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Abstract
We analyze the computational complexity of kCFA, a hierarchy of
control flow analyses that determine which functions may be ap-
plied at a given call-site. This hierarchy specifies related decision
problems, quite apart from any algorithms that may implement their
solutions. We identify a simple decision problem answered by this
analysis and prove that in the 0CFA case, the problem is complete
for polynomial time. The proof is based on a nonstandard, symmet-
ric implementation of Boolean logic within multiplicative linear
logic (MLL). We also identify a simpler version of 0CFA related
to η-expansion, and prove that it is complete for logarithmic space,
using arguments based on computing paths and permutations.

For any fixed k > 0, it is known that kCFA (and the analogous
decision problem) can be computed in time exponential in the
program size. For k = 1, we show that the decision problem is
NP-hard, and sketch why this remains true for larger fixed values
of k. The proof technique depends on using the approximation of
CFA as an essentially nondeterministic computing mechanism, as
distinct from the exactness of normalization. When k = n, so
that the “depth” of the control flow analysis grows linearly in the
program length, we show that the decision problem is complete for
exponential time.

In addition, we sketch how the analysis presented here may
be extended naturally to languages with control operators. All of
the insights presented give clear examples of how straightforward
observations about linearity, and linear logic, may in turn be used
to give a greater understanding of functional programming and
program analysis.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages—Program
analysis; D.3.3 [Programming Languages]: Language Constructs
and Features—Control structures; F.4.1 [Mathematical Logic and
Formal Languages]: Mathematical Logic—Computability theory,
Computational logic, Lambda calculus and related systems

General Terms Languages, Theory

Keywords complexity, continuation, control flow analysis, eta
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1. Introduction
We investigate the precision of static, compile-time analysis, and
the necessary analytic tradeoff with the computational resources
that go into the analysis.

Control flow analysis provides a fundamental and ubiquitous
static analysis of higher-order programs. Heintze and McAllester
(1997b) point out that “in fact, some form of CFA is used in
most forms of analyses for higher-order languages.” Control flow
analysis answers the following basic questions (Palsberg 1995):

1. For every application, which abstractions can be applied?

2. For every abstraction, to which arguments can it be applied?

These questions specify well-defined, significant decision prob-
lems, quite apart from any algorithm proposed to solve them. What
is the inherent computational difficulty of solving these problems?
What do they have to do with normalization (evaluation), as op-
posed to approximation? Where is the fulcrum located between ex-
act computation and approximation to it, and how does that balance
make this compile-time program analysis tractable?

To answer either of the enumerated questions above, we must be
able to approximate the set of values to which any given subexpres-
sion may evaluate. This approximation can be formulated as a flows
to relation between fragments of program text—the set of values a
subexpression may evaluate to, then, is the set of appropriately de-
fined (program text) values that flow into that subexpression. This
analysis possibly includes “false positives” (values that may flow
to a call site, but in fact do not), and thus a flows to analysis might
relate every program fragment. We focus attention on an accept-
ably “least” analysis, that is, a solution to the constraints which has
a minimum of false positives. More precision means fewer false
positives.

To ensure tractability of any static analysis, there has to be an
approximation of something, where information is deliberately lost
in the service of providing what’s left in a reasonable amount of
time. A good example of what is lost during static analysis is that
the information gathered for each occurrence of a bound variable
is merged. When variable f occurs twice in function position with
two different arguments, and a substitution of a function is made
for f , a monovariant CFA will blur which copy of the function is
applied to which argument.

Further refining the relatively coarse approximation of the
above control flow analysis, a hierarchy of increasingly polyvariant
analyses was developed by Olin Shivers in his Ph.D. thesis (Shivers
1991), the so-called kCFA analyses, of which the above analysis
marks the base—0CFA. A 1CFA, for example, uses a contour to
distinguish a more specific and dynamic calling context in the anal-
ysis of each program point; kCFA, then, distinguishes between k
levels of such contexts. Moving up the hierarchy increases the pre-
cision of this analysis, by constructing more elaborate contours.
However, this increased precision is accompanied by an empiri-

85



cally observed increase in cost. As Shivers observed in his “Best of
PLDI” retrospective on the kCFA work:

It did not take long to discover that the basic analysis, for
any k > 0, was intractably slow for large programs. In the
ensuing years, researchers have expended a great deal of
effort deriving clever ways to tame the cost of the analysis.

Technical contributions: We identify a simple decision problem
answered by control flow analysis and prove that in the 0CFA
case, the problem is complete for polynomial time. The proof is
based on a nonstandard, symmetric implementation of Boolean
logic within multiplicative linear logic (MLL). We also identify a
simpler version of 0CFA related to η-expansion, and prove that
it is complete for logarithmic space, using arguments based on
computing paths and permutations.

Moreover, we show that the decision problem for 1CFA is
NP-hard. Given that there is a naive exponential algorithm, we
conjecture that it is in fact NP-complete, where prudent guessing
in the computation of the naive algorithm can answer specific
questions about flows. The proof generalizes to an NP-hardness
proof for all fixed k > 1, demonstrating that from a complexity
point of view, the hierarchy is flat for all fixed k > 0.

Like all good proofs, this NP-hardness result has simple in-
tuitions. 1CFA depends on approximation, where multiple values
(here, closures) flow to the same program point, including false
positives. The bottleneck of the naive algorithm is its handling of
closures with many free variables. For example, λw.wx1x2 · · ·xn

has n free variables, with an exponential number of possible as-
sociated environments mapping these variables. Approximation al-
lows us to bind each xi, independently, to either closed λ-terms for
“true” or “false”. In turn, application to an n-ary Boolean function,
as analyzed in CFA, must then evaluate the function on each of the
possible environments. Asking whether “true” can flow out of the
call site then becomes a way of asking if the Boolean function is
satisfiable.

No such “pseudo parallelism” would be possible in an exact
normalization—it is the existence of approximation that mashes
these distinct closures together. Similar NP-hardness of kCFA for
k > 1 results by suitably “padding” the construction for 1CFA so
as to render the added precision useless. We remark also that the
NP-hardness construction cannot be coded in 0CFA because in that
case, there are no environments and hence no closures.

Despite being the fundamental analysis of higher-order pro-
grams, despite being the subject of investigation for over twenty-
five years (Jones 1981), and the great deal of expended “effort de-
riving clever ways to tame the cost”, there has remained a poverty
of analytic knowledge on the complexity of control flow analysis
and the kCFA hierarchy, the essence of how this hierarchy is com-
puted, and where the sources of approximation occur that make the
analysis work. This paper is intended to repair such lacunae in our
understanding of program analysis.

2. Preliminaries
In this section, we describe the programming language that is the
subject of our control flow analysis and provide the necessary
mechanics of the graphical representation of programs employed
in our algorithms. The language on which the control flow analysis
will be performed is the untyped λ-calculus extended by a labelling
scheme serving to index subexpressions of a program. Following
Nielson et al. (1999), we define the following syntactic categories:

e ∈ Exp expressions (or labeled terms)
t ∈ Term terms (or unlabeled expressions)

A countably infinite set of labels (Lab) is assumed and for sim-
plicity we suppose the set of variable names are included in Lab.

@

Je0Kl JeK

J(λx.e)lKJxlK J(e0 e1)lK

λx
l l

Je1K

Figure 1. Graphical coding of expressions.

The syntax of the language is given by the following grammar:1

e ::= t` expressions (or labeled terms)
t ::= x | (e e) | (λx.e) terms (or unlabeled expressions)

Expressions are represented graphically as folllows: a graph
consists of ternary apply (@), abstraction (λ), and sharing nodes
(O); unary weakening nodes (�); and wires between these nodes.
Each node has a distinguished principal port; ternary node’s other
auxilary ports are distinguished as the left and right ports. We
call the principal port of an @-node the function, the left port
the continuation, and the right port the argument. Likewise, the
principal port of a λ-node is the root, the left port is the body, and
the right port is the parameter. That is:

@
continuation

λx
root

parameter

argument

functionbody

Wires are labeled to correspond with the labels on terms, i.e. the
continuation wire for the graph of (e e)` will be labeled ` and the
root wire for (λx.e)` will be labeled `. Parameter wires will be
labeled with the bound variable’s name.

Figure 1 gives the graphical coding of expressions. In the λx.e
case, the figure is drawn as though x appears twice in e, and thus
the sharing node is used to duplicate the wire, one going to each
occurrence. The wire between the λ-node and the sharing node is
implicitly labeled x. The two wires attached to the auxiliary ports
of the sharing node will be labeled with the distinct labels of each
occurrence of x. If x occurred more than twice, more sharing nodes
would be attached to fan out the binding the appropriate amount. If
the bound variable occurred exactly once, the wire would connect
the λ node directly to the variable occurrence; the label x and the
label used at the occurrence of x would both refer to the same wire.
If the bound variable x did not occur in e, the wire from the λ-node
would attach to a weakening node. The “dangling wire” from the
graph of the body of the function denotes a variable free in e. In the
case of (e0 e1), the figure is drawn with e0 and e1 both having a
free variable in common, i.e. there is an x in fv(e0) ∩ fv(e1), and
both e0 and e1 have another free variable not occuring in the other.

3. 0CFA
Control flow analysis seeks to answer questions such as “what
functions can be applied at a give application position?” Because
both functions and applications may be copied, such questions be-
come ambiguous. When one points to an application in the program
text, running the program may duplicate this point several times,
so which of the copies are we really asking about? Likewise, if a
lambda term is said to flow into some application, which copy of
the term is going to be applied? The answer 0CFA gives is: all of
them—all copies of a term are identified. Later, we see how con-

1 Unlike Nielson et al. (1999), constants, binary operators, and recursive-
and let-binding syntax are omitted. These language features add nothing
interesting to the computational complexity of the analysis.
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Figure 2. CFA virtual wire propagation rules.

textual information can be used to distinguish the copies and give
more precise answers to these questions.

We follow Nielson et al. (1999) and say the result of 0CFA is
an abstract cache bC associating abstract values with each labeled
program point. More precisely:

bv ∈ dVal = P(Term) abstract valuesbC ∈ Ĉache = Lab→ dVal abstract caches

An abstract cache maps a program label to an abstract value bv, a set
of lambda expressions, which represents the set of (textual) values
that may flow into that label’s subexpression during evaluation.
Similarly, the abstract enviroment maps a variable to an abstract
value, which represents the set of (textual) values that may be
bound to that variable during evaluation.

An acceptable control flow analysis for an expression e is writ-
ten bC |= e. Recalling again from Nielson et al. (1999), the accept-
ability relation is given by the greatest fixed point of the functional
defined according to the following clauses:bC |= x` iff bC(x) ⊆ bC(`)bC |= (λx.e)` iff (λx.e) ∈ bC(`)bC |= (t`11 t`22 )` iff bC |= t`11 ∧ bC |= t`22 ∧ ∀(λx.t

`0
0 ) ∈ bC(`1) :bC |= t`00 ∧ bC(`2) ⊆ bC(x) ∧ bC(`0) ⊆ bC(`)

We now describe an algorithm for performing control flow anal-
ysis that is based on the graph coding of terms. The graphical for-
mulation consists of generating a set of virtual paths for a program
graph. Virtual paths describe an approximation of the real paths that
will arise during program execution.

Figure 2 defines the virtual path propagation rules. The left hand
rule states that a virtual wire is added from the continuation wire to
the body wire and from the variable wire to the argument wire of
each β-redex. The right hand rule states analogous wires are added
to each virtual β-redex—an apply and lambda node connected by
a virtual path. There is a virtual path between two wires ` and `′,
written `  `′ in a CFA-graph iff: 1) ` ≡ `′, 2) there is a virtual
wire from ` to `′, 3) ` connects to an auxiliary port and `′ connects
to the principal port of a sharing node, or 4) ` `′′ and `′′  `′.

Some care must be taken to ensure leastness when propagat-
ing virtual wires. In particular, wires are added only when there
is a virtual path between a reachable apply and a lambda. An ap-
ply node is reachable if it is on the spine of the program, i.e., if
e = (· · · ((e0e1)`1e2)

`2 · · · en)`n then the apply nodes with con-
tinuation wires labeled `1, . . . , `n are reachable, or it is on the spine
of an expression with a virtual path from a reachable apply node.

The graph-based analysis can now be performed in the follow-
ing way: construct the CFA graph according to the rules in Fig-
ure 2, then define bC(`) as {(λx.e)`′ | `  `′}. It is easy to see
that the algorithm constructs answers that satisfy the acceptabil-
ity relation specifying the analysis. Moreover, this algorithm con-
structs least solutions according to the partial order bC ve

bC′ iff
∀` ∈ Labe : bC(`) ⊆ bC′(`), where Labe denotes the set of labels
restricted to those occurring in e, the program of interest.
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Figure 3. Graph coding and CFA graph.

Lemma 1. bC′ |= e implies bC ve
bC′ for bC constructed for e as

described above.

We now consider an example of use of the algorithm. Consider
the labeled program:

((λf.((f1f2)3(λy.y4)5)6)7(λx.x8)9)10

Figure 3 shows the graph coding of the program and the corre-
sponding CFA graph. The CFA graph is constructed by adding vir-
tual wires 10  6 and f  9, induced by the actual β-redex on
wire 7. Adding the virtual path f  9 to the graph creates a vir-
tual β-redex via the route 1  f (through the sharing node), and
f  9 (through the virtual wire). This induces 3  8 and 8  2.
There is now a virtual β-redex via 3 8 2 f  9, so wires
6  8 and 8  5 are added. This addition creates another virtual
redex via 3  8  2  5, which induces virtual wires 6  4
and 4  5. No further wires can be added, so the CFA graph is
complete. The resulting abstract cache gives:bC(1) = {λx} bC(6) = {λx, λy}bC(2) = {λx} bC(7) = {λf}bC(3) = {λx, λy} bC(8) = {λx, λy}bC(4) = {λy} bC(9) = {λx}bC(5) = {λy} bC(10) = {λx, λy}

bC(f) = {λx}bC(x) = {λx, λy}bC(y) = {λy}

We now describe a natural decision problem answered by this
control flow analysis. After describing the problem here, subse-
quent sections will consider variants of it for kCFA.

3.1 The 0CFA decision problem
A decision problem—a question that can be answered with a yes
or a no—makes the analysis insensitive to the output size of any
control flow analysis. Typically, this analysis computes the answer
to questions like “what functions can be applied at a particular call
site?” or “what arguments can a particular function be applied to?”,
so a natural decision problem based on these questions are “is this
particular function applied at this particular call site?” or “does
this function get applied to this argument?”, where the function is
denoted by some lambda expression or application in the program
text. These questions provide ways of answering the more general
“to what values can a subexpression evaluate?”

Control Flow Problem (0CFA): Given expressions e, (λx.e0),
and label `, is (λx.e0) ∈ bC(`) in a least analysis of e?

The graphical analogue of this problem point to a λ-node and
an application node, and ask if there a virtual path (describing a β-
redex from reductions to take place) from the function port of the
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apply to the root port of the λ? Or likewise, point to two λ-nodes:
is there a virtual path from the variable port of one to the root of the
other? The graph-reduction characterization has the virtue of being
free of a lot of notational clutter (like variable renaming).

We now prove that this decision problem is complete for poly-
nomial time. A graph-based argument for containment in PTIME is
straightforward:

Theorem 1. 0CFA is contained in PTIME.

Proof. 0CFA computes a binary relation over a fixed structure (the
graph description of a program). The computation of the relation
is monotone: it begins as empty and is added to incrementally.
Because the structure is finite, a fixed point must be reached by
this incremental computation. The binary relation can be at most
polynomial in size, and each increment is computed in polynomial
time.

We now turn to the more interesting hardness of the problem.
As has been observed by Henglein and Mairson (1991); Mair-

son (2004); Neergaard and Mairson (2004), linearity is the key in-
gredient in understanding the lower-bound complexity of analyses.
In looking at the control flow analysis algorithm of section 3, we
may ask what is the source of approximation? The answer is that
every copy of a function is identified, and every copy of an appli-
cation site is identified. In other words, a program with copying
engenders an approximate analysis. More concretely, notice that an
application site has multiple virtual paths to a value only through
virtual paths that pass through sharing nodes. If there are no shar-
ing nodes—as in a linear term, a term where every bound variable
occurs exactly once—it is simple to see that there is only a sin-
gle virtual path. By the conservativity of the analysis, it follows
immediately that if there is a single path from an apply node to a
lambda node, then these nodes will fuse during reduction. Thus,
linearity subverts approximation and renders control flow analysis
synonymous with normalization. A lower bound on the complexity
of the analysis, then, is the expressivity of the language it normal-
izes. Proving these lower bounds amounts to functional hacking
within the constraints of linearity.

Recall the canonical PTIME-complete decision problem (Ladner
1975):

Circuit Value Problem: Given a Boolean circuit C of n inputs
and one output, and truth values ~x = x1, . . . , xn, is ~x accepted
by C?

A problem is PTIME-hard if any instance of it can be compiled
using only O(ln |x|) space into an instance of the circuit value
problem. We now show how to program circuits using only linear
terms, proving 0CFA to be PTIME-hard.

As a calculational tool and lingua franca amongst functional
programmers (and compilers), we use a linear fragment of Standard
ML to illustrate our constructions. The Boolean values True and
False are built out of the constants TT and FF:

- fun TT (x:’a,y:’a)= (x,y);
val TT = fn : ’a * ’a -> ’a * ’a
- fun FF (x:’a,y:’a)= (y,x);
val FF = fn : ’a * ’a -> ’a * ’a

- val True= (TT: (’a * ’a -> ’a * ’a),
FF: (’a * ’a -> ’a * ’a));

val True = (fn,fn) : (’a * ’a -> ’a * ’a)
* (’a * ’a -> ’a * ’a)

- val False= (FF: (’a * ’a -> ’a * ’a),
TT: (’a * ’a -> ’a * ’a));

val False = (fn,fn) : (’a * ’a -> ’a * ’a)
* (’a * ’a -> ’a * ’a)

This little hack will print out what Boolean we are talking about:

- fun Show (u,v)=
(let val (x,y)= u(true,false) in x end,
let val (x,y)= v(true,false) in x end);

val Show = fn : (bool * bool -> ’a * ’b)
* (bool * bool -> ’c * ’d) -> ’a * ’c

- Show True;
val it = (true,false) : bool * bool
- Show False;
val it = (false,true) : bool * bool

The way we compute And is to use the famous 1930s-era coding of
conjunction (hacked by Alonzo Church?) in the first component,
and the disjunction in the second component. That way, we are
guaranteed that the junk in v and v’ is symmetric: one is TT, and
the other is FF. Then function composition can be used to erase
the symmetric garbage—the slogan is, “symmetric garbage is self-
annihilating.”

- fun And (p,p’) (q,q’)=
let val ((u,v),(u’,v’)) = (p (q,FF), p’ (TT,q’))
in (u,Compose (Compose (u’,v),Compose (v’,FF)))
end;

val And = fn
: (’a * (’b * ’b -> ’b * ’b) -> ’c * (’d -> ’e))

* ((’f * ’f -> ’f * ’f) * ’g
-> (’e -> ’h) * (’i * ’i -> ’d))

-> ’a * ’g -> ’c * (’i * ’i -> ’h)

- Show (And True False);
val it = (false,true) : bool * bool

Notice that since p’ is the complement of p, and q’ that of q,
we know u’ is the complement of u. Composing v, v’ and FF is
always the identity function TT, which can then be composed with
u’ without changing the value of u’.

The construction of the Or term is symmetric to the And term,
the Not term is just an inversion2—all this an obvious consequence
of deMorgan duality and the construction here of the Booleans. The
Copy gate uses the fact that either p or p’ will invert its argument,
so that either ((TT,FF),(TT,FF)) or ((FF,TT),(FF,TT)) is
returned:

- fun Copy (p,p’)= (p (TT,FF), p’ (FF,TT));
val Copy = fn

: ((’a * ’a -> ’a * ’a) *
(’b * ’b -> ’b * ’b) -> ’c)

* ((’d * ’d -> ’d * ’d) *
(’e * ’e -> ’e * ’e) -> ’f)

-> ’c * ’f

- let val (p,q)= Copy True in (Show p, Show q) end;
val it = ((true,false),(true,false)) : (bool * bool)

* (bool * bool)

By writing logic gates in continuation-passing style, for example:

- fun Andgate p q k= k (And p q)

we can then write circuits that look like straight-line code:

- fun Circuit e1 e2 e3 e4 e5 e6=
(Andgate e2 e3 (fn e7=>
(Andgate e4 e5 (fn e8=>
(Andgate e7 e8 (fn f=>
(Copygate f (fn (e9,e10)=>
(Orgate e1 e9 (fn e11=>
(Orgate e10 e6 (fn e12=>
(Orgate e11 e12 (fn Output=> Output))))))))))))));

val Circuit = fn : < big type... >

2 Both are omitted for space reasons.
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The above code says: compute the and of e2 and e3, putting the
result in register e7,. . . , make two copies of register f, putting the
values in registers e9 and e10,. . . , compute the or of e11 and e12,
putting the result in the output register.

- Circuit True False False False False True;
val it = (fn,fn) : (’a * ’a -> ’a * ’a)

* (’a * ’a -> ’a * ’a)
- Show (Circuit True False False False False True);
val it = (true,false) : bool * bool

- let val (u,u’)=
Circuit True False False False False True

in
let val ((x,y),(x’,y’))= (u (f,g), u’ (f’,g’)) in

((x a, y b),(x’ a’, y’ b’)) end end;

Now for the decision problem: the pair (x,y) is either the pair
(f,g) or (g,f), depending on the Boolean circuit computing
output u. Thus, is f applied to a and g to b, or the other way
around? Because the computation is entirely linear, the set of pos-
sible binders to x is—this must be emphasized—not {f, g}: it is
precisely {f}, or {g}. The 0CFA “approximation” is in fact an ex-
act normalization.

Theorem 2. 0CFA is complete for PTIME.

4. kCFA
Increasing the precision of the coarse approximation given by the
above control flow analysis, a hierarchy of more and more refined
analyses was developed. These analyses are context-sensitive or
polyvariant because they distinguish functions applied in distinct
call sites to increase the precision of the analysis. A 1CFA analysis,
for example, uses a contour to distinguish one level of dynamic
calling context in the analysis of each program point.

Contours δ are strings of labels of length at most k; they serve to
record the last k dynamic call points and thus distinguish instances
of variables and program points. Contour environments map vari-
able names to contours. Contours describe the context in which an
instance of a term evaluates, and contour environments, similarly
describe the context under which a variable was bound.

For example, in the expression (e0((λx.e1)e2)
`1)`2 , the subex-

pression e1 evaluates in contour `2`1. Likewise, x is bound in con-
tour `2`1.

δ ∈ ∆ = Lab≤k contour
ce ∈ CEnv = Var→ ∆ contour environment

Abstract values are extended to pairs of (textual) program values
and contour environments closing the term, i.e. abstract closures.
The environment maps variable names to the contours in place at
the definition point for the free variables. The abstract cache now
maps a label and a contour to an abstract (closure) value. That is:

v ∈ dVal = P(Term×CEnv) abstract valuesbC ∈ Ĉache = (Lab×∆)→ dVal abstract caches

An acceptable k-level control flow analysis for an expression e
is written bC |=ce

δ e, which states that bC is an acceptable analysis of
e in the context of the current environment ce and current contour δ
(for the top level analysis of a program, these will both be empty).

Colloquially we understand these judgments as follows: when
running the program, fragments of the original program text may
be duplicated, such as when a function copies its argument:

((λf. · · · (fe1)`1 · · · (fe2)`2 · · ·)(λx.e))
Contours distinguish between these copies (for copies created via
at most k application points, beyond this the distinction in copies
is blurred), so when judging an analysis correct for a program

fragment, we use δ to tell us which copy of the text is being
analyzed, and ce to tell us which copies of the free variables in this
copy of the program are being analyzed. So in the above example,
we have seperate judgements bC |=x7→`1

`1
e and bC |=x7→`2

`2
e as a

way of talking about seperate run-time instances of the expression
e that occurs statically only once.

The acceptability relation is given by the greatest fixed point of
the functional defined according to the following clauses (again we
are concerned only with least solutions):3

bC |=ce
δ x` iff bC(x, ce(x)) ⊆ bC(`, δ)bC |=ce
δ (λx.e)` iff 〈(λx.e), ce0〉 ∈ bC(`, δ)

where ce0 = ce|fv(λx.e0)bC |=ce
δ (t`11 t`22 )` iff bC |=ce

δ t`11 ∧ bC |=ce
δ t`22 ∧

∀〈(λx.t`00 ), ce0〉 ∈ bC(`1, δ) : bC |=ce′
0

δ0
t`00 ∧bC(`2, δ) ⊆ bC(x, δ0) ∧ bC(`0, δ0) ⊆ bC(`, δ)

where δ0 = dδ, `ek
and ce′0 = ce0[x 7→ δ0]

The notation dδ, `ek denotes the string obtained by appending `
to the end of δ and taking the rightmost k labels.

Returning to the example given in section 3, the analysis is
able to distinguish each occurrence of f as distinct. The increased
precision allows us to conclude that the program is approximated
by the (singleton) set {λy.y}.

Let us consider an acceptable least analysis for the program in
Figure 3. We write ε for the empty contour and [ ] for the empty
contour environment. Since every λ-term in the program is closed,
the contour environments in the results will always be empty and
so we omit it from this table:bC(1, 10) = {λx} bC(7, ε) = {λf}bC(2, 10) = {λx} bC(8, 3) = {λx}bC(3, 10) = {λx} bC(8, 6) = {λy}bC(5, 10) = {λy} bC(9, ε) = {λx}bC(6, 10) = {λy} bC(10, ε) = {λy}

bC(f, 10) = {λx}bC(x, 3) = {λx}bC(x, 6) = {λy}

And the following holds:bC |=[ ]
ε ((λf.((f1f2)3(λy.y4)5)6)7(λx.x8)9)10

4.1 The kCFA decision problem
As we did in subsection 3.1, we now formulate a decision problem
naturally answered by the analysis and ask: What is the difficulty of
computing within this hierarchy? What are the sources of approxi-
mation that render such analysis tractable?

Control Flow Problem (kCFA): Given an expression e, an ab-
stract closure 〈(λx.e0), ce0〉, and a label-contour pair (`, δ)

with |δ| ≤ k, is 〈(λx.e0), ce0〉 ∈ bC(`, δ) in a least analysis
of e?

The source of approximation in kCFA is the bounding of the
length of contour strings. But suppose k is sufficiently large that
δ is never truncated during the analysis. What can be said about
the precision of the result? If the contour is never truncated, the
analysis is just normalization. The acceptability relation above can
be read as specifying a non-standard interpreter, which is given
an expression and constructs a table from which the normalized
program can be retrieved.

3 To be precise, we take as our starting point uniform kCFA rather than a
kCFA in which Ĉache = (Lab×CEnv) → dVal. The differences are
immaterial for our purposes.
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Let’s rewrite the specification to make this clear. Evaluation is
paramaterized by an initially empty table and inclusion constraints
are interpreted as destructive updates to the table. EJt`Kce

δ evaluates
t and writes the result into the table bC at location (`, δ).

EJx`Kce
δ = bC(`, δ)← bC(x, ce(x))

EJ(λx.e0)`Kce
δ = bC(`, δ)← 〈(λx.e0), ce0〉

where ce0 = ce|fv(λx.e0)

EJ(t`11 t
`2
2 )`Kce

δ = EJt`11 Kce
δ ; EJt`22 Kce

δ ;

let 〈(λx.t`00 ), ce0〉 = bC(`1, δ) inbC(x, δ`)← bC(`2, δ);

EJt`00 Kce0[x7→δ`]
δ`bC(`, δ)← bC(`0, δ`)

The contour environment plays much the same role as an environ-
ment in a typical interpreter, but rather than mapping a variable to
its value, it maps a variable to a location in the table where its value
is found. The contour δ is a history of call sites in place at the cur-
rent point of evaluation and serves to keep locations in the table
distinct (a simple induction proof shows that (`, δ) is unique).

In the application case, the operator and operand are evaluated,
updating the table at positions (`1, δ) and (`2, δ), respectively. The
closure in (`1, δ) is retrieved from the table and the variable is
“bound” by writing the value of the argument (found at position
(`2, δ)) into position (x, δ`). The body of the closure is evaluated
in an extended environment that maps x to the location in the table
where its value is stored. After evaluating the body, the table is
updated to record the value of the application as being the value
found in (`0, δ`).

This evaluation function can be seen as a variant of the exact
collecting semantics from which the analysis was originally ab-
stracted4, in other words, if k is big enough to that it is not trun-
cated, the analysis is simply normalization.

Lemma 2. If e has an exact kCFA, then EJeK[ ]
ε constructs it.

A lower bound on the hardness of the analysis, then, is the
expressivity of the language that can be evaluated in the above
interpreter with a δ of length at most k.

When the analysis is inexact, the evaluator must be modified
to perform kCFA by truncating contours at length k. The relevant
change to the evaluator is in the application case:

EJ(t`11 t
`2
2 )`Kce

δ = EJt`11 Kce
δ ; EJt`22 Kce

δ ;

∀〈λx.t`00 , ce0〉 ∈ bC(`1, δ) :bC(x, dδ, `ek)← bC(`2, δ);

EJt`00 Kce0[x7→dδ,`ek]

dδ,`ek
;bC(`, δ)← bC(`0, dδ, `ek)

Notice that truncation destroys the uniqueness of locations in
the table, so in evaluating an application, any number of closures
can flow into the operator position and all of them must be applied.
Furthermore, the evaluator has to be iterated until a fixed point in
the table bC is reached.

Lemma 3. The least kCFA analysis of e is constructed by iterating
EJeK[ ]

ε until bC reaches a fixed point.

In this case, the table bC is finite and has nk+1 entries. Each
entry contains a set of values and the only values are closures

4 However it varies in flavor—being a big step semantics rather than the
structured operational semantics of Nielson and Nielson (1997). The moti-
vation for SOS in Nielson and Nielson (1997) was to prove correctness of
the analysis for non-terminating programs. Our evaluator only works for fi-
nite programs, but since we are investigating the complexity of the analysis,
this is agreeable.

〈(λx.e0), ce0〉; the environment in a closure maps p free variables
to any one of nk contours. Because there are n possible λx.e0 and
nkp such environments, there are sets of size at most n1+kp in any
table entry.

Observe that the above evaluation is monotonic: each table
entries is initialzed to the empty set, and built up incrementally.
Thus in kCFA, there can be at most n1+(k+1)p updates to bC, and
EJt`Kce

δ then has at most nO(p) program states during evaluation.
Because p ≤ n, we conclude with the well-known observation—
see, for example, Nielson et al. (1999, page 193):

Theorem 3. kCFA is contained in EXPTIME.

4.1.1 kCFA is NP-hard
Because CFA makes approximations, many closures can flow
to a single program point and contour. In 1CFA, for example,
λw.wx1x2 · · ·xn has n free variables, with an exponential num-
ber of possible associated environments mapping these variables
to program points (contours of length 1). Approximation allows us
to bind each xi, independently, to either of the closed λ-terms for
True or False that we saw in the PTIME-completeness proof for
0CFA. In turn, application to an n-ary Boolean function necessi-
tates computation of all 2n such bindings in order to compute the
flow out from the application site. The term True can only flow out
if the Boolean function is satisfiable by some truth valuation.

(λf1.(f1 True)(f1 False))

(λx1.

(λf2.(f2 True)(f2 False))

(λx2.

(λf3.(f3 True)(f3 False))

(λx3.

· · ·
(λfn.(fn True)(fn False))

(λxn.

C[(λv.φ v)(λw.wx1x2 · · ·xn)]) · · ·))))
For an appropriately chosen program point (label) `, the cache
location bC(v, `) will contain the set of all possible closures which
are approximated to flow to v. This set is that of all closures

〈(λw.wx1x2 · · ·xn), ce〉
where ce ranges over all assignments of True and False to the free
variables (or more precisely assignments of locations in the table
containing True and False to the free variables). The Boolean
function φ is completely linear, as in the PTIME-completeness
proof; the contextC uses the Boolean output(s) as in the conclusion
to that proof: mixing in some ML, the context is:

- let val (u,u’)= [---] in
let val ((x,y),(x’,y’))= (u (f,g), u’ (f’,g’)) in

((x a, y b),(x’ a’, y’ b’)) end end;

Again, a can only flow as an argument to f if True flows to (u,u’),
leaving (f,g) unchanged, which can only happen if some closure
〈(λw.wx1x2 · · ·xn), ce〉 provides a satisfying truth valuation for
φ. We have as a consequence:

Theorem 4. 1CFA is NP-hard.

We observe that while the computation of the entire cache bC
requires exponential time, the existence of a specific flow in it may
well be computable in NP. A nondeterministic polynomial might
compute using the “collection semantics” EJt`Kce

δ , but rather than
compute entire sets, choose the element of the set that bears witness
to the flow.
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Increasing the precision to kCFA with k > 1 undermines
the approximation that allows for construction of the NP-hardness
proof. We use the following program transformation to render a
kCFA of the original synonymous with a (k + 1)CFA of the trans-
formed program. The NP-hardness of kCFA for k > 0 falls out by
iterating the transformation k − 1 times on the 1CFA construction.

Transform expressions as follows, where `? is a distinguished
label and k a distinguished variable not appearing in the source
expression:

〈x`〉 = x`

〈(e1e2)`〉 = (〈e1〉〈e2〉)`

〈(λx.e)`〉 = ((λk.(λx.〈e〉)`?

)(λy.y))`

The transformation works by nesting every λ-abstraction in a single
application context (a K-redex), which consumes the added preci-
sion of a (k + 1)CFA. The following lemma states that top-level
flows are analogous in the transformed program under a more pre-
cise analysis:

Lemma 4. If bC |=[ ]
ε t` is a least kCFA, and bC′ |=[ ]

ε 〈t`〉 is a least
(k + 1)CFA, then 〈(λx.e), ce〉 ∈ bC(`) iff 〈(λx.〈e〉), ce′〉 ∈ bC′(`),
where ce and ce′ are isomorphic upto placement of ?-labels.

For any fixed k, this constant-factor expansion can be computed by
a logspace-computable reduction. From this, we conclude:

Theorem 5. kCFA is NP-hard, for any k > 0.

4.1.2 nCFA is complete for EXPTIME

We now examine the complexity of kCFA where k is allowed to
vary linearly in the size of the program.

In the previous section, we saw 0CFA was sufficient to eval-
uate linear λ-terms. Following the construction of Neergaard and
Mairson (2004), we can code a Turing machine transition function
and machine IDs with linear terms. Suppose φ is a linear transition
function that takes a tuple 〈q, L,R〉 consisting of the current ma-
chine state, the tape to the left of the head in reverse order, and the
tape to the right of the head. Applying φ returns a tuple 〈q′, L′, R′〉
consisting of the new state and tape. Let I be the initial configura-
tion, then φI simulates one step of the machine, φ(φI) two steps,
and φnI , n steps.

If 0CFA is sufficient to evaluate φI , then what is 1CFA suffi-
cient for? By introducing non-linearity using the Church numeral
2, we can iterate the transition function twice, as follows:

2φI ≡ (λs.λz.(s(sz)1)2)φI

A contour of length 1 is sufficient to distinguish between the appli-
cation of φ in the calling context of 4 and that of 5, we are able to
maintain an exact analysis. Scaling up, suppose we have:

2(2φ)I ≡ (λs.λz.(s(sz)3)4)((λs.λz.(s(sz)1)2)φ)I

A contour of length 2 is sufficient to distinguish between the ap-
plication of φ in the calling context 13, 14, 23 and 24. In general,
nCFA is sufficient for an exact analysis of 2

n
φI—all of the calling

contexts in which φ is applied are distinguished. Thus nCFA is syn-
onymous with normalization and the program normalizes to φ2n

I .
So when k is linear in the size of the program n, we can simulate a
Turing machine for an exponential number of steps.

Theorem 6. nCFA is complete for EXPTIME.

It should be remarked that in this case, the contours are large
enough that the computation is essentially by normalization, with-
out using the power of any approximation. Every location of the
cache bC contains at most one value.

Researchers have noted that computing a more precise analysis
is often cheaper than performing a less precise one. A less precise
analysis “yields coarser approximations, and thus induces more
merging. More merging leads to more propagation, which in turn
leads to more reevaluation” (Wright and Jagannathan 1998). Har-
nessing the computational power of this reevaluation is precisely
what makes the NP-hardness construction work and relegates lower
bounds using exact analyses to limit cases such as k = n; an anal-
ysis that is exact can only be polynomial in nk.

On the other hand, these limiting cases shed analytic light on
the nature of kCFA. Even when the polyvariance of the analysis is
taken to an extreme as in k = n, the expressivity of the analysis
is still limited to EXPTIME. The intractible feature of kCFA is the
approximation of closures, not the degree of polyvariance. Poly-
variant static analyses such as polymorphic splitting and poly-k
CFA have since developed without the use of closures and enjoyed
tractability.

5. LOGSPACE and η-expansion
In this section, we identify a restricted class of functional programs
whose 0CFA decision problem may be simpler—namely, com-
plete for LOGSPACE. Consider programs that are simply typed, and
where a variable in the function position or the argument position of
an application is fully η-expanded. This case—especially, but not
only when the programs are linear—strongly resembles multiplica-
tive linear logic with atomic axioms. This distinction is highlighted
in the discussion below.

We remark that η-expansion changes control flow analysis. If
0CFA infers that a call site χ may call a function φ in a program
Π, and we ask the same question of the residual χ and φ in the
η-expanded version of Π, the answer may vary.

5.1 MLL and (linear) functional programming
The sequent rules of MLL are:

AX
A,A⊥

CUT
Γ, A A⊥,∆

Γ,∆
O

Γ, A,B

Γ, AOB
⊗

Γ, A ∆, B

Γ,∆, A⊗B
These rules have an easy functional programming interpretation as
the types of a linear programming language (eg. linear ML), fol-
lowing the intuitions of the Curry-Howard correspondence (Girard
et al. 1989, Chapter 3).5

The AXIOM rule says that a variable can be viewed simultane-
ously as a continuation (A⊥) or as an expression (A)—one man’s
ceiling is another man’s floor. Thus we say “input of type A” and
“output of type A⊥” interchangably, along with similar dualisms.
We also regard (A⊥)⊥ synonymous withA: for example, Int is an
integer, and Int⊥ is a request (need) for an integer, and if you need
to need an integer—(Int⊥)⊥—then you have an integer.

The CUT rule says that if you have two computations, one with
an output of type A, another with an input of type A, you can plug
them together.

The ⊗-rule is about pairing: it says that if you have separate
computations producing outputs of typesA andB respectively, you
can combine the computations to produce a paired output of type
A ⊗ B. Alternatively, given two computations with A an output
in one, and B an input (equivalently, continuation B⊥ an output)
in the other, they get paired as a call site “waiting” for a function
which produces an output of type B with an input of type A. Thus
⊗ is both cons and function call (@).

The O-rule is the linear unpairing of this ⊗-formation. When a
computation uses inputs of types A and B, these can be combined

5 For a more detailed discussion of the correspondence between linear ML
and MLL, see Mairson (2004).
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Figure 4. Expansion algorithm.

as a single input pair, e.g., let (x,y)=p in.... Alternatively,
when a computation has an input of type A (output of continuation
of type A⊥) and an output of type B, these can be combined to
construct a function which inputs a call site pair, and unpairs them
appropriately. Thus O is both unpairing and λ.

5.2 Atomic versus non-atomic axioms: PTIME versus
LOGSPACE

The above AXIOM rule does not make clear whether the formulaA
is an atomic type variable or a more complex type formula. When a
linear program only has atomic formulas in the “axiom” position,
then we can evaluate (normalize) it in logarithmic space. When the
program is not linear, we can similarly compute a 0CFA analysis in
LOGSPACE. Moreover, these problems are complete for LOGSPACE.

MLL proofs with non-atomic axioms can be easily converted
to ones with atomic axioms using the following transformation,
analogous to η-expansion:

α⊗ β, α⊥Oβ⊥
⇒

α, α⊥ β, β⊥

α⊗ β, α⊥, β⊥

α⊗ β, α⊥Oβ⊥

This transformation can increase the size of the proof. For ex-
ample, in the circuit examples of the previous section (which are
evidence for PTIME-completeness), η-expansion causes an expo-
nential increase in the number of proof rules used.6 A LOGSPACE
evaluation is then polynomial-time and -space in the original circuit
description.

The program transformation corresponding to the above proof
expansion is a version of η-expansion: see Figure 4. The left hand
expansion rule is simply η, dualized in the unusual right hand rule.
The right rule is written with the @ above the λ only to emphasis
its duality with the left rule. Although not shown in the graphs, but
implied by the term rewriting rules, an axiom may pass through any
number of sharing nodes.

6 It is linear in the formulas used, whose length increases exponentially (not
so if the formulas are represented by directed acyclic graphs).

5.3 Normalization and 0CFA for linear programs in
LOGSPACE

A normalized linear program has no redexes. From the type of the
program, one can reconstruct—in a totally syntax-directed way—
what the structure of the term is. It is only the position of the
axioms that is not revealed. For example, both TT and FF from the
above circuit example have type ’a * ’a -> ’a * ’a.7 From
this type, we can see that the term is a λ-abstraction, the parameter
is unpaired—and then, are the two components of type a repaired
as before, or “twisted”? To twist or not to twist is what distinguishes
TT from FF.

The geometry of interaction (GoI)—the semantics of linear
logic—and the notion of paths provide a way to calculate normal
forms, and may be viewed as the logician’s way of talking about
static program analysis.8 To understand how this analysis works,
we need to have a graphical picture of what a linear functional
program looks like.

Without loss of generality, such a program has a type φ. Nodes
in its graphical picture are either λ or linear unpairing (O in MLL),
or application/call site or linear pairing (⊗ in MLL). We draw the
graphical picture so that axioms are on top, and cuts (redexes, either
β-redexes or pair-unpair redexes) are on the bottom.

α⊥

· · ·

cut cut

ax ax

ψ ψ⊥ ρ ρ⊥φ

α α⊥αα⊥α

Because the axioms all have atomic type, the graph has the
following nice property:

Lemma 5. Begin at an axiom α and “descend” to a cut-link,
saving in an (initially empty) stack whether nodes are encountered
on their left or right auxiliary port. Once a cut is reached, “ascend”
the accompanying structure, popping the stack and continuing left
or right as specified by the stack token. Then (1) the stack empties
exactly when the next axiom α′ is reached, and (2) if the k-th node
from the start traversed is a⊗, the k-th node from the end traversed
is a O, and vice versa.

The path traced in the Lemma, using the stack, is geometry
of interaction (GoI), also known as static analysis. The correspon-
dence between the k-th node from the start and end of the traversal
is precisely that between a call site (⊗) and a called function (O),
or between a cons (⊗) and a linear unpairing (O).

A sketch of the “four finger” normalization algorithm: The
stack height may be polynomial, but we do not need the stack! Put
fingers α, β on the axiom where the path begins, and iterate over
all possible choices of another two fingers α′, β′ at another axiom.
Now move β and β′ towards the cut link, where if β encounters a
node on the left (right), then β′ must move left (right) also. If α′, β′

were correctly placed initially, then when β arrives at the cut link,
it must be met by β′. If β′ isn’t there, or got stuck somehow, then
α′, β′ were incorrectly placed, and we iterate to another placement
and try again.

Lemma 6. Any path from axiom α to axiom α′ traced by the stack
algorithm of the previous lemma is also traversed by the “four
finger” normalization algorithm.

7 The linear logic equivalent is (α⊥Oα⊥)O(α⊗ α). The λ is represented
by the outer O, the unpairing by the inner O, and the consing by the ⊗.
8 See Mairson (2002) for an introduction to context semantics and normal-
ization by static analysis in the geometry of interaction.
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Normalization by static analysis is synonymous with traversing
these paths. Because these fingers can be stored in logarithmic
space, we conclude (Terui 2002; Mairson 2006):

Theorem 7. Normalization of linear, simply-typed, and fully η-
expanded functional programs is contained in LOGSPACE.

That 0CFA is then contained in LOGSPACE is a casual byproduct
of this theorem, due to the following observation: if application site
χ calls function φ, then the ⊗ and O (synonymously, @ and λ)
denoting call site and function are in distinct trees connected by a
CUT link. As a consequence the 0CFA computation is a subcase of
the four-finger algorithm: traverse the two paths from the nodes to
the cut link, checking that the paths are isomorphic, as described
above. The full 0CFA calculation then iterates over all such pairs
of nodes.

Corollary 1. 0CFA of linear, simply-typed, and fully η-expanded
functional programs is contained in LOGSPACE.

5.4 0CFA in LOGSPACE

Now let us remove the linearity constraint, while continuing to
insist on full η-expansion as described above, and simple typing.
The normalization problem is no longer contained in LOGSPACE,
but rather nonelementary recursive, (Statman 1979; Mairson 1992;
Asperti and Mairson 1998). However, 0CFA remains contained in
LOGSPACE, because it is now an approximation. This result follows
from the following observation:

Lemma 7. Suppose (λx.e0)
l′ and (tl1 e2) occur in a simply typed,

fully η-expanded program and λx.e0 ∈ bC(l). Then the correspond-
ing ⊗ and O occur in adjacent trees connected at their roots by a
CUT-link and on dual, isomorphic paths modulo placement of shar-
ing nodes.

Here “modulo placement” means: follow the paths to the cut—
then we encounter ⊗ (resp., O) on one path when we encounter
O (resp., ⊗) on the other, on the same (left, right) auxiliary ports.
We thus ignore traversal of sharing nodes on each path in judging
whether the paths are isomorphic. (Without sharing nodes, the ⊗
and O would annihilate—i.e., a β-redex—during normalization.)

Theorem 8. 0CFA of a simply-typed, fully η-expanded program is
contained in LOGSPACE.

Observe that 0CFA defines an approximate form of normaliza-
tion which is suggested by simply ignoring where sharing occurs.
Thus we may define the set of λ-terms to which that a term might
evaluate. Call this 0CFA-normalization.

Theorem 9. For fully η-expanded, simply-typed terms, 0CFA-
normalization can be computed in nondeterministic LOGSPACE.

Conjecture 1. For fully η-expanded, simply-typed terms, 0CFA-
normalization is complete for nondeterministic LOGSPACE.

The proof of the above conjecture likely depends on a coding
of arbitrary directed graphs and the consideration of commensurate
path problems.

Conjecture 2. An algorithm for 0CFA normalization can be real-
ized by optimal reduction, where sharing nodes always duplicate,
and never annihilate.

5.5 LOGSPACE-hardness of normalization and 0CFA: linear,
simply-typed, fully η-expanded programs

That the normalization and 0CFA problem for this class of pro-
grams is as hard as any LOGSPACE problem follows from the
LOGSPACE-hardness of the permutation problem: given a permuta-
tion π on 1, . . . , n and integer 1 ≤ i ≤ n, are 1 and i on the same
cycle in π? That is, is there a k where 1 ≤ k ≤ n and πk(1) = i?

Briefly, the LOGSPACE-hardness of the permutation problem is
as follows. Given an arbitrary LOGSPACE Turing machine M and
an input x to it, visualize a graph where the nodes are machine IDs,
with directed edges connecting successive configurations. Assume
that M always accepts or rejects in unique configurations. Then
the graph has two connected components: the “accept” component,
and the “reject” component. Each component is a directed tree
with edges pointing towards the root (final configuration). Take an
Euler tour around each component (like tracing the fingers on your
hand) to derive two cycles, and thus a permutation on machine IDs.
Each cycle is polynomial size, because the configurations only take
logarithmic space. The equivalent permutation problem is then:
does the initial configuration and the accept configuration sit on
the same cycle?

The following linear ML code describes the “target” code of a
transformation of an instance of the permutation problem. For a
permutation on n letters, we take here an example where n = 3.
Begin with a vector of length n set to False, and a permutation on
n letters:

- val V= (False,False,False);
val V = ((fn,fn),(fn,fn),(fn,fn))

: ((’a * ’a -> ’a * ’a) * (’a * ’a -> ’a * ’a))
* ((’a * ’a -> ’a * ’a) * (’a * ’a -> ’a * ’a))
* ((’a * ’a -> ’a * ’a) * (’a * ’a -> ’a * ’a))

Denote as ν the type of vector V.

- fun Perm (P,Q,R)= (Q,R,P);
val Perm = fn : ν -> ν

The function Insert linearly inserts True in the first vector com-
ponent, using all input exactly once:

- fun Insert ((p,p’),Q,R)= ((TT,Compose(p,p’)),Q,R);
val Insert = fn : ν -> ν

The function Select linearly selects the third vector component:

- fun Select (P,Q,(r,r’))=
(Compose (r,Compose (Compose P, Compose Q)),r’);

val Select = fn
: ν -> ((’a * ’a -> ’a * ’a) * (’a * ’a -> ’a * ’a))

Because Perm and Insert have the same flat type, they can
be composed iteratively in ML without changing the type. (This
clearly is not true in our coding of circuits, where the size of the
type increases with the circuit. A careful coding limits the type size
to be polynomial in the circuit size, regardless of circuit depth.)

Lemma 8. Let π be coded as permutation Perm. Define Foo to
be Compose(Insert,Perm) composed with itself n times. Then 1
and i are on the same cycle of π iff Select (Foo V) normalizes
to True.

Because 0CFA of a linear program is identical with normaliza-
tion, we conclude:

Theorem 10. 0CFA of a simply-typed, fully η-expanded program
is complete for LOGSPACE.

As a consequence of the hardness construction having a con-
stant type, we may conclude the 0CFA of any bounded type pro-
gram (η-expanded or not) is LOGSPACE-hard:

Theorem 11. 0CFA of a bounded, simply-typed program is LOGSPACE-
hard.

6. Languages with first-class control
Shivers (2004) argues that “CPS provide[s] a uniform representa-
tion of control structure,” allowing “this machinery to be employed
to reason about context, as well,” and that “without CPS, seperate
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Figure 5. Graph coding of call/cc and example CFA graph.

contextual analyses and transforms must be also implemented—
redundantly,” in his view. Although our formulation of kCFA is a
“direct-style” formulation, a graph representation enjoys the same
benefits of a CPS representation, namely that control structures are
made explicit—in a graph a continuation is simply a wire. Con-
trol constructs such as call/cc can be expressed directly (Lawall
and Mairson 2000) and our graphical formulation of control flow
analysis carries over without modification.

Lawall and Mairson (2000) derive graph representations of pro-
grams with control operators such as call/cc by first translating
programs into continuation passing style (CPS). They observed that
when edges in the CPS graphs carrying answer values (of type ⊥)
are eliminated, the original (direct-style) graph is regained, modulo
placement of boxes and croissants that control sharing. Compos-
ing the two transformations results in a direct-style graph coding
for languages with call/cc (hereafter, λK). The approach applies
equally well to languages such as Filinski’s symmetric λ-calculus
(1989), Parigot’s λµ calculus (1992), and most any language ex-
pressible in CPS.9

The left side of Figure 5 shows the graph coding of call/cc.
Examining this graph, we can read of an interpretation of call/cc,
namely: call/cc is a function that when applied, copies the cur-
rent continuation (4) and applies the given function f to a function
(λv . . .) that when applied abandons the continuation at that point
(�) and gives its argument v to a copy of the continuation where
call/cc was applied. If f never applies the function it is given,
then control returns “normally” and the value f returns is given to
the other copy of the continuation where call/cc was applied.

The right side of Figure 5 gives the CFA graph for the program:

(call/cc (λk.(λx.1)(k2)))l

From the CFA graph we see that bC(l) = {1, 2}, reflecting the
fact that the program will return 1 under a call-by-name reduction
strategy and 2 under call-by-value. Thus, the analysis is indifferent
to the reduction strategy. Note that whereas before, approximation
was introduced through non-linearity of bound variables, approxi-
mation can now be introduced via non-linear use of continuations,
as seen in the example. In the same way that 0CFA considers all
occurrences of a bound variable “the same”, 0CFA considers all
continuations obtained with each instance of call/cc “the same”.

Note that we can ask new kinds of interesting questions in this
analysis. For example, in Figure 5, we can compute which contin-
uations are potentially discarded, by computing which continua-
tions flow into the weakening node of the call/cc term. (The an-
swer is the continuation ((λx.1)[ ]).) Likewise, it is possible to ask

9 Languages such as λξ , which contains the “delimited control” operators
shift and reset (Danvy and Filinski 1990), are not immediately amenable
to this approach since the direct-style transformation requires all calls to
functions or continuations be in tail position. Adapting this approach to
such languages constitutes an active area of research for us.

which continuations are potentially copied, by computing which
continuations flow into the principal port of the sharing node in
the call/cc term (in this case, the top-level empty continuation
[ ]). Because continuations are used linearly in call/cc-free pro-
grams, the questions were uninteresting before—the answer is al-
ways none.

Our proofs for the PTIME-completeness of 0CFA for the un-
typed λ-calculus—and likewise for the results on kCFA—carry
over without modification languages such as λK, λµ and the sym-
metric λ-calculus. In other words, first-class control operators such
as call/cc increase the expressivity of the language, but add noth-
ing to the computational complexity of control flow analysis. In
the case of simply-typed, fully η-expanded programs, the same can
be said. A suitable notion of “simply-typed” programs is needed,
such as that provided by Griffin (1990) for λK. The type-based
expansion algorithm of Figure 4 applies without modification and
Lemma 7 holds, allowing 0CFA for this class of programs to be
done in LOGSPACE. Linear logic provides a foundation for (clas-
sical) λ-calculi with control; related logical insights allow control
flow analysis in this setting.

7. Related work
The PTIME-completeness of 0CFA is most closely related to the
PTIME-completeness of simply typing in the λ-caclculus (Mairson
2004). Both results use linearity to subvert the approximation of
the analysis, and since both analyses rely on the same source of
approximation, it is no suprise that they share the same lower bound
on complexity.

ML typing can be viewed as a bounded running of a program
(reducing all let-redexes) followed by a simple typing of the resid-
ual. The residual program can be exponentially larger, leading to
EXPTIME-completeness results by using polymorphism to iterate
a linear TM transition function (Mairson 1990). The EXPTIME-
completeness of nCFA can be viewed in a similar light. Contours
of length proportional to the program size provide a bounded “run-
ning” of the program by exact analysis of the non-linearity intro-
duced by iterative doubling of the transition function.

The story is the same for k-rank bounded intesection typing—a
program is run by computing k successive minimal complete devel-
opments and the residual is simply typed. The resulting hardness
of typing is elementary in k (Neergaard and Mairson 2004), and
thus the complexity class of each fixed k is seperated. On the other
hand, for (k > 0)CFA, the complexity in the “hierarchy” remains
the same as k grows. There should be a natural way of developing
an alternative control flow hierarchy that relies on complete de-
velopments for its notion of bounded running that will be strictly
more expressive than the kCFA examined in this paper. The result
is likely to be similiar in spirit to that of Mossin (1997b), although
Mossin’s analysis is simply evaluation by virtue of its exactness. To
remain useful, some information must be purposeless lost in order
to compute an answer in less time than it takes to run the program.

It also seems likely that the linear logic based investigation into
CFA presented here can be coupled with that of Neergaard and
Mairson (2004) to provide the foundation for complexity results
for the control flow analysis of rank-2 bounded intersection typed
programs (Banerjee and Jensen 2003).

Static program analysis has been recast as various kinds of
graph reachability problems, and parenthesis languages have been
used to describe paths in these graphs; see Reps (2000) for example.
Words in these languages are the contexts of the context semantics
presentation (Mairson 2003) of the geometry of interaction (Girard
1989). The undecidability of decision problems for these special-
ized parenthesis languages corresponds naturally to versions of the
halting problem.
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The graph coding of terms in our development is based on the
technology of sharing graphs in the untyped case, and proof nets
in the typed case (Lafont 1995). The graph codings, CFA graphs,
and virtual wire propogation rules share a strong resemblance to the
“pre-flow” graphs, flow graphs, and graph “closing rules”, respec-
tively, of Mossin (1997a). Casting the analysis in this light leads
to insights from linear logic and optimal reduction. For example,
as Mossin (1997a, page 78) notes, the CFA virtual paths computed
by 0CFA are an approximation of the actual runtime paths and cor-
respond exactly to the “well-balanced paths” of Asperti and Lan-
eve (1995) as an approximation to “legal paths” (Lévy 1978) and
results on proof normalization in linear logic (Mairson and Terui
2003) informed the novel CFA algorithms presented here.

Other research has shown a correspondence between 0CFA and
certain type systems (Palsberg and O’Keefe 1995; Heintze 1995)
and a further connection has been made between intersection typ-
ing and kCFA (Mossin 1997a; Palsberg and Pavlopoulou 1998).
Work has also been done on relating the various flavors of con-
trol flow analysis, such as 0CFA, kCFA, polymorphic splitting,
and uniform kCFA (Nielson and Nielson 1997). Moreover, control
flow analysis can be computed under a number of different guises
such as set-based analysis (Heintze 1994), closure analysis (Ses-
toft 1988, 1989), abstract interpretation (Shivers 1991; Tang and
Jouvelot 1994), and type and effect systems (Faxén 1995; Heintze
1995; Faxén 1997; Banerjee 1997).

We believe a useful taxonomy of these and other static analyses
can be derived by investigating their computational complexity. In
the preface to their textbook, Nielson et al. (1999) make an analogy
between their approach to the study of program analysis and that
of complexity theory, whereby seemingly unrelated problems are
shown to be the same through notions such as logspace reduction.
We believe there is more than an analogy here—results on the com-
plexity of static analyses are a useful way of understanding when
two seemingly different program analyses are in fact computing the
same thing.

8. Conclusions and perspective
The most obvious thing you can say about program analysis is this:
if you want to know what a program is going to do, run it and
find out. If you don’t have time to run the program, run it for a
while. If you don’t have time to run it for a while, make a crude
approximation. If you want to make sure you have all the answers in
such an approximation, you’ll end up computing “false positives”.
A common approximation idea is to merge whatever is known for
all occurrences of a variable. Approximations are refined by gently
distinguishing these variable occurrences.

Type inference follows this blueprint. Simple typing is the ap-
proximation: all occurrences of a variable have to have the same
type. ML let-polymorphism computes a finite development be-
fore simple typing. Rank-bounded intersection systems iterate sev-
eral minimal complete developments before simple typing (with
∧-idempotency) or a linearity check (without ∧-idempotency): see
(Neergaard and Mairson 2004).

This is also the story of 0CFA: a truncated evaluation that
merges all occurrences of a bound variable. The occurrences are
then distinguished in kCFA (k > 0) by contours that annotate ap-
plication sites, and an environment whose values are closures—and
it is the free variables of these closures that are the bottleneck of
kCFA. The NP-hardness lower bound, and likely NP-completeness
given the known exponential upper bound, comes from computing
with approximations rather than computing via exact normaliza-
tion.

What other kind of static analysis could there possibly be? We
would like to relate kCFA in a more precise way to the geometry
of interaction, a complete static program analysis based on linear

logic. It should be possible to construct an exact correspondence
when k is unbounded. A further extension would be a generaliza-
tion of kCFA to the precision of iterated exponentials, combining
its technique with finite developments à la ML. Finally, we hope to
use the techniques described here to provide a useful taxonomy of
other program analyses, viewed from the perspective of the com-
putational resources needed to realize them.
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