Γ,Hi ` ei : τi/CG ∧C1 ∧C2 ∧ τ1 v τ2
h−→ t, which therefore have derivable most

general solved forms under ψ, namely Γ′, ψ(Hi) ` ei : ψ(τi).

The following derivation can be constructed using App:

3 WEAKEN ANALYSIS 61

Γ′, ψ(H1) ` e1 : ψ(τ2)
ψ(h)−−−→ ψ(t) Γ′, ψ(H2) ` e2 : ψ(τ2)

Γ′, ψ(H1);ψ(H2);ψ(h) ` e1 e2 : ψ(t)

Which shows a most general solved form of Γ,H ` e : τ is derivable since:

ψ(H1);ψ(H2);ψ(h) = ψ(H1;H2;h)
= ψ(H)

ψ(t) = ψ(τ)

So the case holds.

• Case: Fix, e = λzx.e
′

By Lemma 3.13, τ = t
h−→ t′, H = ε, and there exists a judgment:

J1 , Γ;x : t; z : t h−→ t′,H ′ `W e′ : τ ′/C ′

Where:

C = C ′ ∧ τ ′ v t′ ∧H ′ v h

CG∧C ′∧τ ′ v t′∧H ′ v h has a solution, so the inductive hypothesis applies to the judgment

Γ;x : t; z : t h−→ t′,H ′ ` e′ : τ ′/CG ∧ C ′ ∧ τ ′ v t′ ∧H ′ v h, which therefore has a derivable

most general solved form under ψ, namely Γ′;x : ψ(t); z : ψ(t h−→ t′), ψ(H ′) ` e′ : ψ(τ ′).

Note that ψ(t h−→ t′) = ψ(t)
ψ(h)−−−→ ψ(t′). Therefore, the following derivation can be con-

structed using the logical rules Weaken and Fix:

3 WEAKEN ANALYSIS 62

Γ′;x : ψ(t); z : ψ(t)
ψ(h)−−−→ ψ(t′), ψ(H ′) ` e′ : ψ(t′) ψ(H ′) 4 ψ(h)

Γ′;x : ψ(t); z : ψ(t)
ψ(h)−−−→ ψ(t′), ψ(h) ` e′ : ψ(t′)

Γ′, ε ` λzx.e′ : ψ(t)
ψ(h)−−−→ ψ(t′)

Which shows a most general solved form of Γ,H ` e : τ is derivable since:

ψ(t)
ψ(h)−−−→ ψ(t′) = ψ(t h−→ t′)

= ψ(τ)
ε = ψ(ε)

= ψ(H)

So the case holds.

• Case: Let, e = let x = v in e′

By Lemma 3.13, there exists judgments:

J1 = Γ, ε ` v : τ ′/C ′

J2 = Γ;x : ∀ᾱ.τ ′/C ′,H ` e′ : τ/C ′′

Where:

ᾱ = fv(τ ′, C ′)− fv(Γ)
C = C ′ ∧ C ′′

CG ∧ C ′ ∧ C ′′ has a solution, so the inductive hypothesis applies to the judgment Γ,H ′ `

3 WEAKEN ANALYSIS 63

v : τ ′/CG ∧ C ′ ∧ C ′′, which therefore has a derivable most general solved form under ψ,

namely Γ′, ε ` v : ψ(τ ′). Let ᾱ′ be those variables in ᾱ which are variant for C ′ ∧C ′′ ∧CG.

Then Γ′;∀ᾱ′.ψ(τ ′), ψ(H) ` e′ : ψ(τ ′) is a most general solved form of Γ;x : ∀ᾱ′.τ ′/C ′,H `

e′ : τ/C ′ ∧ C ′′ ∧ CG, and so is also derivable by the induction hypothesis. By assumption,

ᾱ]fv(Γ), which implies ᾱ]fv(Γ′) by Definition 3.16, so the following is derivable by the

logical rule Let:

Γ′, ψ(ε) ` v : ψ(τ ′) ᾱ′]fv(Γ′) Γ′;x : ∀ᾱ′.ψ(τ ′), ψ(H) ` e′ : ψ(τ)
Γ′, ψ(H) ` let x = v in e′ : ψ(τ)

So this case holds.

ut

3 WEAKEN ANALYSIS 64

MGS∗
H(∅) = ∅

MGS∗
H(C) = let ψ = [µh.bounds(h,C)/h] in

MGS∗
H(ψ(C \ {H v h ∈ C})) ◦ ψ

Figure 9: Non-Most general solution algorithm

3.3 Digressions

This section includes a number of digressions from the main theme of this thesis. Section 3.3.1

discusses the MGS algorithm and how the algorithm presented in this thesis is a correction of

the algorithm appearing in (Skalka and Smith 2004a) that does not in fact return a most general

solution. Section 3.3.3 and Section 3.3.2 examine two simple mechanisms for infering more

compact representations of types and constraints. The first relies on an number of auxiliary

inference rules that are special or derived cases of the general rules given in Figure 6. By

distinguishing these cases, certain type and effect information can be safely discarded resulting

in a more effecient inference algorithm and smaller input to the model checking algorithm. The

other mechanism employs a trace effect transformation algorithm that simplifies effects in a

meaning preserving way in order to reduce the input to the model checker. Both mechanisms

have been implemented and are included in Appendix A.

3.3.1 The MGS algorithm

The MGS algorithm given in Figure 8 is a corrected version of the algorithm appearing in (Skalka

and Smith 2004a). The original presentation of the MGS algorithm, referred to here as MGS∗,

is given in Figure 9. The distinguishing feature is that the correct algorithm always inserts a

fresh variable into the system of lower bounds on h, whereas MGS∗ does not. Without remaining

3 WEAKEN ANALYSIS 65

abstract in the lower bounds, the MGS∗ algorithm returns a solution which is not most general,

as the following example demonstrates.

Example 3.8

λf.if true thenλx.ev1 else f

This function takes a function f as a parameter, branches on a boolean value, and returns

either λx.ev1 or the given function f . The argument f is forced to be a function by virtue of its

type being unified with λx.ev1, but as will be shown, the only requirement that should be made

on the effect of f is that it contains ev1. However, the MGS∗ algorithm imposes the requirement

that the effect of f be exactly ev1. The algorithmic derivation for this term is the following:

C1 , t′1 v unit ∧ h v ev1

J1 ,
f : t, x : t1, ev1 `∅ ev1 : unit/true

f : t, ε `{t1,t′1,h} λx.ev1 : t1
h−→ t′1/C1

C2 , C1 ∧ t2/t1
h−→ t′1 v t2 ∧ t v t2

f : t, ε `∅ true : bool/true J1 f : t, ε `∅ f : t/true
f : t, ε `{t1,t′1,t2,h} if true thenλx.ev1 else f : t2/C2

∅, ε `{t,t′,t1,t′1,t2,h,h′} λf.if true thenλx.ev1 else f : t h′

−→ t′/C2 ∧ t2 v t′ ∧ ε v h′

Solving this constraint with MGS∗ gives the following type for the program:

(t ev1−−→ unit) ε−→ (t ev1−−→ unit)

3 WEAKEN ANALYSIS 66

Observe that this is not a principal type by examining the logical derivation of this term

where Γ , x : t ev1−−→ unit:

Γ, ε ` true : bool
Γ;x : t, ev1 ` ev1 : unit

Γ, ε ` λx.ev1 : t ev1−−→ unit

Γ(f) = t
ev1−−→ unit

Γ, ε ` f : t ev1−−→ unit

Γ, ε ` if true thenλx.ev1 else f : t ev1−−→ unit

∅, ε ` λf.if true thenλx.ev1 else f : (t ev1−−→ unit) ε−→ (t ev1−−→ unit)

However, the following logical derivation is also derivable for this term where Γ′ , t
ev1|ev2−−−−→

unit:

Γ′, ε ` true : bool

Γ′;x : t, ev1 ` ev1 : unit
Γ′;x : t, ev1|ev2 ` ev1 : unit

Γ′, ε ` λx.ev1 : t
ev1|ev2−−−−→ unit

Γ′(f) = t
ev1|ev2−−−−→ unit

Γ′, ε ` f : t
ev1|ev2−−−−→ unit

Γ′, ε ` if true thenλx.ev1 else f : t
ev1|ev2−−−−→ unit

∅, ε ` λf.if true thenλx.ev1 else f : (t
ev1|ev2−−−−→ unit) ε−→ (t

ev1|ev2−−−−→ unit)

This shows that the type obtained from MGS∗ is not a principal type since there is no

substitution mapping type 1 to 2 below:

(t ev1−−→ unit) ε−→ (t ev1−−→ unit) (1)

(t
ev1|ev2−−−−→ unit) ε−→ (t

ev1|ev2−−−−→ unit) (2)

On the other hand, the corrected algorithm presented in Figure 8 gives the following type:

3 WEAKEN ANALYSIS 67

(t
ev1|h−−−→ unit)

ε|h′

−−→ (t
ev1|h−−−→ unit)

This is a principal type for this function. Observe that both of the above less general instances

can be obtained from the substitutions [ε/h′, ev1/h] and [ε/h′, ev2/h], respectively.

The idea of continually remaining partially abstract on the lower bounds for h is related

to the prior work on records in higher order languages such as the projective lambda calculus

(Rémy 1992). A function with the type t ev1−−→ unit might be viewed as a kind of record type that

identifies all records consisting solely of the field ev1. On the other hand, t
ev1|h−−−→ unit identifies

records consisting of at least the field ev1.

A practical consequence of the MGS∗ algorithm is a loss of modularity. For example, the

following type might be given by separate compilation:

` λf.if b thenλx.ev1 else f : (t ev1−−→ unit) ε−→ (t ev1−−→ unit)

But then the term (λf.if b thenλx.ev1 else f) λx.ev2 cannot be analyzed in a modular fashion;

the type must be re-inferred over the whole program. When a most general type is given by the

analysis, there is no need to re-examine the function being applied.

3.3.2 Simplification

This section describes a trace effect transformation used to simplify effects to obtain more com-

pact representations of the program’s trace. The trace effects that arise as a result of inference

3 WEAKEN ANALYSIS 68

ε;H →simp H H; ε→simp H
H1 →simp H

′
1

H1;H2 →simp H
′
1;H2

H2 →simp H
′
2

H1;H2 →simp H1;H ′
2

H|H →simp H
H1 →simp H

′
1

H1|H2 →simp H
′
1|H2

H2 →simp H
′
2

H1|H2 →simp H1|H ′
2

h 6∈ fv(H)
µh.H →simp H

Figure 10: Effect simplification rewrite rules

are often times large and unwieldy. This section describes an algorithm for reducing trace effects

to more compact descriptions.

There is no algorithm that when given a trace effect can return a unique and minimal trace

effect describing the same set of effects. However, some set of reductions can be performed that

will frequently produce much more understandable trace effects. The trace effect reduction rules

are given in Figure 10.

The following example shows terms with their type obtained from running the inference

algorithm, then computing and applying the most general solution as given by MGS , together

with a simplified type where latent effects have been reduced according to the above rules:

Example 3.9 (Inference result and simplification)

• λf.f (λx.ev i)

((t3
(µh2.(ε;evi)|h4)−−−−−−−−−−→ unit) h3−→ t2)

(µh1.(ε;(ε;h3))|h5)−−−−−−−−−−−−→ t2

((t3
(evi|h4)−−−−−→ unit) h3−→ t2)

(h3|h5)−−−−→ t2

3 WEAKEN ANALYSIS 69

• λx.λf.ifx then (f (λx.ev i)) else (f (λx.ev j))

bool
(µh6.ε|h12)−−−−−−−→ ((t13

(µh8.((ε;evi)|(ε;evj))|h13)−−−−−−−−−−−−−−−−→ unit) h9−→ t9)
(µh7.(ε;((ε;(ε;h9))|(ε;(ε;h9))))|h14)−−−−−−−−−−−−−−−−−−−−−−→ t9

bool
ε|h12−−−→ ((t13

(evi|evj)|h13−−−−−−−−→ unit) h9−→ t9)
h9|h14−−−−→ t9

• λf.evp:acct; (λx.evp:acct; evenable:r:filew(x); (f x))

(α h17−−→ t)
(µh15.((ε;evp:acct);ε)|h18)−−−−−−−−−−−−−−−−→ α

(µh16.((ε;evp:acct);((ε;evenable:r:filew(α));(ε;(ε;h17))))|h19)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ t

(α h17−−→ t)
(evp:acct|h18)−−−−−−−−→ α

((evp:acct;(evenable:r:filew(α);h17))|h19)−−−−−−−−−−−−−−−−−−−−−−−−−→ t

3.3.3 Direct inference rules

In this section, alternative inference rules are considered that maintain less information during

inference while remaining sound and complete with respect to the original algorithm.

We might consider a direct typing rule for sequences of expression e1; e2, such as:

Seq
Γ,H1 ` e1 : τ ′ Γ,H2 ` e2 : τ

Γ,H1;H2 ` e1; e2 : τ

It is possible to show this rule is superfluous. Suppose there exists a derivation of Γ,H1;H2 `

e1; e2 : τ using the Seq rule above. The expression e1; e2 is syntactic sugar for (λx.e2) e1, where

x /∈ fv(e2). By inversion on Seq, there exists judgments Γ,H1 ` e1 : τ ′ and Γ,H2 ` e2 : τ . But

note the following equivalence when x, z /∈ fv(e2) with τ ′ and H arbitrary.

3 WEAKEN ANALYSIS 70

Γ,H2 ` e2 : τ ⇐⇒ Γ;x : τ ′; z : τ ′ H−→ τ,H2 ` e2 : τ

Thus the following is derivable:

Γ;x : τ ′; z : τ ′ H−→ τ,H2 ` e2 : τ

Γ, ε ` λzx.e2 : τ ′ H2−−→ τ Γ,H1 ` e1 : τ ′

Γ,H1;H2 ` (λzx.e2) e1 : τ

Since any derivation that relies on the Seq rule can be expanded into a derivation that does

not, we have added no expressive power to the logical system. However, having a direct inference

rule for Seq leads to more compact constrained types. Consider the following direct inference

rule based on the logical Seq rule above:

Seq
Γ,H1 `V1 e1 : τ1/C1 Γ,H2 `V2 e2 : τ2/C2 V1]V2

Γ,H1;H2 `V1∪V2 e1; e2 : τ2/C1 ∧ C2

Without this rule, occurrences of the expression e1; e2 would be inferred as follows:

Γ;x : t; z : t h−→ t′,H2 `V2 e2 : τ2/C2

Γ, ε `V2∪{t,t′,h} λzx.e2 : t h−→ t′/C2 ∧ τ2 v t′ ∧H2 v h Γ,H1 `V1 e1 : τ1/C1

Γ,H1;h′ `V1∪V2∪{t2,t,t′,h,h′} (λzx.e2) e1 : t2/C1 ∧ C2 ∧ τ2 v t′ ∧H2 v h ∧ (t h−→ t′) v (τ1
h′

−→ t2)

Likewise, we might consider a direct rule for non-recursive functions:

3 WEAKEN ANALYSIS 71

Fun
Γ;x : τ ′,H ` e : τ

Γ, ε ` λx.e : τ ′ H−→ τ

With the corresponding inference rule:

Fun
Γ;x : t,H `V e : τ/C

Γ, ε `V∪{t,t′,h} λx.e : t h−→ t′/C ∧ τ v t′ ∧ h v H

Both of these direct rules improve the amount of information the algorithm needs to keep

track of during inference and eliminates needs constraints from the resulting type. Unlike the

simplification transformation, these reductions can be performed before other transformations

such as exceptionization and stackification, which in turn reduces the time and space needed to

perform these transformation, and the resulting trace effect is more compact.

4 IMPLEMENTATION 72

4 Implementation

Implementations of all the algorithms described in this document are given in the appendix.

Moreover, a full implementation of the λtrace language has be developed and is available to

perform trace effect analysis for λtrace programs.

In addition to the algorithms presented in this thesis, the trace effect transformations pre-

sented in (Skalka, Smith, and Van Horn 2005) have been implemented and are included in

Appendix A. These effect post-processing techniques include the exnization and stackification

transformation. Stackification returns the stack context generated by a program given its trace

effect. The stack context is useful in enforcing stack-based security mechanisms, such as Java’s

stack inspection mechanism (Wallach and Felten 1998). Exnization allows the language to be

extended with an exception mechanism without need to redesign the inference algorithm.

4.1 Overview

The implementation is written in the OCaml programming language (Leroy 2004) and is struc-

tured using a slightly modified version of the D Development Kit (DDK) accompanying Scott

Smith’s textbook, Programming Languages (Smith 2002).

The source code included in Appendix A implements the algorithms discussed in this pa-

per, but is a subset of the complete source code needed to run the system. In particular, the

driver application, command line processor, test suite, lexer, parser, etc. are not included in this

document. The full source and documentation for the system is available for the following URL:

http://www.cs.uvm.edu/~dvanhorn/trace/

Instructions on building and running the analysis, command line options, and description of

http://www.cs.uvm.edu/~dvanhorn/trace/

4 IMPLEMENTATION 73

the concrete syntax of λtrace are given in the README file. A number of example programs, their

inferred types, and the results of applying the various trace effect transformations are included

in the EXAMPLES file.

4.2 Description of source code

The files included in the appendix are described as follows:

• traceast.ml

This file defines the language of abstract syntax trees for expressions in λtrace as described

in Section 2.

• tracetype.ml

This file defines the language of types and trace effects as described in Section 3.

• traceinfer.ml

This files implements the type and trace effect inference algorithm given in Figure 6. The

resulting constrained type and effect can either be unified to obtain a type derivable in the

weakening system of Section 3, or can be closed according the subtype interpretation of

constraints and checked for consistency to obtain a type derivable in the subtyping system

of (Skalka, Smith, and Van Horn 2005). Both of these interpretations are given by the

following two files.

• traceweaken.ml

This file defines the constraint inference algorithm for the weaken system, unification, and

the MGS algorithm as described in Section 3.

4 IMPLEMENTATION 74

• tracesubtype.ml

This file define the subtyping interpretation of the flows to relation for obtaining the sub-

typing inference system described in (Skalka, Smith, and Van Horn 2005).

• tracetransform.ml

This file defines the effect transformation algorithms as described in Section 3.3.2 and

(Skalka, Smith, and Van Horn 2005).

The implementation proved to be an indispensable tool for the theoretical development. It

helped identify several problems during the development of these algorithms, and was a useful

feedback tool while developing the theoretical framework of trace effect analysis. It was used

extensively during the preparation of the examples used throughout this document.

5 CONCLUSION 75

5 Conclusion

This thesis has described an automated method for performing trace effect analysis, demonstrated

its implementation, and proved that programs analyzed under this method are safe; they obey

their temporal specifications for all possible executions. These temporal properties express the

well-formedness of program events and are expressive enough to capture many temporal program

correctness properties. The analysis is realized in the form of a programming type system and

automation is accomplished through polymorphic type and effect inference techniques. All the

needed algorithms have been implemented for a prototype functional programming language.

REFERENCES 76

References

Abadi, M. and C. Fournet (2003, feb). Access control based on execution history. In Proceedings
of the 10th Annual Network and Distributed System Security Symposium (NDSS’03). 13

Alpern, B. and F. B. Schneider (1984). Defining liveness. Technical report, Ithaca, NY, USA.
13

Amtoft, T., F. Nielson, and H. R. Nielson (1999). Type and Effect Systems. Imperial College
Press.
http://www2.imm.dtu.dk/~riis/WebDesign/tba.html. 12, 13

Barendregt, H. P. (1984). The Lambda Calculus: Its Syntax and Semantics. Amsterdam: North
Holland. 10

Burkart, O., D. Caucal, F. Moller, and B. Steffen (2001). Verification on infinite structures. In
S. S. J. Bergstra, A. Pons (Ed.), Handbook on Process Algebra. North-Holland.
http://www.irisa.fr/galion/caucal/HANDBOOK.ps. 12, 25

Burn, G., C. Hankin, and S. Abramsky (1986). Strictness analysis for higher order functions.
Science of Computer Programming 7, 249–278. 9

Cousot, P. and R. Cousot (1977). Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Conference Record
of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, Los Angeles, California, pp. 238–252. ACM Press, New York, NY.
http://www.di.ens.fr/~cousot/COUSOTpapers/POPL77.shtml. 7

Cousot, P. and R. Cousot (1994, May). Higher-order abstract interpretation (and application
to comportment analysis generalizing strictness, termination, projection and PER analysis
of functional languages), invited paper. In Proceedings of the 1994 International Conference
on Computer Languages, Toulouse, France, pp. 95–112. IEEE Computer Society Press, Los
Alamitos, California.
http://www.di.ens.fr/~cousot/COUSOTpapers/ICCL94.shtml. 9

Damas, L. and R. Milner (1982). Principal type-schemes for functional programs. In POPL ’82:
Proceedings of the 9th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pp. 207–212. ACM Press. 44

Damas, L. M. M. (1985). Type assignment in programming languages. Technical Report CST-
33-85, University of Edinburgh, Department of Computer Science. Ph.D. Thesis. 44

Edjlali, G., A. Acharya, and V. Chaudhary (1998). History-based access control for mobile code.
In ACM Conference on Computer and Communications Security, pp. 38–48. 13

Eifrig, J., S. Smith, and V. Trifonov (1995). Type inference for recursively constrained types
and its application to OOP. Volume 1.
http://www.elsevier.nl/locate/entcs/volume1.html. 15, 35

Esparza, J. (1994, April). On the decidability of model checking for several mu-calculi and
petri nets. In S. Tison (Ed.), Proceedings of the 19th International Colloquium on Trees in
Algebra and Programming (CAAP ’94) Trees in Algebra and Programming, Lecture Notes
in Computer Science, Edinburgh, U.K. Springer-Verlang.
http://www.lfcs.inf.ed.ac.uk/reports/93/ECS-LFCS-93-274/ECS-LFCS-93-274.ps.
11

http://www2.imm.dtu.dk/~riis/WebDesign/tba.html
http://www.irisa.fr/galion/caucal/HANDBOOK.ps
http://www.di.ens.fr/~cousot/COUSOTpapers/POPL77.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/ICCL94.shtml
http://www.elsevier.nl/locate/entcs/volume1.html
http://www.lfcs.inf.ed.ac.uk/reports/93/ECS-LFCS-93-274/ECS-LFCS-93-274.ps

REFERENCES 77

Gentzen, G. (1935). Untersuchungen über das logische schliessen. Mathmatische Zeitschrift 39,
176–210,405–431. Translated under the title Investigations into Logical Deductions in (Szabo
1969). 25

Hankin, C. (2004). An Introduction to Lambda Calculi for Computer Scientists, Volume 2. King’s
College London.
http://www.dcs.kcl.ac.uk/kcl-publications/comp/vol2.html. 10

Hindley, J. R. (1969). The principal type-scheme of an object in combinatory logic. Transactions
of the American Mathematical Society , 29–60. 15

Holzmann, G. J. (2003). Trends in software verification. In K. Araki, S. Gnesi, and D. Mandrioli
(Eds.), FME 2003: Formal Methods, International Symposium of Formal Methods Europe,
Pisa, Italy, September 8-14, 2003, Proceedings, Lecture Notes in Computer Science, pp. 40–
50. Springer-Verlang.
http://spinroot.com/gerard/pdf/fme03.pdf. 6

Holzmann, G. J. and M. H. Smith (2001). Software model checking: extracting verification
models from source code. Software Testing, Verification & Reliability 11 (2), 65–79.
http://spinroot.com/gerard/pdf/fortepstv99.pdf. 6

Jones, N. D. and F. Nielson (1995). Abstract interpretation: a semantics-based tool for program
analysis. pp. 527–636. 7

Kozen, D. (1983, December). Results on the propositional mu-calculus. Theoretical Computer
Science 27, 333–354. 11

Kupferman, O. and M. Y. Vardi (2001). Model checking of safety properties. Formal Methods
in Systems Design 19 (3), 291–314. 5, 6, 12

Lamport, L. (1977). Proving the correctness of multiprocess programs. IEEE Transactions on
Software Engineering 3 (2), 125–143. 13

Lee, O. and K. Yi (1998). Proofs about a folklore let-polymorphic type inference algorithm.
ACM Transactions of Programming Languages and Systems (TOPLAS) 20 (4), 707–723.
http://ropas.snu.ac.kr/lib/dock/LeYi1998.pdf. 44

Leroy, X. (2004, July). The Objective Caml system release 3.08: Documentation and user’s
manual.
http://caml.inria.fr/pub/docs/manual-ocaml/. 72

Melton, A., D. A. Schmidt, and G. E. Strecker (1986). Galois connections and computer science
applications. In Proceedings of a tutorial and workshop on Category theory and computer
programming, New York, NY, USA, pp. 299–312. Springer-Verlag New York, Inc. 8

Milner, R. (1978, August). A theory of type polymorphism in programming. Journal of Com-
puter and System Sciences 17, 348–375. 15

Milner, R., M. Tofte, R. Harper, and D. MacQueen (1997). The Definition of Standard ML
(Revised). MIT-Press. 5, 16

Naraschewski, W. and T. Nipkow (1998). Type inference verified: Algorithm W in Isabelle/HOL.
In E. Giménez and C. Paulin-Mohring (Eds.), Types for Proofs and Programs: Intl. Work-
shop TYPES ’96, Volume 1512, pp. 317–332. 44

http://www.dcs.kcl.ac.uk/kcl-publications/comp/vol2.html
http://spinroot.com/gerard/pdf/fme03.pdf
http://spinroot.com/gerard/pdf/fortepstv99.pdf
http://ropas.snu.ac.kr/lib/dock/LeYi1998.pdf
http://caml.inria.fr/pub/docs/manual-ocaml/

REFERENCES 78

Nielson, F. and H. R. Nielson (1999). Type and effect systems. In E. R. Olderog and B. Steffen,
editors, Correct System Design, Volume 1710 of Lecture Notes in Computer Science, pp.
114–136. Springer Verlang.
http://www.cs.ucla.edu/~palsberg/tba/papers/nielson-nielson-csd99.pdf. See
Jens Palsberg’s bibliography on “Type-Based Analysis and Applications” for this and
related papers,
http://www.cs.ucla.edu/~palsberg/tba/. 12

Nielson, F., H. R. Nielson, and C. Hankin (1999). Principles of Program Analysis. Secaucus,
NJ, USA: Springer-Verlag New York, Inc.
http://www2.imm.dtu.dk/~riis/PPA/ppa.html. 7

Paterson, M. S. and M. N. Wegman (1976). Linear unification. In STOC ’76: Proceedings of the
eighth annual ACM symposium on Theory of computing, New York, NY, USA, pp. 181–186.
ACM Press. 15

Pfenning, F. (2002). Linear logic.
http://www-2.cs.cmu.edu/~fp/courses/linear/handouts/linear.pdf. 15

Pierce, B. C. (2002). Types and Programming Languages. The MIT Press. 38, 53

President’s Information Technology Advisory Committee (1999). Report to the President: In-
formation Technology Research: Investing in Our Future.
http://www.itrd.gov/pitac/report/pitac_report.pdf. 4

Rémy, D. (1992). Projective ML. In 1992 ACM Conference on Lisp and Functional Program-
ming, New-York, pp. 66–75. ACM press.
ftp://ftp.inria.fr/INRIA/Projects/cristal/Didier.Remy/lfp92.ps.gz. 67

Robinson, J. A. (1971). Computational logic: The unification computation. Machine Intelli-
gence, 63–72. 15

Schmidt, D. A. (1998a). Data flow analysis is model checking of abstract interpretations. In
POPL ’98: Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, New York, NY, USA, pp. 38–48. ACM Press.
http://www.cis.ksu.edu/~schmidt/papers/dfa.ps.gz. 9

Schmidt, D. A. (1998b). Trace-Based Abstract Interpretation of Operational Semantics. Lisp
and Symbolic Computation 10 (3), 237–271.
http://www.cis.ksu.edu/~schmidt/papers/aiosh.ps.gz. 9

Schmidt, D. A. and B. Steffen (1998). Program analysis as model checking of abstract inter-
pretations. In SAS ’98: Proceedings of the 5th International Symposium on Static Analysis,
Volume 1503 of Lecture Notes in Computer Science, London, UK, pp. 351–380. Springer-
Verlag.
http://www.cis.ksu.edu/~schmidt/papers/paperneu9.ps.gz. 8

Schneider, F. B. (2000). Enforceable security policies. Information and System Security 3 (1),
30–50. 1

Shivers, O. G. (1991). Control-Flow Analysis of Higher-Order Languages, or Taming Lambda.
Ph. D. thesis, Pittsburgh, PA, USA.
http://www.cc.gatech.edu/~shivers/papers/cmu/diss.ps. 9

http://www.cs.ucla.edu/~palsberg/tba/papers/nielson-nielson-csd99.pdf
http://www.cs.ucla.edu/~palsberg/tba/
http://www2.imm.dtu.dk/~riis/PPA/ppa.html
http://www-2.cs.cmu.edu/~fp/courses/linear/handouts/linear.pdf
http://www.itrd.gov/pitac/report/pitac_report.pdf
ftp://ftp.inria.fr/INRIA/Projects/cristal/Didier.Remy/lfp92.ps.gz
http://www.cis.ksu.edu/~schmidt/papers/dfa.ps.gz
http://www.cis.ksu.edu/~schmidt/papers/aiosh.ps.gz
http://www.cis.ksu.edu/~schmidt/papers/paperneu9.ps.gz
http://www.cc.gatech.edu/~shivers/papers/cmu/diss.ps

REFERENCES 79

Skalka, C. and S. Smith (2004a, November). History effects and verification. In Asian Program-
ming Languages Symposium.
http://www.cs.uvm.edu/~skalka/skalka-pubs/skalka-smith-aplas04.pdf. 1, 11, 12,
15, 16, 21, 29, 36, 48, 64

Skalka, C. and S. Smith (2004b). History types and verification. Extended manuscript,
http://www.cs.uvm.edu/~skalka/skalka-smith-tr04.ps. 34

Skalka, C., S. Smith, and D. Van Horn (2005, January). A Type and Effect System for Flexible
Abstract Interpretation of Java (Extended Abstract). In Proceedings of the ACM Workshop
on Abstract Interpretation of Object Oriented Languages, Electronic Notes in Theoretical
Computer Science.
http://www.cs.uvm.edu/~skalka/skalka-pubs/skalka-smith-vanhorn-aiool05.pdf.
17, 72, 73, 74

Smith, S. (2002). Programming Languages.
http://www.cs.jhu.edu/~scott/plbook/. 72

Szabo, M. E. (Ed.) (1969). The Collected Papers of Gerhard Gentzen. Amsterdam: North-
Holland Publishing Co. 77

United States Computer Emergency Readiness Team (2005). US-Cert Vulnerability Notes
Database.
http://www.kb.cert.org/vuls/. 5

Wallach, D. S. and E. Felten (1998, May). Understanding Java stack inspection. In Proceedings
of the 1998 IEEE Symposium on Security and Privacy. 13, 72

Wells, J. B. (1999). Typability and type checking in System F are equivalent and undecidable.
Annals of Pure and Applied Logic 98 (1–3), 111–156.
http://www.macs.hw.ac.uk/~jbw/papers/f-undecidable-APAL.ps.gz. 16

Wright, A. K. and M. Felleisen (1994). A syntactic approach to type soundness. Information
and Computation 115 (1), 38–94. 5

http://www.cs.uvm.edu/~skalka/skalka-pubs/skalka-smith-aplas04.pdf
http://www.cs.uvm.edu/~skalka/skalka-smith-tr04.ps
http://www.cs.uvm.edu/~skalka/skalka-pubs/skalka-smith-vanhorn-aiool05.pdf
http://www.cs.jhu.edu/~scott/plbook/
http://www.kb.cert.org/vuls/
http://www.macs.hw.ac.uk/~jbw/papers/f-undecidable-APAL.ps.gz

A SOURCE CODE 80

A Source Code

A.1 traceast.ml

type expr =

| Seq of expr * expr

| App of expr * expr

| Event of label * expr

| Check of label * expr

| If of expr * expr * expr

| Let of evar * expr * expr

| Var of evar

| Fix of evar * evar * expr

| Const of label

| Bool of bool

| Unit

| Not

| Or

| And

| Try of expr * (label * expr) list

| Throw

and label = string

and evar = string

A.2 tracetype.ml

open Traceast;;

(** {i Singletons.} *)

type singleton =

SVar of label

| SConst of label

(** {i Trace Effects.} *)

type heffect =

HEv of label * singleton

| Choice of heffect * heffect

| HVar of label

| Mu of label * heffect

| Sequence of heffect * heffect

| Throw

| Catch of heffect

| Epsilon

(**

{i Types.}

\[\[[SingletonSet(s)]\]\] = \{s\}, whereas \[\[[Singleton(s)]\]\] = s.

*)

type htype =

A SOURCE CODE 81

TVar of tvar

| SingletonSet of singleton

| TBool

| TUnit

| Arrow of htype * heffect * htype

| Singleton of singleton

| HEffect of heffect

and tvar = string (** {i Type variables.} *)

(** {i Type solutions.} *)

type solution = (htype * htype) list

module Cset =

Set.Make(struct type t = (htype * htype) let compare = compare end)

(* Should change comparison to enforce that a Vset is comprised only of

values.

*)

module Vset =

Set.Make(struct type t = htype let compare = compare end)

module Hset =

Set.Make(struct type t = heffect let compare = compare end)

module Rset = (* Rset for "recursors" set *)

Set.Make(struct type t = (heffect * label) let compare = compare end)

include Cset

(** {i Constraint Sets.} *)

type constraint_set = t

(**

{i Constrained Type Schemes.}

[(beta,tau,c,hc)] binds all sorts of type variables in beta in type

tau, constraint set C, and effect constraint set HC. All types in list

beta must be of the form:

- [TVar t]

- [HEffect (HVar h)]

- [Singleton (SVar s)]

*)

type constrained_type_scheme =

(htype list * htype * constraint_set * constraint_set)

(** {i Type Environments.} Given in Figure 3. *)

type type_env = (evar * constrained_type_scheme) list

let empty_type_env : type_env = []

A SOURCE CODE 82

A.3 traceinfer.ml

open Traceast;;

open Tracetype;;

exception SubstError of htype * htype * htype

let rec subst_heffect heff heff’ h =

let HVar hv = h in

match heff with

HVar h’ when hv=h’ -> heff’

| Choice(h1,h2) ->

Choice((subst_heffect h1 heff’ h), (subst_heffect h2 heff’ h))

| Sequence(h1,h2) ->

Sequence((subst_heffect h1 heff’ h), (subst_heffect h2 heff’ h))

| Mu(h’,h1) ->

Mu((if hv=h’ then let HVar hv’ = heff’ in hv’ else h’),

(subst_heffect h1 heff’ h))

| _ -> heff

(**

{i Type substitution.}

Substitutes type tau’ for variable beta in type tau. The type of tau’

must respect the sort of variable beta.

\[\[[subst_htype tau tau’ beta]\]\] = tau\[tau’/beta\]

Beta is a variable of any sort. It can be of the following form:

- [TVar t]

- [HEffect (HVar h)]

- [Singleton (SVar s)]

When beta is of the form [TVar t], tau’ can be any htype which is {b

not} a [Singleton] or [HEffect].

When beta is of the form [HEffect (HVar h)], tau’ must of the form

[HEffect h].

When beta is of the form [Singleton (SVar s)], tau’ must be of the form

[Singleton s].

*)

let rec subst_htype =

let rec subst_singleton heff s’ s =

match heff with

| HEv(l,sing) when sing = s -> HEv(l,s’)

| Choice(h1,h2) ->

Choice((subst_singleton h1 s’ s), (subst_singleton h2 s’ s))

A SOURCE CODE 83

| Sequence(h1,h2) ->

Sequence((subst_singleton h1 s’ s), (subst_singleton h2 s’ s))

| Mu(h,h1) ->

Mu(h,(subst_singleton h1 s’ s))

| _ -> heff

in

fun tau tau’ b ->

match (tau’,b) with

| Singleton _, TVar t -> raise (SubstError(tau,tau’,b))

| HEffect _, TVar t -> raise (SubstError(tau,tau’,b))

| tau’, TVar t ->

(match tau with

| TVar t’ when t=t’ -> tau’

| Arrow(t1,h,t2) ->

Arrow((subst_htype t1 tau’ b),

h,

(subst_htype t2 tau’ b))

| _ -> tau)

| HEffect heff, HEffect (HVar hv) ->

(match tau with

| Arrow(t1,h,t2) ->

Arrow((subst_htype t1 tau’ b),

(subst_heffect h heff (HVar hv)),

(subst_htype t2 tau’ b))

| HEffect h -> HEffect (subst_heffect h heff (HVar hv))

| _ -> tau)

| Singleton sing, Singleton (SVar s) ->

(match tau with

| SingletonSet (SVar s’) when s=s’ -> SingletonSet sing

| Singleton (SVar s’) when s=s’ -> Singleton sing

| Arrow(t1,h,t2) ->

Arrow((subst_htype t1 tau’ b),

(subst_singleton h sing (SVar s)),

(subst_htype t2 tau’ b))

| HEffect h ->

HEffect (subst_singleton h sing (SVar s))

| _ -> tau)

| _ -> raise (SubstError(tau,tau’,b))

(**

{i Set mapping.}

[set_map f s] returns \{f(x) | x in S\}.

*)

let set_map f s = fold (fun x s -> (add (f x) s)) s empty

(**

{i Set choice.}

A SOURCE CODE 84

[set_choose s] returns (x,S\\{x\}) for some x in S.

*)

let set_choose s = let e = choose s in (e, remove e s)

(**

{i Constraint Set substitution.}

Substitutes type tau for type variable t in constraint set c. This

function extends type substitution to constraint sets in the obvious

manner, ie. the function returns the constraint set obtained by

substituting tau for t in each type in C.

\[\[[subst_cset c tau t]\]\] = C\[tau/t\]

*)

let subst_cset (c : constraint_set) tau t =

set_map (fun(t1,t2) -> ((subst_htype t1 tau t), (subst_htype t2 tau t))) c

let compose_map s1 s2 = s1@s2

let apply_map soln tau =

List.fold_right (fun (tau’,t) tau -> subst_htype tau tau’ t) soln tau

let apply_map_cset soln (c : constraint_set) =

set_map (fun (t1,t2) -> ((apply_map soln t1), (apply_map soln t2))) c

(**

{i Free variables}

[fv_htype tau] returns fv(tau).

[fv_cset c] extends fv to constraint sets.

*)

let rec fv_htype t =

match t with

TVar _ as t -> Vset.singleton t

| SingletonSet(SVar s) -> Vset.singleton (Singleton (SVar s))

| Arrow(t1,h,t2) ->

Vset.union

(Vset.union

(fv_htype t1)

(fv_htype (HEffect h)))

(fv_htype t2)

| Singleton(SVar _) as t -> Vset.singleton t

| HEffect(HVar _) as t -> Vset.singleton t

| HEffect(HEv (_,(SVar s))) -> Vset.singleton (Singleton (SVar s))

| HEffect(Sequence(h1,h2)) ->

Vset.union

(fv_htype (HEffect h1))

(fv_htype (HEffect h2))

| HEffect(Choice(h1,h2)) ->

A SOURCE CODE 85

Vset.union

(fv_htype (HEffect h1))

(fv_htype (HEffect h2))

| HEffect(Mu(h,h1)) ->

Vset.filter

((=) (HEffect(HVar h)))

(fv_htype (HEffect h1))

| _ -> Vset.empty

let fv_cset (c : constraint_set) =

fold

(fun (t1,t2) fv ->

(Vset.union fv (Vset.union (fv_htype t1) (fv_htype t2))))

c

Vset.empty

let fv_type_env (gamma : type_env) =

List.fold_right

(fun (x,(b,t,c,hc)) fv ->

Vset.union

(Vset.diff

(Vset.union

(Vset.union (fv_htype t) (fv_cset c))

(fv_cset hc))

Vset.empty)

(* (Vset.fold Vset.add b Vset.empty)) *)

fv)

gamma

Vset.empty

(**

{i Bounds.}

[bounds h c] constructs a history effect H | ... | H from all

constraints of the form "H flows into h" in C.

*)

let bounds b (c : constraint_set) =

match b with

HEffect(HVar _) ->

let x =

fold

(fun flowsto choices ->

match flowsto with

| (((HEffect he) as h), b’) when b=b’ ->

(match choices with

| None -> Some he

| Some choices -> Some(Choice(he,choices)))

| _ -> choices)

c

None

A SOURCE CODE 86

in

(match x with None -> Epsilon | Some c -> c)

(**

bounds_c(ev_x(a),C) = ev_x(c_1) | ... | ev_x(c_n) for all c <: a in C.

*)

let bounds_c ev (c : constraint_set) =

match ev with

HEv(l,(SVar a)) ->

let x =

fold

(fun flowsto choices ->

match flowsto with

| ((Singleton ((SConst _) as c)), (Singleton (SVar a’))) when a=a’ ->

(match choices with

| None -> Some (HEv(l,c))

| Some choices -> Some(Choice((HEv(l,c)),choices)))

| _ -> choices)

c

None

in

(match x with None -> Epsilon | Some c -> c)

(*

let rec mgs_heffect (c : constraint_set) : solution =

let c’ = filter

(function

| (HEffect _), (HEffect(HVar _)) -> true

| _ -> false)

c in

if is_empty c’ then []

else

let (_,h) = choose c’ in

let (HEffect (HVar hv)) = h in

compose_map

(mgs_heffect

(apply_map_cset p

(diff

c

(filter (fun (he,h’) -> h’=h) c’))))

p

*)

let fresh_hvar =

let i = ref 0 in

fun () ->

i := !i+1;

HVar ("h_" ^ (string_of_int !i) ^ "")

A SOURCE CODE 87

let rec mgs_heffect (c : constraint_set) : solution =

let c’ = filter

(function

| (HEffect _), (HEffect(HVar _)) -> true

| _ -> false)

c in

if is_empty c’ then []

else

let (_,h) = choose c’ in

let (HEffect (HVar hv)) = h in

(* This version was found to return non-MG substitutions. 2/28/05.

let p = [(HEffect(Mu(hv,(bounds h c)))),h] in *)

let p = [(HEffect(Choice((Mu(hv,(bounds h c))), fresh_hvar()))),h] in

compose_map

(mgs_heffect

(apply_map_cset p

(diff

c

(filter (fun (he,h’) -> h’=h) c’))))

p

let is_variable = function

| TVar _ -> true

| Singleton(SVar _) -> true

| HEffect(HVar _) -> true

| _ -> false

exception RecursiveConstraint

let occurs t tau = (Vset.mem t (fv_htype tau))

let rec unify (c : constraint_set) : solution =

if is_empty c then []

else let (x, c’) = set_choose c in

match x with

| tau,tau’ when tau=tau’ -> unify c’

| t,tau when is_variable t ->

if occurs t tau then raise RecursiveConstraint else

compose_map (unify (apply_map_cset [tau,t] c’)) [tau,t]

| tau,t when is_variable t ->

if occurs t tau then raise RecursiveConstraint else

compose_map (unify (apply_map_cset [tau,t] c’)) [tau,t]

| SingletonSet s1, SingletonSet s2 ->

unify (add (Singleton s1, Singleton s2) c’)

| Arrow(t1,h1,t2), Arrow(t1’,h2,t2’) ->

unify (add (HEffect h1, HEffect h2) (add (t1,t1’) (add (t2’,t2) c’)))

let mgs (c,hc) =

A SOURCE CODE 88

let p = unify c in

compose_map

(mgs_heffect (apply_map_cset p hc))

p

let fresh_tvar =

let i = ref 0 in

fun () ->

i := !i+1;

TVar ("t_" ^ (string_of_int !i) ^ "")

let fresh_svar =

let i = ref 0 in

fun () ->

i := !i+1;

SVar ("’a_" ^ (string_of_int !i) ^ "")

let rename (b,t,c,hc) =

List.fold_right

(fun x k ->

let (t,c,hc) = k in

let t’ =

(match x with

| TVar _ -> fresh_tvar()

| HEffect (HVar _) -> HEffect(fresh_hvar())

| Singleton(SVar _) -> Singleton(fresh_svar()))

in

((subst_htype t t’ x), (subst_cset c t’ x), (subst_cset hc t’ x)))

b

(t,c,hc)

(**

{i Type Inference for Weaken.}

*)

let rec infer (g,e) : (heffect * htype * constraint_set * constraint_set) =

match e with

| Var x ->

let (t,c,hc) = rename(List.assoc x g) in

Epsilon,t,c,hc

| Event(l,e) ->

let (h,t,c,hc) = infer (g,e) in

let a = fresh_svar() in

(Sequence(h,HEv(l,a))), TUnit, (add (t,(SingletonSet a)) c), hc

| Check(l,e) ->

let (h,t,c,hc) = infer (g,e) in

let a = fresh_svar() in

(Sequence(h,HEv("\\phi_{"^l^"}",a))), TUnit,

(add (t,(SingletonSet a)) c), hc

A SOURCE CODE 89

| If(e1,e2,e3) ->

let (h1,t1,c1,hc1) = infer (g,e1) in

let (h2,t2,c2,hc2) = infer (g,e2) in

let (h3,t3,c3,hc3) = infer (g,e3) in

let t = fresh_tvar() in

(Sequence(h1,(Choice(h2,h3)))), t,

List.fold_right add

[(t1,TBool); (t2,t); (t3,t)]

(union (union c1 c2) c3),

(union (union hc1 hc2) hc3)

| App(e1,e2) ->

let (h1,t1,c1,hc1) = infer (g,e1) in

let (h2,t2,c2,hc2) = infer (g,e2) in

let t = fresh_tvar() in

let h = fresh_hvar() in

(Sequence(h1,(Sequence(h2,h)))), t,

(add (t1,(Arrow(t2,h,t)))

(add ((Arrow(t2,h,t)),t1)

(union c1 c2))),

(union hc1 hc2)

| Fix(z,x,e) ->

let t = fresh_tvar() in

let t’= fresh_tvar() in

let h = fresh_hvar() in

let g = (x,([],t,empty,empty))::(z, ([],Arrow(t,h,t’),empty,empty))::g in

let (heff,tau,c,hc) = infer (g,e) in

Epsilon, (Arrow(t,h,tau)),

(add (tau,t’) c),

(add ((HEffect heff),(HEffect h)) hc)

| Let(x,v,e) ->

let (Epsilon,t’,c’,hc’) = infer (g,v) in

let beta = Vset.elements

(Vset.diff

(Vset.union

(Vset.union (fv_htype t’) (fv_cset c’))

(fv_cset hc’))

(fv_type_env g)) in

let g = (x,(beta,t’,c’,hc’))::g in

let (h,t,c,hc) = infer (g,e) in

h, t, (union c’ c), (union hc’ hc)

| Seq(e1,e2) ->

let (h1,t1,c1,hc1) = infer (g,e1) in

let (h2,t2,c2,hc2) = infer (g,e2) in

Sequence(h1,h2), t2, (union c1 c2), (union hc1 hc2)

A SOURCE CODE 90

| Const c -> Epsilon, (SingletonSet (SConst c)), empty, empty

| Bool _ -> Epsilon, TBool, empty, empty

| Unit -> Epsilon, TUnit, empty, empty

| And -> Epsilon, Arrow(TBool, Epsilon, Arrow(TBool, Epsilon, TBool)),

empty, empty

| Or -> Epsilon, Arrow(TBool, Epsilon, Arrow(TBool, Epsilon, TBool)),

empty, empty

| Not -> Epsilon, Arrow(TBool, Epsilon, TBool), empty, empty

(*

{i Type Inference for Subsumption.}

*)

let rec infer_sub (g,e) : (heffect * htype * constraint_set) =

match e with

| Var x ->

let (t,c,_) = rename(List.assoc x g) in

Epsilon,t,c

| Event(l,e) ->

let (h,t,c) = infer_sub (g,e) in

let a = fresh_svar() in

(Sequence(h,HEv(l,a))), TUnit, (add (t,(SingletonSet a)) c)

| Check(l,e) ->

let (h,t,c) = infer_sub (g,e) in

let a = fresh_svar() in

(Sequence(h,HEv("\\phi_{"^l^"}",a))), TUnit,

(add (t,(SingletonSet a)) c)

| If(e1,e2,e3) ->

let (h1,t1,c1) = infer_sub (g,e1) in

let (h2,t2,c2) = infer_sub (g,e2) in

let (h3,t3,c3) = infer_sub (g,e3) in

let t = fresh_tvar() in

(Sequence(h1,(Choice(h2,h3)))), t,

List.fold_right add

[(t1,TBool); (t2,t); (t3,t)]

(union (union c1 c2) c3)

| App(e1,e2) ->

let (h1,t1,c1) = infer_sub (g,e1) in

let (h2,t2,c2) = infer_sub (g,e2) in

let t = fresh_tvar() in

let h = fresh_hvar() in

(Sequence(h1,(Sequence(h2,h)))), t,

(add (t1,(Arrow(t2,h,t)))

(union c1 c2))

| Fix(z,x,e) ->

let t = fresh_tvar() in

A SOURCE CODE 91

let t’= fresh_tvar() in

let h = fresh_hvar() in

let g = (x,([],t,empty,empty))::(z, ([],Arrow(t,h,t’),empty,empty))::g in

let (heff,tau,c) = infer_sub (g,e) in

Epsilon, (Arrow(t,h,tau)),

(add (tau,t’)

(add ((HEffect heff),(HEffect h)) c))

| Let(x,v,e) ->

let (Epsilon,t’,c’) = infer_sub (g,v) in

let beta = Vset.elements

(Vset.diff

(Vset.union (fv_htype t’) (fv_cset c’))

(fv_type_env g)) in

let g = (x,(beta,t’,c’,empty))::g in

let (h,t,c) = infer_sub (g,e) in

h, t, (union c’ c)

| Seq(e1,e2) ->

let (h1,t1,c1) = infer_sub (g,e1) in

let (h2,t2,c2) = infer_sub (g,e2) in

Sequence(h1,h2), t2, (union c1 c2)

| Const c -> Epsilon, (SingletonSet (SConst c)), empty

| Bool _ -> Epsilon, TBool, empty

| Unit -> Epsilon, TUnit, empty

| And -> Epsilon, Arrow(TBool, Epsilon, Arrow(TBool, Epsilon, TBool)), empty

| Or -> Epsilon, Arrow(TBool, Epsilon, Arrow(TBool, Epsilon, TBool)), empty

| Not -> Epsilon, Arrow(TBool, Epsilon, TBool), empty

let rec find_fix equal f =

let rec recur x =

let y = (f x) in

if equal y x then x

else recur y

in

recur

let close_step c =

fold

(fun (t1,t2) set ->

union

(set_map

(function (t2,t3) -> (t1,t3))

(filter (function t2’,t3 -> t2=t2’) c))

(match (t1,t2) with

| (Arrow(t1,h,t2), Arrow(t1’,h’,t2’)) ->

(add (t1’,t1)

(add (t2,t2’)

A SOURCE CODE 92

(add ((HEffect h), (HEffect h’)) set)))

| (SingletonSet t1), (SingletonSet t2) ->

(add ((Singleton t1),(Singleton t2)) set)

| _ -> set))

c

c

(* At each iteration, map the closure rules across the set of contraints.

Iterate until a fixed point is reached.

*)

let close = find_fix equal close_step

let rec hextract (h,hs,c) =

match h with

| Epsilon -> Epsilon

| HEv(l,a) -> bounds_c h c

| HVar _ when Vset.mem (HEffect h) hs -> h

| HVar hv -> Mu(hv, (hextract((bounds (HEffect h) c), (Vset.add (HEffect h) hs), c)))

| Sequence(h1,h2) -> Sequence(hextract(h1,hs,c),hextract(h2,hs,c))

| Choice(h1,h2) -> Choice(hextract(h1,hs,c),hextract(h2,hs,c))

let rec consistent_p c =

for_all

(function

| tau,tau’ when tau=tau’ -> true

| SingletonSet _,SingletonSet _ -> true

| HEffect _,HEffect _ -> true

| ((TVar _,tau) | (tau, TVar _)) ->

(match tau with

| Singleton _ -> false

| HEffect _ -> false

| _ -> true)

| (((Singleton (SVar _)),(Singleton _)) | ((Singleton _), (Singleton (SVar _)))) -> true

| Arrow(_,_,_), Arrow(_,_,_) -> true

| _ -> false)

c

A.4 tracetransform.ml

open Tracetype;;

(**

{i Stackify transformation.}

*)

let rec stackify = function

| Epsilon -> Epsilon

| Sequence(Epsilon,h) -> stackify h

| Sequence(HEv(l,c), h) -> Sequence((HEv(l,c)), stackify h)

A SOURCE CODE 93

| Sequence(HVar hv, h) -> Choice((HVar hv), stackify h)

| Sequence(Mu(hv,h1),h2) -> Choice((Mu(hv, stackify h1)), stackify h2)

| Sequence(Choice(h1,h2),h) -> Choice(stackify (Sequence (h1,h)),

stackify (Sequence (h2,h)))

| Sequence(Sequence(h1,h2),h3) -> stackify(Sequence(h1,(Sequence(h2,h3))))

| h -> stackify (Sequence(h,Epsilon))

let rec simplify_heffect = function

| (Sequence(Epsilon,h)

| Sequence(h,Epsilon)) ->

simplify_heffect h

| Sequence(h,h’) ->

Sequence ((simplify_heffect h),(simplify_heffect h’))

| Choice(h,h’) ->

let h = simplify_heffect h in

let h’= simplify_heffect h’ in

if h=h’ then h

else Choice(h,h’)

| Mu(l,h) when not (Vset.mem (HEffect (HVar l)) (fv_htype (HEffect h))) ->

simplify_heffect h

| Mu(l,h) -> Mu(l,(simplify_heffect h))

| h -> h

let rec simplify_htype = function

| Arrow(t1,h,t2) ->

Arrow((simplify_htype t1), (simplify_heffect h), (simplify_htype t2))

| HEffect(h) -> HEffect(simplify_heffect h)

| t -> t

let simplify = find_fix (=) simplify_htype

(**

{i Set choice. (specialized for Hsets)}

[hset_choose s] returns (x,S\\{x\}) for some x in S.

*)

let rec hset_choose s = let e = Hset.choose s in (e, Hset.remove e s)

let rec join hset =

let (h, s) = hset_choose hset in

if Hset.is_empty s then h

else Choice(h, (join s))

(**

{i Cartesian sequencing construct}

For sequencing pairs of history effect sets.

[seq s1 s2] returns \{h1; h2 | h1 in S1, h2 in S2\}.

*)

A SOURCE CODE 94

let seq s1 s2 =

let f h s = Hset.fold

(fun h’ s’ -> Hset.add (Sequence (h,h’)) s’) s Hset.empty

in

Hset.fold

(fun h s -> Hset.union (f h s2) s) s1 Hset.empty

(**

{i Cartesian sequencing construct}

For sequencing a history effect set and a recursors set.

[rseq s r] returns \{(h1; h2, h) | h1 in S, h2,h in R\}.

*)

let rseq s r =

let f h r = Rset.fold

(fun (h’,hv) r -> Rset.add (Sequence (h,h’), hv) r) r Rset.empty

in

Hset.fold

(fun h r’ -> Rset.union (f h r) r’) s Rset.empty

(**

Compute the set of variables in a history effect.

*)

let rec hvs = function

| Epsilon -> Hset.empty

| HEv(_,_) -> Hset.empty

| Throw -> Hset.empty

| HVar _ as h -> Hset.singleton h

| Choice(h1,h2) -> Hset.union (hvs h1) (hvs h2)

| Sequence(h1,h2) -> Hset.union (hvs h1) (hvs h2)

| Mu(_,h) -> hvs h

| Catch h -> hvs h

let rset_map f s = Rset.fold (fun x s -> (Rset.add (f x) s)) s Rset.empty

let hset_map f s = Hset.fold (fun x s -> (Hset.add (f x) s)) s Hset.empty

(**

{i Exnixation transformation.}

Given in email by Chris, 11/15/04.

*)

(* heffect -> (Hset s, Hset t, Rset r) *)

let rec exnize = function

Epsilon -> (Hset.singleton Epsilon, Hset.empty, Rset.empty)

| HEv(_,_) as ev -> (Hset.singleton ev, Hset.empty, Rset.empty)

A SOURCE CODE 95

| Throw -> (Hset.empty, Hset.singleton Throw, Rset.empty)

| HVar hv as h -> (Hset.singleton h, Hset.empty,

Rset.singleton (Epsilon, hv))

| Choice(h1,h2) ->

let s1,t1,r1 = exnize h1 in

let s2,t2,r2 = exnize h2 in

(Hset.union s1 s2, Hset.union t1 t2, Rset.union r1 r2)

| Sequence(h1,h2) ->

let s1,t1,r1 = exnize h1 in

let s2,t2,r2 = exnize h2 in

(seq s1 s2, (Hset.union t1 (seq s1 t2)), Rset.union r1 (rseq s1 r2))

| Catch h ->

let s,t,r = exnize h in

(Hset.union s t, Hset.empty, r)

| Mu(hv,h) ->

let s,t,r = exnize h in

if Hset.is_empty s then

let r’ = Rset.filter

(fun (h,_) -> (not (Hset.exists ((=)(HVar hv)) (hvs h)))) r in

let rh = Rset.filter (fun (h,hv’) -> hv’ = hv) r’ in

let sh = Rset.fold

(fun (h,hv) s -> (Hset.add (Sequence (h,(HVar hv))) s))

rh Hset.empty

in

let t’’= hset_map (fun h -> Mu(hv, join (Hset.add h sh))) t in

(Hset.empty, t’’, Rset.diff r’ rh)

else

let hs = Mu(hv, join s) in

let r’ = rset_map

(fun (h, hv’) -> ((subst_heffect h hs (HVar hv)), hv’)) r

in

let rh = Rset.filter (fun (h,hv’) -> hv’ = hv) r’ in

let sh = Rset.fold

(fun (h,hv) s -> (Hset.add (Sequence (h,(HVar hv))) s))

rh Hset.empty

in

let t’ = hset_map

(fun h ->

Mu(hv, join (Hset.add (subst_heffect h hs (HVar hv)) sh)))

t

in

(Hset.singleton hs, t’, Rset.diff r’ rh)

exception Recursors_exn

let exnize_top h =

let s,t,r = exnize h in

A SOURCE CODE 96

if Rset.is_empty r then

join (Hset.union s t)

else

raise Recursors_exn

	Acknowledgements
	List of Figures
	Introduction
	Trace Effect Analysis
	Motivations
	Model Checking
	Abstract Interpretation
	Approach
	Run-time traces
	Static approximation of trace effects
	Liveness and Safety, Local and Global
	Subeffecting disciplines
	The algorithm

	Outline

	Core Language
	Syntax
	Semantics

	Weaken Analysis
	Logical System
	Types and trace effects
	Trace effect interpretation
	Logical judgments
	Weakening and type containment
	Expressiveness of weakening
	Expressiveness of polymorphism
	Validity of trace effects and Type Safety

	Algorithmic System
	Algorithmic judgments
	Relating logical and algorithmic judgments
	Soundness

	Digressions
	The MGS algorithm
	Simplification
	Direct inference rules

	Implementation
	Overview
	Description of source code

	Conclusion
	References
	Source Code
	2traceast.ml
	2tracetype.ml
	2traceinfer.ml
	2tracetransform.ml

