
Abstracting Abstract Machines

A Systematic Approach to Higher-Order Program Analysis

David Van Horn
∗

Northeastern University
Boston, Massachusetts

dvanhorn@ccs.neu.edu

Matthew Might
University of Utah

Salt Lake City, Utah
might@cs.utah.edu

ABSTRACT
Predictive models are fundamental to engineering reliable
software systems. However, designing conservative, com-
putable approximations for the behavior of programs (static
analyses) remains a difficult and error-prone process for mod-
ern high-level programming languages. What analysis de-
signers need is a principled method for navigating the gap
between semantics and analytic models: analysis designers
need a method that tames the interaction of complex lan-
guages features such as higher-order functions, recursion,
exceptions, continuations, objects and dynamic allocation.

We contribute a systematic approach to program analysis
that yields novel and transparently sound static analyses.
Our approach relies on existing derivational techniques to
transform high-level language semantics into low-level de-
terministic state-transition systems (with potentially infinite
state spaces). We then perform a series of simple machine
refactorings to obtain a sound, computable approximation,
which takes the form of a non-deterministic state-transition
systems with finite state spaces. The approach scales up
uniformly to enable program analysis of realistic language
features, including higher-order functions, tail calls, condi-
tionals, side effects, exceptions, first-class continuations, and
even garbage collection.

1. INTRODUCTION
Software engineering, compiler optimizations, program par-

allelization, system verification, and security assurance de-
pend on program analysis, a ubiquitous and central theme
of programming language research. At the same time, the
production of modern software systems employs expressive,
higher-order languages such as Java, JavaScript, C#, Python,
Ruby, etc., implying a growing need for fast, precise, and
scalable higher-order program analyses.

The original version of this paper was published as “Ab-
stracting Abstract Machines” in Proceedings of the 15th
ACM SIGPLAN International Conference on Functional
Programming.
∗Supported by the National Science Foundation under grant
0937060 to the Computing Research Association for the
CIFellow Project.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2011 ACM 0001-0782/08/0X00 ...$5.00.

Program analysis aims to soundly predict properties of
programs before being run. (Sound in program analysis
means “conservative approximation”: if a sound analysis
says a program must not exhibit behavior, then that pro-
gram will not exhibit that behavior; but if a sound analy-
sis says a program may exhibit a behavior, then it may or
may not exhibit that behavior.) For over thirty years, the
research community has expended significant effort design-
ing effective analyses for higher-order programs [13]. Past
approaches have focused on connecting high-level language
semantics such as structured operational semantics, deno-
tational semantics, or reduction semantics to equally high-
level but dissimilar analytic models. These models are too
often far removed from their programming language coun-
terparts and take the form of constraint languages speci-
fied as relations on sets of program fragments [25, 18, 12].
These approaches require significant ingenuity in their de-
sign and involve complex constructions and correctness ar-
guments, making it difficult to establish soundness, design
algorithms, or grow the language under analysis. Moreover,
such analytic models, which focus on“value flow”, i.e., deter-
mining which syntactic values may show up at which pro-
gram sites at run-time, have a limited capacity to reason
about many low-level intensional properties such as mem-
ory management, stack behavior, or trace-based properties
of computation. Consequently, higher-order program anal-
ysis has had limited impact on large-scale systems, despite
the apparent potential for program analysis to aid in the
construction of reliable and efficient software.

In this paper, we describe a systematic approach to pro-
gram analysis that overcomes many of these limitations by
providing a straightforward derivation process, lowering ver-
ification costs and accommodating sophisticated language
features and program properties.

Our approach relies on leveraging existing techniques to
transform high-level language semantics into abstract ma-
chines—low-level deterministic state-transition systems with
potentially infinite state spaces. Abstract machines [11], and
the paths from semantics to machines [20, 5, 7], have a long
history in the research on programming languages.

From an abstract machine, which represents the idealized
core of a realistic run-time system, we perform a series of ba-
sic machine refactorings to obtain a non-deterministic state-
transition system with a finite state space. The refactorings
are simple: (1) variable bindings and the control stack are
redirected through the machine’s store and (2) the store is
bounded to a finite size. Due to finiteness, store updates
must become merges, leading to the possibility of multi-

ple values residing in a single store location. This in turn
requires store look-ups be replaced by a non-deterministic
choice among the multiple values at a given location. The
derived machine computes a sound approximation of the
original machine, and thus forms an abstract interpretation
of the machine and the high-level semantics.

The approach scales up uniformly to enable program anal-
ysis of realistic language features, including higher-order
functions, tail calls, conditionals, side effects, exceptions,
first-class continuations, and even garbage collection. Thus,
we are able to refashion semantic techniques used to model
language features into abstract interpretation techniques for
reasoning about the behavior of those very same features.

Background and notation: We present a brief introduction
to reduction semantics and abstract machines. For back-
ground and a more extensive introduction to the concepts,
terminology, and notation employed in this paper, we refer
the reader to Semantics Engineering with PLT Redex [7].

2. FROM SEMANTICS TO MACHINES AND
MACHINES TO ANALYSES

In this section, we demonstrate our systematic approach
to analysis by stepping through a derivation from the high-
level semantics of a prototypical higher-order programming
language to a low-level abstract machine, and from the ab-
stract machine to a sound and computable analytic model
that predicts intensional properties of that machine. As a
prototypical language, we choose the call-by-value λ-calculus
[19], a core computational model for both functional and
object-oriented languages. We choose to model program be-
havior with a simple operational model given in the form
of a reduction semantics. Despite this simplicity, reduction
semantics scale to full-fledged programming languages [22],
although the choice is somewhat arbitrary since it is known
how to construct abstract machines from a number of se-
mantic paradigms [5]. In subsequent sections, we demon-
strate the approach handles richer language features such as
control, state, and garbage collection, and we have success-
fully employed the same method to statically reason about
language features such as laziness, exceptions, and stack-
inspection, and programming languages such as Java and
JavaScript. In all cases, analyses are derived following the
systematic approach presented here.

2.1 Reduction semantics
To begin, consider the following language of expressions:

e ∈ Exp = x | (ee) | (λx.e)
x ∈ Var an infinite set of identifiers.

The syntax of expressions includes variables, applications,
and functions. Values v, for the purposes of this language,
include only function terms, (λx.e). We say x is the for-
mal parameter of the function (λx.e), and e is its body. A
program is a closed expression, i.e., an expression in which
every variable occurs within some function that binds that
variable as its formal parameter. Call-by-value reduction is
characterized by the relation v:

((λx.e)v) v [v/x]e,

which states that a function applied to a value reduces to
the body of the function with every occurrence of the formal
parameter replaced by the value. The expression on the left-

hand side is a known as a redex and the right-hand side is
its contractum.

Reduction can occur within a context of an evaluation
context, defined by the following grammar:

E = [] | (Ee) | (vE).

An evaluation context can be thought of as an expression
with a single “hole” in it, which is where a redex may be re-
duced. It is straightforward to observe that for all programs,
either the program is a value, or it decomposes uniquely
into an evaluation context and redex, written E[((λx.e)v)].
Thus the grammar as given specifies a deterministic reduc-
tion strategy, which is formalized as a standard reduction
relation on programs:

E[e] 7−→v E[e′], if e v e′.

The evaluation of a program is defined by a partial function
relating programs to values [7, page 67]:

eval(e) = v if e 7−→→v v, for some v,

where 7−→→v denotes the reflexive, transitive closure of the
standard reduction relation.

We have now established the high-level semantic basis for
our prototypical language. The semantics is in the form of
an evaluation function defined by the reflexive, transitive
closure of the standard reduction relation. However, the
evaluation function as given does not shed much light on
a realistic implementation. At each step, the program is
traversed according to the grammar of evaluation contexts
until a redex is found. When found, the redex is reduced
and the contractum is plugged back into the context. The
process is then repeated, again traversing from the beginning
of the program. Abstract machines offer an extensionally
equivalent but more realistic model of evaluation that short-
cuts the plugging of a contractum back into a context and
the subsequent decomposition [6].

2.2 CEK machine
The CEK machine [20, Interpreter III][7, page 100] is a

state transition system that efficiently performs evaluation
of a program. There are two key ideas in its construction,
which can be carried out systematically [2]. The first is that
substitution, which is not a viable implementation strategy,
is instead represented in a delayed, explicit manner as an en-
vironment structure. So a substitution [v/x]e is represented
by e and an environment that maps x to v. Since e and v
may have previous substitutions applied, this will likewise
be represented with environments. So in general, if ρ is the
environment of e and ρ′ is the environment of v, then we
represent [v/x]e by e in the environment ρ extended with a
mapping of x to (v, ρ′), written ρ[x 7→ (v, ρ′)]. The pairing
of a value and an environment is known as a closure [11].

The second key idea is that evaluation contexts are con-
structed inside-out and represent continuations:

1. [] is represented by mt;

2. E[([]e)] is represented by ar(e′, ρ, κ) where ρ closes e′

to represent e and κ represents E; and

3. E[(v[])] is represented by fn(v′, ρ, κ) where ρ closes
v′ to represent v and κ represents E.

In this way, evaluation contexts form a program stack: mt
is the empty stack, and ar and fn are frames.

ς 7−→CEK ς ′

〈x, ρ, κ〉 〈v, ρ′, κ〉 where ρ(x) = (v, ρ′)

〈(e0e1), ρ, κ〉 〈e0, ρ,ar(e1, ρ, κ)〉
〈v, ρ,ar(e, ρ′, κ)〉 〈e, ρ′, fn(v, ρ, κ)〉
〈v, ρ, fn((λx.e), ρ′, κ)〉 〈e, ρ′[x 7→ (v, ρ)], κ〉

Figure 1: CEK machine.

States of the CEK machine are triples consisting of an
expression, an environment that closes the control string,
and a continuation:

ς ∈ Σ = Exp × Env × Cont
v ∈ Val = (λx.e)
ρ ∈ Env = Var →fin Val × Env
κ ∈ Cont = mt | ar(e, ρ, κ) | fn(v, ρ, κ).

The transition function for the CEK machine is defined in
Figure 1. The initial machine state for a program e is given
by the injCEK function:

injCEK (e) = 〈e, ∅,mt〉.

Evaluation is defined by the reflexive, transitive closure of
the machine transition relation and a “real” function [19,
page 129] that maps closures to the term represented:

evalCEK (e) = real(v, ρ), where injCEK (e) 7−→→v 〈v, ρ,mt〉,

which is equivalent to the eval function of Section 2.1:

Lemma 1 (CEK Correctness [7]) evalCEK = eval.

We have now established a correct low-level evaluator for
our prototypical language that is extensionally equivalent to
the high-level reduction semantics. However, program anal-
ysis is not just concerned with the result of a computation,
but also with how it was produced, i.e., analysis should pre-
dict intensional properties of the machine as it runs a pro-
gram. We therefore adopt a reachable states semantics that
relates a program to the set of all its intermediate steps:

CEK (e) = {ς | injCEK (e) 7−→→CEK ς}.

Membership in the set of reachable states is straightfor-
wardly undecidable. The goal of analysis, then, is to con-
struct an abstract interpretation [4] that is a sound and com-
putable approximation of the CEK function.

We can do this by constructing a machine that is simi-
lar in structure to the CEK machine: it is defined by an
abstract state transition relation, 7−→

ĈEK
, which operates

over abstract states, Σ̂, that approximate states of the CEK
machine. Abstract evaluation is then defined as:

ĈEK (e) = {ς̂ | inj
ĈEK

(e) 7−→→
ĈEK

ς̂}.

1. Soundness is achieved by showing transitions preserves
approximation, so that if ς 7−→CEK ς ′ and ς̂ approx-
imates ς, then there exists an abstract state ς̂ ′ such
that ς̂ 7−→

ĈEK
ς̂ ′ and ς̂ ′ approximates ς ′.

2. Decidability is achieved by constructing the approxi-
mation in such a way that the state-space of the ab-
stracted machine is finite, which guarantees that for

any program e, the set ĈEK (e) is finite.

An attempt at approximation: A simple approach to
abstracting the machine’s state space is to apply a struc-
tural abstraction, which lifts approximation across the struc-
ture of a machine state, i.e., expressions, environments, and
continuations. The problem with the structural abstraction
approach for the CEK machine is that both environments
and continuations are recursive structures. As a result, the
abstraction yields objects in an abstract state-space with
recursive structure, implying the space is infinite.

Focusing on recursive structure as the source of the prob-
lem, our course of action is to add a level of indirection, forc-
ing recursive structure to pass through explicitly allocated
addresses. Doing so unhinges the recursion in the machine’s
data structures, enabling structural abstraction via a single
point of approximation: the store.

The next section covers the first of the two steps for refac-
toring the CEK machine into its computable approximation:
a store component is introduced to machine states and vari-
able bindings and continuations are redirected through the
store. This step introduces no approximation and the con-
structed machine operates in lock-step with the CEK ma-
chine. However, the machine is amenable to a direct struc-
tural abstraction.

2.3 CESK∗ machine
The states of the CESK∗ machine extend those of the

CEK machine to include a store, which provides a level of
indirection for variable bindings and continuations to pass
through. The store is a finite map from addresses to storable
values, which includes closures and continuations, and envi-
ronments are changed to map variables to addresses. When
a variable’s value is looked-up by the machine, it is now
accomplished by using the environment to look up the vari-
able’s address, which is then used to look up the value. To
bind a variable to a value, a fresh location in the store is allo-
cated and mapped to the value; the environment is extended
to map the variable to that address.

To untie the recursive structure associated with contin-
uations, we likewise add a level of indirection through the
store and replace the continuation component of the machine
with a pointer to a continuation in the store. We term the
resulting machine the CESK∗ (control, environment, store,
continuation pointer) machine.

ς ∈ Σ = Exp × Env × Store ×Addr
s ∈ Storable = Val × Env + Cont
κ ∈ Cont = mt | ar(e, ρ, a) | fn(v, ρ, a).

The transition function for the CESK∗ machine is defined
in Figure 2. The initial state for a program is given by
the injCESK∗ function, which combines the expression with
the empty environment and a store with a single pointer to
the empty continuation, whose address serves as the initial
continuation pointer:

injCESK∗(e) = 〈e, ∅, [a0 7→mt], a0〉.

An evaluation function based on this machine is defined
following the template of the CEK evaluation given in Sec-
tion 2.2:

evalCESK∗(e) = real(v, ρ, σ), where

injCESK∗(e) 7−→→CESK∗ 〈v, ρ, σ, a0〉,

where the real function is suitably extended to follow the
environment’s indirection through the store.

ς 7−→CESK∗ ς ′, where κ = σ(a), b /∈ dom(σ)

〈x, ρ, σ, a〉 〈v, ρ′, σ, a〉 where (v, ρ′) = σ(ρ(x))

〈(e0e1), ρ, σ, a〉 〈e0, ρ, σ[b 7→ ar(e1, ρ, a)], b〉
〈v, ρ, σ, a〉
if κ = ar(e, ρ′, c) 〈e, ρ′, σ[b 7→ fn(v, ρ, c)], b〉
if κ = fn((λx.e), ρ′, c) 〈e, ρ′[x 7→ b], σ[b 7→ (v, ρ)], c〉

Figure 2: CESK∗ machine.

We also define the set of reachable machine states:

CESK ∗(e) = {ς | injCESK∗(e) 7−→→CESK∗ ς}.

Observe that for any program, the CEK and CESK∗ ma-
chines operate in lock-step: each machine transitions, by the
corresponding rule, if and only if the other machine transi-
tions.

Lemma 2 CESK ∗(e) ' CEK (e)

The above lemma implies correctness of the machine.

Lemma 3 (CESK∗ Correctness) evalCESK∗ = eval.

Addresses, abstraction and allocation: The CESK∗

machine, as defined in Figure 2, nondeterministically chooses
addresses when it allocates a location in the store, but be-
cause machines are identified up to consistent renaming of
addresses, the transition system remains deterministic.

Looking ahead, an easy way to bound the state-space of
this machine is to bound the set of addresses. But once the
store is finite, locations may need to be reused and when
multiple values are to reside in the same location; the store
will have to soundly approximate this by joining the values.

In our concrete machine, all that matters about an alloca-
tion strategy is that it picks an unused address. In the ab-
stracted machine however, the strategy will all but certainly
have to re-use previously allocated addresses. The abstract
allocation strategy is therefore crucial to the design of the
analysis—it indicates when finite resources should be doled
out and decides when information should deliberately be
lost in the service of computing within bounded resources.
In essence, the allocation strategy is the heart of an analysis.

For this reason, concrete allocation deserves a bit more
attention in the machine. An old idea in program analy-
sis is that dynamically allocated storage can be represented
by the state of the computation at allocation time [10; 13,
Section 1.2.2]. That is, allocation strategies can be based
on a (representation) of the machine history. Since machine
histories are always fresh, we we call them time-stamps.

A common choice for a time-stamp, popularized by Shiv-
ers [21], is to represent the history of the computation as
contours, finite strings encoding the calling context. We
present a concrete machine that uses a general time-stamp
approach and is parameterized by a choice of tick and alloc
functions.

2.4 Time-stamped CESK∗ machine
The machine states of the time-stamped CESK∗ machine

include a time component, which is intentionally left un-
specified:

t, u ∈ Time
ς ∈ Σ = Exp × Env × Store ×Addr × Time.

ς 7−→CESK∗
t
ς ′, where κ = σ(a), b = alloc(ς), u = tick(ς)

〈x, ρ, σ, a, t〉 〈v, ρ′, σ, a, u〉 where (v, ρ′) = σ(ρ(x))

〈(e0e1), ρ, σ, a, t〉 〈e0, ρ, σ[b 7→ ar(e1, ρ, a)], b, u〉
〈v, ρ, σ, a, t〉
if κ = ar(e, ρ, c) 〈e, ρ, σ[b 7→ fn(v, ρ, c)], b, u〉
if κ = fn((λx.e), ρ′, c) 〈e, ρ′[x 7→ b], σ[b 7→ (v, ρ)], c, u〉

Figure 3: Time-stamped CESK∗ machine.

The machine is parameterized by the functions:

tick : Σ→ Time alloc : Σ→ Addr .

The tick function returns the next time; the alloc function
allocates a fresh address for a binding or continuation. We
require of tick and alloc that for all t and ς, t < tick(ς) and
alloc(ς) /∈ σ where ς = 〈 , , σ, , t〉.

The time-stamped CESK∗ machine is defined in Figure 3.
Note that occurrences of ς on the right-hand side of this defi-
nition are implicitly bound to the state occurring on the left-
hand side. The evaluation function evalCESK∗

t
and reachable

states CESK ∗t are defined following the same outline as be-
fore and omitted for space. The initial machine state is
defined as:

injCESK∗
t

(e) = 〈e, ∅, [a0 7→mt], a0, t0〉.

Satisfying definitions for the parameters are:

Time = Addr = Z
a0 = t0 = 0 tick〈 , , , , t〉 = t+ 1 alloc〈 , , , , t〉 = t.

Under these definitions, the time-stamped CESK∗ machine
operates in lock-step with the CESK∗ machine, and there-
fore with the CEK machine, implying its correctness.

Lemma 4 CESK ∗t (e) ' CESK ∗(e).

The time-stamped CESK∗ machine forms the basis of our
abstracted machine in the following section.

2.5 Abstract time-stamped CESK∗ machine
As alluded to earlier, with the time-stamped CESK∗ ma-

chine, we now have a machine ready for direct abstract inter-
pretation via a single point of approximation: the store. Our
goal is a machine that resembles the time-stamped CESK∗

machine, but operates over a finite state-space and it is al-
lowed to be nondeterministic. Once the state-space is finite,
the transitive closure of the transition relation becomes com-
putable, and this transitive closure constitutes a static anal-
ysis. Buried in a path through the transitive closure is a
possibly infinite traversal that corresponds to the concrete
execution of the program.

The abstracted variant of the time-stamped CESK∗ ma-
chine comes from bounding the address space of the store
and the number of times available. By bounding the address
space, the whole state-space becomes finite. (Syntactic sets
like Exp are infinite, but finite for any given program.) For
the purposes of soundness, an entry in the store may be
forced to hold several values simultaneously:

σ̂ ∈ Ŝtore = Addr →fin P (Storable).

ς̂ 7−→
ĈESK∗

t
ς̂ ′, where κ ∈ σ̂(a), b = âlloc(ς̂ , κ), u = t̂ick(ς̂ , κ)

〈x, ρ, σ̂, a, t〉 〈v, ρ′, σ̂, a, u〉 where (v, ρ′) ∈ σ̂(ρ(x))

〈(e0e1), ρ, σ̂, a, t〉 〈e0, ρ, σ̂ t [b 7→ ar(e1, ρ, a)], b, u〉
〈v, ρ, σ̂, a, t〉
if κ = ar(e, ρ′, c) 〈e, ρ′, σ̂ t [b 7→ fn(v, ρ, c)], b, u〉
if κ = fn((λx.e), ρ′, c) 〈e, ρ′[x 7→ b], σ̂ t [b 7→ (v, ρ)], c, u〉

Figure 4: Abstract time-stamped CESK∗ machine.

Hence, stores now map an address to a set of storable values
rather than a single value. These collections of values model
approximation in the analysis. If a location in the store is re-
used, the new value is joined with the current set of values.
When a location is dereferenced, the analysis must consider
any of the values in the set as a result of the dereference.

The abstract time-stamped CESK∗ machine is defined in
Figure 4. The non-deterministic abstract transition rela-
tion changes little compared with the concrete machine. We
only have to modify it to account for the possibility that
multiple storable values, which includes continuations, may
reside together in the store. We handle this situation by let-
ting the machine non-deterministically choose a particular
value from the set at a given store location.

The analysis is parameterized by abstract variants of the
functions that parameterized the concrete version:

t̂ick : Σ̂× Cont → Time, âlloc : Σ̂× Cont → Addr .

In the concrete, these parameters determine allocation and
stack behavior. In the abstract, they are the arbiters of
precision: they determine when an address gets re-allocated,
how many addresses get allocated, and which values have to
share addresses.

Recall that in the concrete semantics, these functions con-
sume states—not states and continuations as they do here.
This is because in the concrete, a state alone suffices since
the state determines the continuation. But in the abstract, a
continuation pointer within a state may denote a multitude
of continuations; however the transition relation is defined
with respect to the choice of a particular one. We thus pair
states with continuations to encode the choice.

The abstract semantics is given by the reachable states:

ĈESK ∗t (e) = {ς̂ | α(injCESK∗
t
(e)) 7−→→

ĈESK∗
t
ς̂}.

Soundness and decidability: We have endeavored to
evolve the abstract machine gradually so that its fidelity
in soundly simulating the original CEK machine is both
intuitive and obvious. To formally establish soundness of
the abstract time-stamped CESK∗ machine, we use an ab-
straction function, defined in Figure 5, from the state-space
of the concrete time-stamped machine into the abstracted
state-space.

The abstraction map over times and addresses is defined

so that the parameters âlloc and t̂ick are sound simulations
of the parameters alloc and tick, respectively. We also define
the partial order (v) on the abstract state-space as the nat-
ural point-wise, element-wise, component-wise and member-
wise lifting, wherein the partial orders on the sets Exp and
Addr are flat. Then, we can prove that abstract machine’s

α(e, ρ, σ, a, t) = (e, α(ρ), α(σ), α(a), α(t)) [states]

α(ρ) = λx.α(ρ(x)) [environments]

α(σ) = λâ.
⊔

α(a)=â

{α(σ(a))} [stores]

α((λx.e), ρ) = ((λx.e), α(ρ)) [closures]

α(mt) = mt [continuations]

α(ar(e, ρ, a)) = ar(e, α(ρ), α(a))

α(fn(v, ρ, a)) = fn(v, α(ρ), α(a))

Figure 5: Abstraction map, α : ΣCESK∗
t
→ Σ̂

ĈESK∗
t
.

transition relation simulates the concrete machine’s transi-
tion relation.

Theorem 1 (Soundness)
If ς 7−→CEK ς ′ and α(ς) v ς̂, then there exists an abstract
state ς̂ ′, such that ς̂ 7−→

ĈESK
∗
t
ς̂ ′ and α(ς ′) v ς̂ ′.

Proof. By Lemmas 3 and 4, it suffices to prove sound-
ness with respect to 7−→CESK∗

t
. Assume ς 7−→CESK∗

t
ς ′ and

α(ς) v ς̂. Because ς transitioned, exactly one of the rules
from the definition of (7−→CESK∗

t
) applies. We split by cases

on these rules. The rule for the second case is deterministic
and follows by calculation. For the remaining (nondeter-
ministic) cases, we must show an abstract state exists such
that the simulation is preserved. By examining the rules for
these cases, we see that all three hinge on the abstract store
in ς̂ soundly approximating the concrete store in ς, which
follows from the assumption that α(ς) v ς̂.

Theorem 2 (Decidability)

Membership of ς̂ in ĈESK ∗t (e) is decidable.

Proof. The state-space of the machine is non-recursive
with finite sets at the leaves on the assumption that ad-
dresses are finite. Hence reachability is decidable since the
abstract state-space is finite.

3. ABSTRACT STATE AND CONTROL
We have shown that store-allocated continuations make

abstract interpretation of the CESK? machine straightfor-
ward. In this section, we want to show that the tight corre-
spondence between concrete and abstract persists after the
addition of language features such as conditionals, side ef-
fects, and first-class continuations. We tackle each feature,
and present the additional machinery required to handle
each one. In most cases, the path from a canonical con-
crete machine to pointer-refined abstraction of the machine
is so simple we only show the abstracted system. In doing
so, we are arguing that this abstract machine-oriented ap-
proach to abstract interpretation represents a flexible and
viable framework for building program analyses.

To handle conditionals, we extend the language with a
new syntactic form, (if e e e), and introduce a base value
#f, representing false. Conditional expressions induce a new
continuation form: if(e′0, e

′
1, ρ, a), which represents the eval-

uation context E[(if [] e0 e1)] where ρ closes e′0 to repre-
sent e0, ρ closes e′1 to represent e1, and a is the address of
the representation of E.

ς̂ 7−→
ĈESK∗

t
ς̂ ′, where κ ∈ σ̂(a), b = âlloc(ς̂ , κ), u = t̂ick(ς̂ , κ)

〈(if e0 e1 e2), ρ, σ̂, a, t〉 〈e0, ρ, σ̂ t [b 7→ if(e1, e2, ρ, a)], b, u〉
〈#f, ρ, σ̂, a, t〉 〈e1, ρ

′, σ̂, c, u〉
if κ = if(e0, e1, ρ

′, c)

〈v, ρ, σ̂, a, t〉 〈e0, ρ
′, σ̂, c, u〉

if κ = if(e0, e1, ρ
′, c),

and v 6= #f

〈(set! x e), ρ, σ̂, a, t〉 〈e, ρ, σ̂ t [b 7→ set(ρ(x), a)], b, u〉
〈v, ρ, σ̂, a, t〉 〈v′, ρ, σ̂ t [a′ 7→ v], c, u〉
if κ = set(a′, c) where v′ ∈ σ̂(a′)

〈(λx.e), ρ, σ̂, a, t〉 〈e, ρ[x 7→ b], σ̂ t [b 7→ c], c, u〉
if κ = fn(callcc, ρ′, c) where c = âlloc(ς̂ , κ)

〈c, ρ, σ̂, a, t〉 〈a, ρ, σ̂, c, u〉
if κ = fn(callcc, ρ′, a′)

〈v, ρ, σ̂, a, t〉 〈v, ρ, σ̂, c, u〉
if κ = fn(c, ρ′, a′)

Figure 6: Abstract extended CESK∗ machine.

Side effects are fully amenable to our approach; we in-
troduce Scheme’s set! for mutating variables using the
(set! x e) syntax. The set! form evaluates its subex-
pression e and assigns the value to the variable x. Although
set! expressions are evaluated for effect, we follow Felleisen
et al. and specify set! expressions evaluate to the value
of x before it was mutated [7, page 166]. The evaluation
context E[(set! x [])] is represented by set(a0, a1), where
a0 is the address of x’s value and a1 is the address of the
representation of E.

First-class control is introduced by adding a new base
value callcc which reifies the continuation as a new kind
of applicable value. Denoted values are extended to in-
clude representations of continuations. Since continuations
are store-allocated, we choose to represent them by address.
When an address is applied, it represents the application of
a continuation (reified via callcc) to a value. The contin-
uation at that point is discarded and the applied address is
installed as the continuation.

The resulting grammar is:

e ∈ Exp = . . . | (if e e e) | (set! x e)
κ ∈ Cont = . . . | if(e, e, ρ, a) | set(a, a)
v ∈ Val = . . . | #f | callcc | a.

We show only the abstract transitions, which result from
store-allocating continuations, time-stamping, and abstract-
ing the concrete transitions for conditionals, mutation, and
control. The first three machine transitions deal with con-
ditionals; here we follow the Scheme tradition of considering
all non-false values as true. The fourth and fifth transitions
deal with mutation.

The remaining three transitions deal with first-class con-
trol. In the first of these, callcc is being applied to a closure
value v. The value v is then“called with the current continu-
ation”, i.e., v is applied to a value that represents the contin-
uation at this point. In the second, callcc is being applied
to a continuation (address). When this value is applied to
the reified continuation, it aborts the current computation,

installs itself as the current continuation, and puts the reified
continuation “in the hole”. Finally, in the third, a continua-
tion is being applied; c gets thrown away, and v gets plugged
into the continuation b. In all cases, these transitions result
from pointer-refinement, time-stamping, and abstraction of
the usual machine transitions.

4. ABSTRACT GARBAGE COLLECTION
Garbage collection determines when a store location has

become unreachable and can be re-allocated. This is signif-
icant in the abstract semantics because an address may be
allocated to multiple values due to finiteness of the address
space. Without garbage collection, the values allocated to
this common address must be joined, introducing impreci-
sion in the analysis (and inducing further, perhaps spuri-
ous, computation). By incorporating garbage collection in
the abstract semantics, the location may be proved to be
unreachable and safely overwritten rather than joined, in
which case no imprecision is introduced.

Like the rest of the features addressed in this paper, we
can incorporate abstract garbage collection into our static
analyzers by a straightforward pointer-refinement of text-
book accounts of concrete garbage collection, followed by a
finite store abstraction.

Concrete garbage collection is defined in terms of a GC
machine that computes the reachable addresses in a store [7,
page 172]:

〈G,B, σ〉 7−→GC 〈(G ∪ LLσ(σ(a)) \ (B ∪ {a})),B ∪ {a}, σ〉
if a ∈ G.

This machine iterates over a set of reachable but unvisited
“grey” locations G. On each iteration, an element is removed
and added to the set of reachable and visited “black” loca-
tions B. Any newly reachable and unvisited locations, as de-
termined by the “live locations” function LLσ, are added to
the grey set. When there are no grey locations, the black set
contains all reachable locations. Everything else is garbage.

The live locations function computes a set of locations
which may be used in the store. Its definition varies based
on the machine being garbage collected, but the definition
appropriate for the CESK∗ machine of Section 2.3 is:

LLσ(e) = ∅
LLσ(e, ρ) = LLσ(ρ|fv(e))

LLσ(ρ) = rng(ρ)

LLσ(mt) = ∅
LLσ(fn(v, ρ, a)) = {a} ∪ LLσ(v, ρ) ∪ LLσ(σ(a))

LLσ(ar(e, ρ, a)) = {a} ∪ LLσ(e, ρ) ∪ LLσ(σ(a)).

We write ρ|fv(e) to mean ρ restricted to the domain of free
variables in e. We assume the least-fixed-point solution in
the calculation of the function LL in cases where it recurs
on itself.

The pointer-refinement requires parameterizing the LL
function with a store used to resolve pointers to continu-
ations. A nice consequence of this parameterization is that
we can re-use LL for abstract garbage collection by supplying
it an abstract store for the parameter. Doing so only neces-
sitates extending LL to the case of sets of storable values:

LLσ(S) =
⋃
s∈S

LLσ(s)

ς 7−→CESK∗ ς ′

〈e, ρ, σ, a〉 〈e, ρ, {〈b, σ(b)〉 | b ∈ L}, a〉
if 〈LLσ(e, ρ) ∪ LLσ(σ(a)), {a}, σ〉 7−→→GC 〈∅,L, σ〉

Figure 7: GC transition for the CESK∗ machine.

The CESK∗ machine incorporates garbage collection by
a transition rule that invokes the GC machine as a sub-
routine to remove garbage from the store (Figure 7). The
garbage collection transition introduces non-determinism to
the CESK∗ machine because it applies to any machine state
and thus overlaps with the existing transition rules. The
non-determinism is interpreted as leaving the choice of when
to collect garbage up to the machine.

The abstract CESK∗ incorporates garbage collection by
the concrete garbage collection transition, i.e., we re-use the
definition in Figure 7 with an abstract store, σ̂, in place of
the concrete one. Consequently, it is easy to verify abstract
garbage collection approximates its concrete counterpart.

The CESK∗ machine may collect garbage at any point
in the computation, thus an abstract interpretation must
soundly approximate all possible choices of when to trigger
a collection, which the abstract CESK∗ machine does cor-
rectly. This may be a useful analysis of garbage collection,
however it fails to be a useful analysis with garbage collec-
tion: for soundness, the abstracted machine must consider
the case in which garbage is never collected, implying no
storage is reclaimed to improve precision.

However, we can leverage abstract garbage collection to
reduce the state-space explored during analysis and to im-
prove precision and analysis time. This is achieved (again)
by considering properties of the concrete machine, which
abstract directly; in this case, we want the concrete ma-
chine to deterministically collect garbage. Determinism of
the CESK∗ machine is restored by defining the transition
relation as a non-GC transition (Figure 2) followed by the
GC transition (Figure 7). This state-space of this concrete
machine is “garbage free” and consequently the state-space
of the abstracted machine is “abstract garbage free.”

In the concrete semantics, a nice consequence of this prop-
erty is that although continuations are allocated in the store,
they are deallocated as soon as they become unreachable,
which corresponds to when they would be popped from the
stack in a non-pointer-refined machine. Thus the concrete
machine really manages continuations like a stack.

Similarly, in the abstract semantics, continuations are deal-
located as soon as they become unreachable, which often
corresponds to when they would be popped. We say often,
because due to the finiteness of the store, this correspon-
dence cannot always hold. However, this approach gives a
good finite approximation to infinitary stack analyses that
can always match calls and returns.

5. RELATED WORK
The study of abstract machines for the λ-calculus began

with Landin’s SECD machine [11], the systematic construc-
tion of machines from semantics with Reynolds’s definitional
interpreters [20], the theory of abstract interpretation with
the seminal work of Cousot and Cousot [4], and static anal-
ysis of the λ-calculus with Jones’s coupling of abstract ma-

chines and abstract interpretation [9]. All have been ac-
tive areas of research since their inception, but only recently
have well known abstract machines been connected with ab-
stract interpretation by Midtgaard and Jensen [14, 15]. We
strengthen the connection by demonstrating a general tech-
nique for abstracting abstract machines.

The approximation of abstract machine states for the anal-
ysis of higher-order languages goes back to Jones [9], who
argued abstractions of regular tree automata could solve
the problem of recursive structure in environments. We re-
invoked that wisdom to eliminate the recursive structure of
continuations by allocating them in the store.

Midtgaard and Jensen present a 0CFA for a CPS lan-
guage [14]. The approach is based on Cousot-style calcu-
lational abstract interpretation [3], applied to a functional
language. Like the present work, Midtgaard and Jensen
start with a known abstract machine for the concrete se-
mantics, the CE machine of Flanagan, et al. [8], and employ
a reachable-states model. They then compose well-known
Galois connections to reveal a 0CFA with reachability in
the style of Ayers [1]. The CE machine is not sufficient to
interpret direct-style programs, so the analysis is specialized
to programs in continuation-passing style.

Although our approach is not calculational like Midtgaard
and Jensen’s, it continues in their vein by applying abstract
interpretation to well known machines, extending the ap-
plication to direct-style machines to obtain a parameterized
family of analyses that accounts for polyvariance.

Static analyzers typically hemorrhage precision in the pres-
ence of exceptions and first-class continuations: they jump
to the top of the lattice of approximation when these features
are encountered. Conversion to continuation- and exception-
passing style can handle these features without forcing a
dramatic ascent of the lattice of approximation [21]. The
cost of this conversion, however, is lost knowledge—both
approaches obscure static knowledge of stack structure, by
desugaring it into syntax.

Might and Shivers introduced the idea of using abstract
garbage collection to improve precision and efficiency in flow
analysis [16]. They develop a garbage collecting abstract
machine for a CPS language and prove it correct. We ex-
tend abstract garbage collection to direct-style languages in-
terpreted on the CESK machine.

6. CONCLUSIONS AND PERSPECTIVE
We have demonstrated a derivational approach to pro-

gram analysis that yields novel abstract interpretations of
languages with higher-order functions, control, state, and
garbage collection. These abstract interpreters are obtained
by a straightforward pointer refinement and structural ab-
straction that bounds the address space, making the ab-
stract semantics safe and computable. The technique allows
concrete implementation technology, such as garbage col-
lection, to be imported straightforwardly into that of static
analysis, bearing immediate benefits. More generally, an ab-
stract machine based approach to analysis shifts the focus
of engineering efforts from the design of complex analytic
models such as involved constraint languages back to the
design of programming languages and machines, from which
analysis can be derived. Finally, our approach uniformly
scales up to richer language features such as laziness, stack-
inspection, exceptions, and object-orientation. We speculate
that store-allocating bindings and continuations is sufficient

for a straightforward abstraction of most existing machines.
Looking forward, a semantics-based approach opens new

possibilities for design. Context-sensitive analysis can have
daunting complexity [24], which we have made efforts to
tame [17], but modular program analysis is crucial to over-
come the significant cost of precise abstract interpretation.
Modularity can be achieved without needing to design clever
approximations, but rather by designing modular seman-
tics from which modular analyses follow systematically [23].
Likewise, push-down analyses offer infinite state-space ab-
stractions with perfect call-return matching while retaining
decidability. Our approach expresses this form of abstrac-
tion naturally: the store remains bounded, but continua-
tions stay on the stack.

7. ACKNOWLEDGMENTS
We thank Matthias Felleisen, Jan Midtgaard, Sam Tobin-

Hochstadt, and Mitchell Wand for discussions, and the anony-
mous reviewers of ICFP’10 for their close reading and help-
ful critiques; their comments have improved this paper.

8. REFERENCES
[1] A. E. Ayers. Abstract analysis and optimization of

Scheme. PhD thesis, Massachusetts Institute of
Technology, 1993.

[2] M. Biernacka and O. Danvy. A concrete framework for
environment machines. ACM Trans. Comput. Logic,
9(1):1–30, 2007.

[3] P. Cousot. The calculational design of a generic
abstract interpreter. In M. Broy and R. Steinbrüggen,
editors, Calculational System Design. NATO ASI
Series F. IOS Press, Amsterdam, 1999.

[4] P. Cousot and R. Cousot. Abstract interpretation: a
unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In POPL
’77: Proceedings of the 4th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages,
pages 238–252. ACM, 1977.

[5] O. Danvy. An Analytical Approach to Program as
Data Objects. DSc thesis, Department of Computer
Science, Aarhus University, Oct. 2006.

[6] O. Danvy and L. R. Nielsen. Refocusing in reduction
semantics. Research Report BRICS RS-04-26,
Department of Computer Science, Aarhus University,
Nov. 2004.

[7] M. Felleisen, R. B. Findler, and M. Flatt. Semantics
Engineering with PLT Redex. MIT Press, Aug. 2009.

[8] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen.
The essence of compiling with continuations. In PLDI
’93: Proceedings of the ACM SIGPLAN 1993
Conference on Programming Language Design and
Implementation, pages 237–247. ACM, June 1993.

[9] N. D. Jones. Flow analysis of lambda expressions
(preliminary version). In Proceedings of the 8th
Colloquium on Automata, Languages and
Programming, pages 114–128. Springer-Verlag, 1981.

[10] N. D. Jones and S. S. Muchnick. A flexible approach
to interprocedural data flow analysis and programs
with recursive data structures. In POPL ’82:
Proceedings of the 9th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,
POPL ’82, pages 66–74. ACM, 1982.

[11] P. J. Landin. The mechanical evaluation of
expressions. The Computer Journal, 6(4):308–320,
1964.

[12] P. Meunier, R. B. Findler, and M. Felleisen. Modular
set-based analysis from contracts. In POPL ’06:
Conference record of the 33rd ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 218–231. ACM, Jan.
2006.

[13] J. Midtgaard. Control-flow analysis of functional
programs. ACM Computing Surveys, 2010.

[14] J. Midtgaard and T. Jensen. A calculational approach
to Control-Flow analysis by abstract interpretation. In
M. Alpuente and G. Vidal, editors, SAS, volume 5079
of LNCS, pages 347–362. Springer, 2008.

[15] J. Midtgaard and T. P. Jensen. Control-flow analysis
of function calls and returns by abstract
interpretation. In ICFP ’09: Proceedings of the 14th
ACM SIGPLAN International Conference on
Functional Programming, pages 287–298. ACM, 2009.

[16] M. Might and O. Shivers. Improving flow analyses via
ΓCFA: Abstract garbage collection and counting. In
Proceedings of the 11th ACM International Conference
on Functional Programming (ICFP 2006), pages
13–25, Sept. 2006.

[17] M. Might, Y. Smaragdakis, and D. Van Horn.
Resolving and exploiting the k-CFA paradox:
illuminating functional vs. object-oriented program
analysis. In PLDI ’10: Proceedings of the 2010 ACM
SIGPLAN Conference on Programming Language
Design and Implementation, pages 305–315. ACM,
2010.

[18] F. Nielson, H. R. Nielson, and C. Hankin. Principles
of Program Analysis. Springer-Verlag, 1999.

[19] G. Plotkin. Call-by-name, call-by-value and the
λ-calculus. Theoretical Computer Science,
1(2):125–159, Dec. 1975.

[20] J. C. Reynolds. Definitional interpreters for
higher-order programming languages. In ACM ’72:
Proceedings of the ACM Annual Conference, pages
717–740. ACM, 1972.

[21] O. Shivers. Control-flow analysis of higher-order
languages. PhD thesis, Carnegie Mellon University,
1991.

[22] M. Sperber, R. K. Dybvig, M. Flatt, A. van Straaten,
R. Findler, and J. Matthews. Revised [6] Report on
the Algorithmic Language Scheme. Cambridge
University Press, 2010.

[23] S. Tobin-Hochstadt and D. V. Horn. Modular analysis
via specifications as values. CoRR, abs/1103.1362,
2011.

[24] D. Van Horn and H. G. Mairson. Deciding kCFA is
complete for EXPTIME. In ICFP ’08: Proceeding of
the 13th ACM SIGPLAN International Conference on
Functional Programming, pages 275–282. ACM, 2008.

[25] A. K. Wright and S. Jagannathan. Polymorphic
splitting: an effective polyvariant flow analysis. ACM
Trans. Program. Lang. Syst., 20(1):166–207, 1998.

	Introduction
	From Semantics to Machines and Machines to Analyses
	Reduction semantics
	CEK machine
	CESK* machine
	Time-stamped CESK* machine
	Abstract time-stamped CESK* machine

	Abstract state and control
	Abstract garbage collection
	Related work
	Conclusions and perspective
	Acknowledgments
	References

