
Abstract Reduction Semantics for
Modular Higher-Order Contract Verification

Sam Tobin-Hochstadt David Van Horn

Abstract
We contribute a new approach to the modular verification of higher-
order programs that leverages behavioral software contracts as a
rich source of symbolic values. Our approach is based on the idea
of an abstract reduction semantics that gives meaning to programs
with missing or opaque components. Such components are approx-
imated by their contract and our semantics gives an operational in-
terpretation of contracts-as-values. The result is a executable se-
mantics that soundly approximates all possible instantiations of
opaque components, including contract failures. It enables auto-
mated reasoning tools that can verify the contract correctness of
components for all possible contexts. We show that our approach
scales to an expressive language of contracts including arbitrary
programs embedded as predicates, dependent function contracts,
and recursive contracts. We argue that handling such a feature-
rich language of specifications leads to powerful symbolic reason-
ing that utilizes existing program assertions. Finally, we derive a
sound and computable approximation to our semantics that facili-
tates fully automated contract verification.

1. Behavioral contracts as symbolic values
Whether in the context of dynamically loaded JavaScript programs,
low-level native C code, widely-distributed libraries, or simply in-
tractably large code bases, automated reasoning tools must cope
with access to only part of the program. To handle missing compo-
nents, the omitted portions are often assumed to have arbitrary be-
havior, greatly limiting the precision and effectiveness of the tool.
However, programmers who use these components do not make
such conservative assumptions. Instead, they attach specifications
to these components. These specifications increase our ability to
reason about programs that are only partially known. But reason-
ing solely at the level of specification can also make verification
and analysis challenging as well as requiring substantial effort to
write sufficient specifications.

To tackle these problems, we combine specification-based sym-
bolic reasoning about opaque components with semantics-based
concrete reasoning about available components. Our approach to
modular program verification is based on computing with speci-
fications as values. As specifications, we adopt higher-order be-
havioral software contracts. Contracts have two crucial advantages
for our strategy. First, they provide benefit to programmers outside
of verification, since they automatically and dynamically enforce
their described invariants. Because of this, modern languages such
as C#, Haskell and Racket come with rich contract libraries which
programmers already use [9, 15, 17]. Rather than requiring pro-
grammers to annotate code with assertions, we leverage the large
body of code that already attaches contracts at code boundaries.
For example, the Racket standard library features more than 4000
uses of contracts [16]. Second, the meaning of contracts as specifi-
cations is neatly captured by their dynamic semantics. As we shall
see, we are able to leverage the semantics of contract systems into
tools for verification of programs with contracts.

Our plan is as follows: we give a reduction semantics for the
core of a higher-order programming language that includes mod-
ules and contracts (§4). Next, we take a symbolic execution ap-
proach to making our semantics modular (§5). This allows us to
give non-deterministic behavior to programs in which any number
of the component modules are omitted, represented only by their
specifications; here given as contracts. We accomplish this by treat-
ing contracts as abstract values, with the behavior of any of their
possible concrete instantiations.

Symbolic execution and refinement calculi have a long history
of semantics with abstract elements; contracts as abstract values
provides a rich domain of symbols, including precise specifications
for abstract higher-order values. These values present new compli-
cations to soundness, which we address with a demonic context, a
universal context for discovering blame for behavioral values (§6).

We note that this semantics is, in itself, a program verifier. The
execution of a modular program which runs without contract errors
on any path is a verification that the concrete portions of the pro-
gram never violate their contracts, no matter the instantiation of the
omitted portions. This immediately allows us to use contracts for
verification in two senses: to verify that programs do not violate
their contracts, and verifying rich properties of programs by ex-
pressing them as contracts. This technique is surprisingly effective,
particularly in systems with many layers, each of which use con-
tracts at their boundaries. For example, the following tail-recursive
implementation of insertion sort is verified to live up to its contract,
which states that it always produces a sorted list.

As the modular semantics is uncomputable, this verification
strategy is necessarily incomplete. To address this, we apply the
technique of abstracting abstract machines [34] to derive first an
abstract machine and then a computable approximation to our se-
mantics directly from our reduction system (§7).

Finally, we turn our semantics into a tool for program verifica-
tion which is integrated into the Racket [15] toolchain and IDE (§8).
Users can click a button and explore the behavior of their program
in the presence of opaque modules, either with a non-deterministic
and uncomputable semantics, or with a computable approximation.

(define-contract list/c
(rec/c X (or/c empty? (cons/c nat? X))))

(module insert (nat? (and/c list/c (pred sorted?))
-> (and/c list/c (pred sorted?)))

•)
(module insertion-sort
(list/c (and/c list/c sorted?)

-> (and/c list/c sorted?))
(λ (l acc)

(if (empty? l) acc
(insertion-sort (cdr l)

(insert (car l) acc)))))
(module l list/c •)
(insertion-sort l empty)

1 2011/7/15

ar
X

iv
:1

10
3.

13
62

v3
 [

cs
.P

L
]

 1
3

Ju
l 2

01
1

Contributions
• We propose abstract reduction semantics, a variant of opera-

tional semantics that treats specifications as values, to enable
modular reasoning about partial programs.
• We give a semantics for a representative core of an untyped

higher-order language with a rich language of contracts.
• We give an abstract semantics that equips symbolic values rep-

resented as sets of contracts with an operational interpretation,
allowing reasoning about opaque program components.
• We prove the semantics soundly predicts program behavior for

all possible instantiations of opaque components.
• We derive a sound and computable program analysis based on

the abstract reduction semantics that can serve as the basis for
automated program verification, optimization, and debugging.
• We provide a prototype implementation of an interactive verifi-

cation environment based on our theoretical models.
We begin by giving background on the key technical ideas

we employ (§2) and then give a whirlwind tour of the technical
development (§3), which presents the essence of our approach to
contract verification before we delve into the full development.

2. Our key technical tools
In this section, we provide background on contracts, and introduce
our key techniques and design choices.

Contracts The basic building block of our specification sys-
tem is behavioral software contracts. Originally introduced by
Meyer [26], contracts are executable specifications that sit at the
boundary between software components. In a first-order setting,
properly assessing which component violated a contract at run-time
is straightforward. Matters are complicated when higher-order val-
ues such as functions or objects are included in the language. Find-
ler and Felleisen [12] introduce the notion of blame and establish a
semantic framework for properly assessing blame at run-time in a
higher-order language, providing the theoretical basis for contract
systems such as Racket’s [15].

(module dbl (even? -> even?) -> (even? -> even?)
(λ (x) (λ (f) (f (f x)))))

top-level broke the contract on dbl; expected <even?>, given: 7

To illustrate, consider the dbl program above, which consists
of a module and top-level expression. Module dbl implements
twice-iterated application, operating on functions on even num-
bers. The top-level expression makes use of the dbl function, but
incorrectly—dbl is applied to a function that produces 7.

Contract checking and blame assignment in a higher-order pro-
gram is more complex since it is not decidable whether the argu-
ment of dbl is a function that consumes and produces even num-
bers. Higher-order contracts are pushed down into delayed lower-
order checks, but care must be taken to get blame right. In our ex-
ample, the top-level is blamed, and rightly so, even though even?
witnesses the violation when f is applied to x while executing dbl.

Semantics as a verification tool Muchnick and Jones [28] de-
scribe program analysis as “a tool for discovering properties the
run-time behavior of a program without actually running it.” Of
course, actually running the program is the best predictor of its
behavior. We instead run programs to verify them, but with com-
ponents omitted. While uncomputable in general, this is effective
for proving properties of programs relative to opaque components,
and supports abstraction to recover computability when needed. Put
simply, we make it possible to “actually run” modular programs,
producing a sound prediction of their behavior.

Abstract values and nondeterminism Our verification strategy is
aimed at programs which are partially opaque, so we must deter-
mine the operational behavior of opaque values. We choose to make
them into abstract values, which are pervasively non-deterministic
in their behavior. An example is that a test of an abstract boolean
might take the then or the else branch of an if expression.

Universal contexts To verify a module will not error and pro-
duce blame in the presence of opaque components requires quan-
tifying over all possible components to check the module. Instead,
we make use of the nondeterminism described above to create a
universal context, one that will cause a term to error if possible.

Run, don’t analyze The theme of the above two ideas is to per-
form verification by execution, whether it be in a particular context
or with particular inputs. Throughout our development, we avoid
analyses of programs in favor of running them. This us leads to use
δ to implement tests in if expressions and contract checking, and
to run modules in a universal context to check them for errors.

3. A whirlwind tour
In this section, we illustrate the kernel of our approach by slimming
the technical development to its bare essentials. We start by giving
a semantics for a core language with functions and contracts.

E,F ::= x | A | (E E) | (if E E E) | (o E) | (C⇐`,`E)
U, V ::= n | #t | #f | (λxx.E) | ((C 99KC)⇐`,`V)
C,D ::= C→C | bλxx.Ec
o ::= proc? | false? | add1 | . . .
A ::= V | blame`

Our language includes usual elements such as constants and recur-
sive functions, as well as a contract check form (C ⇐ E), that
checks E produces a value satisfying C. Contract checks represent
an agreement between and expression and its context: the expres-
sion must produce a value meeting the specification C, while the
context must use the value only according to C. The parties of the
agreement are named by labels on the check, (C⇐`,`′ E); ` refers
to the expression and `′ to the context. A contract system enforces
the agreement and blames the offending party when a check fails.

Contracts are written either as predicates, bλyx.Ec, which are
arbitrary functions, or as function contracts, constructed from a pair
of domain and range contracts. A value satisfies a predicate con-
tract only if the predicate holds on the value. Predicates import the
full computational power of the language into the specification lan-
guage of contracts. Function contracts specify behavioral properties
of function values. A function satisfies a C→D contract if given
values satisfying C, it produces values satisfying D. Function con-
tracts may be thought of as specifying pre- and post-conditions.
However, in a higher-order setting it is impossible to verify pre-
and post-conditions against a function value. Instead, checks are
delayed until the function is applied, which pushes pre- and post-
conditions down to lower levels until only first-order properties, en-
coded as predicates, can be checked. The mechanism for delaying
pre- and post-condition checking is the “blessed” function value,
written ((C 99KD)⇐ V), which represents a value that has been
partially checked against C→D; in particular V has been checked
for being a function (and not a number or boolean).

We formalize the semantics as a reduction relation, c:
Basic reductions E c F

((λyx.E) V) c [(λyx.E)/y][V/x]E
(o V) c A if δ(o, V) 3 A

(if V E F) c E if δ(false?, V) 3 #f
(if V E F) c F if δ(false?, V) 3 #t

2 2011/7/15

The first case implements function application via substitution.
The second case uses a δ relation to interpret primitives. The third
and fourth case handle conditional branching in the usual way, but
rely on δ to determine if the test value is true or false. We follow
LISP tradition and treat all non-#f values as true. (For this simple
model, we assume erroneous programs, such as (5 7), get stuck.)
To implement contract monitoring, we add the following:
Contract checking E c F

(bEc⇐`,`′ V) c (if (E V) V blame`)

(C→D⇐`,`′ V) c ((C 99KD)⇐`,`′ V)
if δ(proc?, V) 3 #t

(((C 99KD)⇐`,`′ V) U) c (D⇐`,`′ (V (C⇐`′,`U)))

Checking a predicate is implemented by applying the predicate
and producing the value when it holds and blaming ` otherwise.
Checking a function against a function contract produces a blessed
function. When a blessed function is applied, the delayed contract
checking is resumed by checking the pre-condition against the
argument, applying the function, and checking the post-condition
against the result. It is critical for proper blame assignment that the
check annotations are swapped when checking the argument.

All of these rules rely heavily on the δ metafunction, instead of
using syntactic tests on, e.g., values tested in if expressions. This,
along with the choice to make δ map to sets of values, sets up our
subsequent development, where δ is non-deterministic.

At this point, we have a standard semantics for a simple, yet
representative core of a higher-order language with contracts. We
now aim to construct an extension of the semantics that can give
meaning to programs that are missing components. The key idea
is “holes” in the program, written •, represent unknown, missing
components. Purely unknown values have arbitrary behavior, but
we will refine holes by attaching a set of contracts that specify an
agreement between the program and the missing component. Such
refinements can guide an operational characterization of program
even in the presence of the unknown. So for example, if we know
• satisfies bnat?c→bnat?c in (• 5), we conclude the application
produces an unknown value satisfying bnat?c.

We extend values to include the opaque value • and values
refined by a set of contracts, written V/C. To give an operational
semantics to abstract values, which are values V̂ of the form •/C,
we need two things: (1) the δ relation must be extended to interpret
operations when applied to (partially) unknown values and (2) we
need to extend c to the case of applying an abstract function, i.e. an
opaque value that may represent a function. The extension to δ is
straightforward—when an operation is applied to an abstract value,
the result set may include multiple distinct values, and/or blame.
Applying abstract values E ĉ F

(V̂ U) ĉ •/{D | C→D ∈ C} if δ(proc?, V̂) 3 #t

(V̂ U) ĉ ((λyx.(y (x •))) U) if δ(proc?, V̂) 3 #t

When applying an abstract function, ĉ relates the term to two pos-
sible results. The first is an abstract value refined by the range con-
tracts of the function. The second produces no result, but recur-
sively applies the argument U . While the first possibility represents
a successful function application, the second simulates the argu-
ment escaping to an unknown context. In this simplified model, the
only behavioral values are functions, so we represent all possible
uses of the escaped value by iteratively applying it to •. This con-
struction represents a universal demonic context that will discover
a way to blame U if possible. Its only purpose is to uncover blame.

We also revise the contract checking reductions so that values
remember which contracts they have satisfied. A subsequent check

of a value against a contract it is known to satisfy always passes,
thus the semantics becomes more precise as it reduces.
Contract checking E ĉ F

(C⇐`,`′ V/C) ĉ V/C if C ∈ C
(bEc⇐`,`′ V/C) ĉ (if (E V/C) V ′ blame`) if bEc 6∈ C

where V ′ = V/C ∪ {bEc}
(C→D⇐`,`′ V) ĉ ((C 99KD)⇐`,`′ V ′) if δ(proc?, V) 3 #t

where V ′ = V/{C→D}

We have now constructed an abstract reduction semantics that ap-
proximates the behavior of programs for all possible instantiations
of the opaque components. In particular, we can verify pieces of
programs by running them with missing components, refined by
contracts. If the abstract program does not blame the known com-
ponents, no context can cause those components to be blamed.

In the remainder of the paper, we scale these ideas up to an
expressive language of modules and contracts.

4. Semantics of modules and contracts
Having seen the crucial ideas, we now present the semantics our
language with modules and a rich language of contracts in full1

To our language with first-class, higher-order recursive proce-
dures, conditionals, base values and operations we add pairs, and
to our language of contracts we add dependent higher-order con-
tracts, contracts on pairs, recursive contracts, and the conjunction
and disjunction of contracts. Predicates, as before, are expressed as
arbitrary programs within the language itself. Programs are orga-
nized as a set of module definitions, which associate a module name
with a value and a contract. Contracts are established at module
boundaries and here express an agreement between a module and
the external context. The contract checking portion of the reduc-
tion semantics monitors these agreements, maintaining sufficient
information to blame the appropriate party in case a contract is not
upheld.

4.1 Syntax
The syntax of our language is given below. We write E for a
possibly-empty sequence of E, and treat these sequences as sets
where convenient. Portions highlighted in gray are internal to the
semantics and cannot appear in source programs. Applications are
labeled by the module in which they appear.

P,Q ::= ME
M,N ::= (module f C V)
E,F ::= x | f ` | A | (E E)` | (if E E E) | (oE)`

| (C⇐f,f
f E)

U, V ::= n | #t | #f | (λxx.E) | (V, V) | empty
| ((C 99Kx.C)⇐f,f

f V)

C,D ::= x | C→x.C | bλxx.Ec | 〈C,C〉
| C ∧ C | C ∨ C | µx.C

o ::= add1 | car | cdr | + | = | cons | o?
o? ::= nat? | bool? | empty? | cons? | proc? | false?
A ::= V | blame``

Contract checks, written (C⇐f,g
h E), check that E evaluates to

a value satisfying C. The additional label h represents the module
in which the contract originally appeared. Tracking this third label
provides two benefits. First, it allows the semantics to report the

1 Throughout, we assume a basic familiarity with reduction semantics and
abstract machines and refer the reader to Semantics Engineering with PLT
Redex [11] for background, notation, and terminology.

3 2011/7/15

source of contract that was violated in the case of an error; high-
quality error reporting is a feature of production contract system
implementations. Second, it supports the indy semantics of depen-
dent contracts, as proposed by Dimoulas et al. [7]. As before, f
represents the positive party to the contract, blamed if the expres-
sion does not meet the contract, and g is the negative party, blamed
if the context does not satisfy its obligations.

Whenever these annotations can be inferred from context, we
omit them; in particular, in the definition of relations, it is assumed
all occurrences of checks of the form (C⇐E) have the same an-
notations. We omit labels on applications whenever they provably
cannot be blamed, e.g. when the operand is known to be a function.

We use the following syntactic shorthands throughout: the non-
dependent function contract (λx.E) is short for (λzx.E) where z
is not free in E, bfgc is short for bλx.(fg x)gc, and likewise, bo?c
is short for bλx.(o? x)c, E;F is short for ((λx.E) F) where x is
not free in E, C→D is short for C→x.D where x is not free in
D, and ((C 99KD)⇐V) is short for ((C 99Kx.D)⇐V) where x
is not free in D.

A blame expression, blame``′ , indicates that the module (or the
top-level expression) named by ` broke its contract with `′, which
may be a module or the language, indicated by Λ in the case of
primitive errors.

Syntactic requirements We make the following assumptions of
initial, well-formed programs, P : programs are closed, every mod-
ule reference and application is labeled with the enclosing module’s
name, or † if in the top-level expression, recursive contracts are pro-
ductive, operations are applied with the correct arity, abstract values
only appear in opaque module definitions.

We also require that recursive contracts be productive, meaning
either a function or pair contract constructor must occur between
binding and reference. We also require that contracts in the source
program are closed, both with respect to λ-bound and contract vari-
ables. Following standard practice, we will say that a contract is
higher-order if it syntactically contains a function contract; other-
wise, the contract is flat. Flat contracts can be checked immediately,
whereas higher-order contracts potentially require delayed checks.
All predicate contracts are necessarily flat. For disjunctions, we re-
quire at most one of the disjuncts is higher-order and without loss
of generality, we assume it is the right disjunct.

4.2 Reductions
Computation is modeled as a small-step reduction relation on pro-
grams, P 7−→c Q. Evaluation is defined as the set of reachable
program states using the reflexive, transitive closure of the step re-
lation:

evalc(P) = {Q | P 7−→→c Q},
Since the module context consists solely of syntactic values, all
computation occurs by reduction of the top-level expression. Thus
program steps are defined in terms of top-level expression steps,
carried out in the context of several module definitions. We model
such steps by two notions of reduction:

• The c reduction relation carries out procedure applications,
conditionals, primitive operations, and contract checking. Pro-
cedure application, conditionals and primitive operations are
defined as usual for a call-by-value language. Primitive oper-
ations are interpreted by a δ relation. Reductions for contract
checking take two forms: those for checking a value against a
flat contract and those for checking higher-order contracts. For
flat contracts, we generate programs that decide if the given
value is satisfies the contract. Higher-order contracts, on the
other hand, are decomposed.
• The ∆(M) relation, which is a function of the module con-

text of a program, resolves module references to module defi-

nitions. Self references are resolved to their unchecked defini-
tions, while external references are wrapped in contract checks.

Together, the two model the reduction steps of a top-level expres-
sion, when closed over evaluation contexts, E :
Reduction in context P 7−→c Q

M E [E] 7−→c M E [E] if E c F
M E [E] 7−→c M E [F] if (E,F) ∈ ∆(M)

M E [blamefh] 7−→c M blame
f
h if E 6= []

E ::= [] | (E E) | (V E) | (if E E E) | (o V E E) | (C⇐E)

4.3 Applications, operations, and conditionals
The c relation is defined on closed expressions. For applications,
operations, and conditionals, reduction is defined as follows:
Basic reductions E c F

((λyx.E) V)` c [(λyx.E)/y][V/x]E
(V U)` c blame`Λ if δ(proc?, V) 3 #f

(o V) c A if δ(o,V) 3 A
(if V E F) c E if δ(false?, V) 3 #f
(if V E F) c F if δ(false?, V) 3 #t

Again, we rely on δ not only to interpret operations, but also to
determine if a value is a procedure or #f; this is to set up our
subsequent abstract reduction which will re-use the c relation by
simply extending the δ relation to interpret abstract values. We add
a reduction to blame

f
Λ when applications are misused; the program

has here broken the contract with the language.

4.4 Contract checking
We divide contract checking reductions into two categories. First,
checking flat contracts is handled by a single rule, which delegates
to the FC metafunction.
Flat contract reduction E c F

(C⇐f,g
h V) c (if (E V) V blame

f
h) (∗)

where C is flat and E = FC(C)

This rule implements a contract check by compiling it to an if
expression. The test is an application of the function generated by
FC(C) to V . If the test succeeds, V is produced, otherwise, the
positive party to the contract, here f is blamed, noting that the
original contract came from h.

The FC metafunction, defined below, takes a flat contract
and produces the source code of a function which when ap-
plied to a value produces true or false indicating whether the
value passes the contract. The additional complexity over the
similar rule of section 3 is to handle the addition of flat con-
tracts containing conjunction, disjunction, and pair contracts. As
an example, the check expression (bnat?c ⇐f,g

h V) reduces to
(if ((λx.(nat? x)) V) V blame

f
h)

Flat contract checking FC(C) = V

FC(µx.C) = λxy.E where E = FC(C)
FC(x) = λy.(x y)

FC(bλyz.Ec) = λyz.E
FC(C1 ∧ C2) = λy.(and (E1 y) (E2 y)) where Ei = FC(Ci)
FC(C1 ∨ C2) = λy.(or (E1 y) (E2 y)) where Ei = FC(Ci)
FC(〈C1,C2〉) = λy.(and (cons? y) (E1 (car y)) (E2 (cdr y)))

where Ei = FC(Ci)

4 2011/7/15

The next set of reduction rules defines the behavior of higher-
order contract checks; we assume in each case that the checked
contract is not flat.
Reduction for function contracts E c F

(((C 99Kx.D)⇐f,g
h V) U) c ([U/x]D⇐f,g

h (V (C⇐g,f
h U)))

(C→x.D⇐V) c ((C 99Kx.D)⇐V) (∗)
if δ(proc?, V) 3 #t

(C→x.D⇐f,g
h V) c blame

f
h if δ(proc?, V) 3 #f

The first rule creates blessed functions. These values represent
a function which has been wrapped with a function contract, but
where the domain and range contracts have not yet been applied
to the arguments or results of the function. In the first, we apply a
blessed function, producing a function application of the encapsu-
lated function, where the argument is checked against the domain
contract and the result is checked against the range. Note that the
argument is substituted into the range contract to support dependent
contracts. In the second rule, a value that is a function as determined
by the proc? primitive is wrapped to produce a blessed function.
The third rule blames the positive party of a function contract when
the supplied value is not in fact a function.
Higher-order pair contract reductions E c F

(〈C,D〉⇐V) c (cons (C⇐(car V)) (D⇐(cdr V))) (∗)
if δ(cons?, V) 3 #t

(〈C,D〉⇐f,g
h V) c blame

f
h if δ(cons?, V) 3 #f

The remaining rules handle higher-order contracts that are not
immediately function contracts, such as pairs of function contracts.
The first two are for pair contracts. If the value is determined to be
a pair by cons?, then the components are extracted using car and
cdr and checked against the relevant portions of the contract. If the
value is not a pair, then the program reduces to blame, analogous
to the case for function contracts.
Other higher-order contract reductions E c F

(µx.C⇐V) c ([µx.C/x]C⇐V)

(C ∧D⇐V) c (D⇐(C⇐V))

(C ∨D⇐V) c (if (E V) V (D⇐V)) (∗)
where E = FC(C)

The last three rules decompose combinations of higher-order con-
tracts. Recursive contracts are unrolled and conjunctions are de-
composed into successive checks. For higher-order contract dis-
junctions, we make use of the invariant that only the right disjunct
is higher-order and use FC to implement the check for the left.

4.5 Module references
To handle references to module-bound variables, we define a mod-
ule environment that describes the module context M . Using the
module reference annotation, the environment distinguishes be-
tween self references and external references. When an external
module is referenced, its value is wrapped in a contract check; a
self-reference is resolved to its (unchecked) value. This distinction
implements the notion of “contracts as boundaries” [12], in other
words, contracts are an agreement between the module and its con-
text, and the module can behave internally as it likes.
Module environment (fg, E) ∈ ∆(M)

∆(M) = {(ff, V) | (module f C V) ∈M}
∪ {(fg, (C⇐f,g

f V)) | (module f C V) ∈M , f 6= g}

4.6 Basic operations
Typically, the interpretation of operations is defined by a function
δ that maps an operation and argument values to a result. So for
example, you might have δ(add1, 0) = 1. The result of applying a
primitive may either be a value in case the operation is defined on
its given arguments, or blame in case it is not. We do the same with
a slight twist: we choose to model δ more generally as a relation
between an operation, arguments, and a result. The example now
becomes (add1`, 0, 1) ∈ δ, which we also write δ(add1`, 0) 3 1
to be suggestive of the standard notation. Additionally, we define
here only the δ̃ relation which is a subset of the full δ relation; the
remainder, δ̂ handles abstract values, see section 5.5. A few selected
cases are given below as examples. Otherwise, the definition of δ̃ is
standard and we relegate the remainder to an appendix.

Primitive operations δ̃(o`,V) 3 A

δ̃(add1, n) 3 n+ 1 δ̃(+, n,m) 3 n+m

δ̃(car, (U, V)) 3 U . . .

δ̃(cdr, (U, V)) 3 V δ̃(o`,V) 3 blame`Λ

Labels on operations come from the application site of the opera-
tion in the program, e.g. (add1 5)` so that the appropriate module
can be blamed when primitive operations are misused, as in the last
case, and are omitted whenever they are irrelevant. When primitive
operations are misused, the violated contract is on Λ, standing for
the programming language itself, just as in the rule for application
of non-functions.

5. Contracts as abstract values
The previous section establishes as semantics for programs with
modules and contracts. We now extend the semantics to incorporate
opaque components, i.e. modules whose implementations are omit-
ted, written (modulef C •). Our semantics gives non-deterministic
behavior to these components, bounded by their specifications, that
is, their declared contracts.

V,U += • | V/C

To implement this idea, we add two new possibilities for values
to our language. The first is an abstract value, written •—this is
a value about which we know nothing. The second is a value
which we know to have satisfied a set of contracts, written V/C.
This knowledge about values is necessary for precise reasoning
about abstract values—once we know that a particular abstract
value satisfies beven?c, that contract will not fail in future when
reapplied to the same value.

In the following, we assume that (V/C)/C′ = V/C ∪ C′ and
V = V/∅. Here, C ranges over sets of contracts. Without loss of
generality, we assume all conjunctions in C are flattened into the
set. We more generally refer to an abstract value for a value of the
form •/C, while a concrete value is any value V/C where V 6= •.
We let V̂ range over abstract values, Ṽ over concrete values, and
V over their union.

5.1 Opaque module references
Abstract values are introduced by reference to modules whose im-
plementation is not available, in which case we model the miss-
ing component by its specification. A module whose implementa-
tion is not available is opaque and transparent when it is available.
References to module-defined variables are now resolved through
the ∆̂(M) relation, which resolves references to transparent mod-
ules are handled just as before, and resolves opaque modules to
the check of an abstract value that consists solely of the module’s
contract.

5 2011/7/15

Module environment (fg, E) ∈ ∆̂(M)

∆̂(M) = {(ff, Ṽ) | (module f C Ṽ) ∈M}
∪ {(fg, (C⇐f,g

f Ṽ)) | (module f C Ṽ) ∈M , f 6=g}
∪ {(fg, (C⇐f,g

f •/{C})) | (module f C •) ∈M}

5.2 Remembering contracts
As computation is carried out, we can discover properties of ab-
stract values that may be useful in subsequently avoiding spurious
program execution. Our primary mechanism for remembering such
discoveries is to add properties, encoded as contracts, to values
(both abstract and concrete) as soon as the computational process
proves them. So for example, if a value passes a flat contract check,
we want to add the checked contract to the value’s remembered set.
Subsequent checks of the same contract will be avoided.

To accomplish this, we modify the rules that check first-order
properties of values to remember these properties. In particular, we
replace the rules in section 4 marked with (∗) with the following:
Remembering contracts E ĉ F

(C⇐f,g
h V) ĉ (if (E V) U blame

f
h)

where C is flat, E = FC(C) and U = V/{C} and V `∼ C
(C⇐f,g

h V) ĉ V/{C} where C is flat, and V ` C
(C⇐f,g

h V) ĉ blame
f
h where C is flat, and V 6` C

(C→x.D⇐V) ĉ ((C 99Kx.D)⇐U)
where δ(proc?, V) 3 #t and U = V/{C→x.D}

(〈C,D〉⇐V) ĉ (cons (C⇐(car U)) (D⇐(cdr U)))
where δ(cons?, V) 3 #t and U = V/{bcons?c}

(C ∨D⇐V) ĉ (if (E V) U (D⇐V))
where E = FC(C) and U = V/{C} and V `∼ C

(C ∨D⇐V) ĉ V/{C} where C is flat and V ` C
(C ∨D⇐V) ĉ (D⇐V) where C is flat and V 6` C

Each of these rules is similar to its earlier counterpart except that it
replaces V with U , a new value that extends the set of remembered
contracts on V . We then use the remembered contracts to optimize
the reductions for flat contract checking by adding a proof system,
written V ` C, when a value V definitely satisfies the contract C.
We provide the full details of the this proof system in section 5.5;
for the moment, the key property is that V/C ` C holds. Similarly,
V 6` C indicates that V definitely does not satisfy C, and V `∼ C
indicates that neither of these relations holds.

5.3 Reduction with abstract values
Having created abstract values via reference to opaque modules,
we must determine how they behave in computation. Fortunately,
in many cases our use of δ in the definition of reduction accom-
plishes this automatically. For example, if δ(false?, V̂) 3 #t,
then (if V̂ E F) 7−→c F—no additional rules are required.

Function application, however, is not interpreted by δ. We there-
fore endow abstract functions, i.e. abstract values that answer #t to
proc?, with reductions that describe their behavior when applied.

When an abstract value is applied as function (V̂ U), the ar-
gument U crosses into an unknown component. It may be treated
arbitrary, so long as the component lives up to any commitments
its made on the domain of its inputs. So for example, applying the
function V̂ = •/{bcons?c→bnat?c}, V̂ may treat its input U
arbitrary, so long as it always treats it as a pair.

There are three possibilities that may occur in when applying
an abstract function: (1) the abstract function may produce a result
satisfying the specification of the functions output, (2) the function

may make use of its argument according to the specification of the
functions input, but if the input contains functions, this potentially
uncovers blame, or (3) the function errors internally or diverges.
The third case we ignore, since we do not attempt to predict the
behavior of components whose implementations we do not have.

We handle the other two possibilities by non-deterministically
considering both. In the case of (1), we simply produce an abstract
value that remembers all range contracts of the function. We handle
(2) by first placing the argument in a demonic context, then return-
ing the same value as in case (1). The demonic context is a universal
context that will produce blame if it there exists a context that pro-
duces blame originating from the value. If the universal demonic
context cannot produce blame, only the successful range value is
produced.
Applying abstract values E ĉ F

(•/C U) ĉ •/{[V/x]D | C→x.D ∈ C} if δ(proc?, •/C) 3 #t

(V̂ U) ĉ (DEMONIC U) if δ(proc?, V̂) 3 #t

DEMONIC = (λyx.AMB({(y (x •)), (y (car x)), (y (cdr x))}))

AMB({E}) = E
AMB({E} ·∪ E) = (if • E F) where F = AMB(E)

The demonic context is implemented as a recursive function that
makes a non-deterministic choice as to how to treat its argument—
it either applies the argument to the least-specific value, •, or selects
one component of it, and then recurs on the result of its choice.
This subjects the input value to all possible behavior that a context
might have. Note that the demonic context might itself be blamed;
we implicitly label the expressions in the demonic context with a
distinguished label and disregard these spurious errors in the proof
of soundness. We use the AMB metafunction to implement the non-
determinism of demonic; AMB uses an if test of an opaque value,
which reduces to both branches.

5.4 Improving precision via non-determinism
Since our reduction rules, and in particular the δ relation, make use
of the remembered contracts on values, making these contracts as
specific as possible improves precision of the results.
Improving precision via non-determinism E ĉ F

•/C ·∪ {C1 ∨ C2} ĉ •/C ∪ {Ci} i ∈ {1, 2}
•/C ·∪ {µx.C} ĉ •/C ∪ {[µx.C/x]C}

These two rules increase the specificity of abstract values. The
first splits abstract values known to satisfy a disjunctive contract.
For example, •/{bnat?c∨ bbool?c} ĉ •/bnat?c and •/bbool?c.
This reifies the non-determinism of the value into non-determinism
in the reduction relation, and makes subsequent uses of δ more
precise on the two produced values. Similarly, we unfold recursive
contracts in abstract values; this exposes further disjunctions to
split, as with a contract for lists.

5.5 Base operations on abstract values
When applying base operations to abstract values, the results are
potentially complex. For example, (add1•) might produce any nat-
ural number, or it might go wrong, depending on what value • rep-
resents. We represent this in the abstract version of δ, written δ̂,
with a combination of non-determinism, where δ̂ relates an oper-
ation and its inputs to multiple answers, as well as abstract values
as results, to handle the arbitrary natural numbers or booleans that
might be produced.

The definition of δ̂ relies on a proof system relating predicates
and values, discussed below. Here, V ` o? means that V is known

6 2011/7/15

Base operations on abstract values δ̂(o`,V) 3 A

V ` o? =⇒ δ̂(o?, V) 3 #t

V 6` o? =⇒ δ̂(o?, V) 3 #f

V `∼ o? =⇒ δ̂(o?, V) 3 •/{bbool?c}
V ` nat? =⇒ δ̂(add1, V) 3 •/{bnat?c}
V 6` nat? =⇒ δ̂(add1`, V) 3 blame`add1
V `∼ nat? =⇒ δ̂(add1, V) 3 •/bnat?c

δ̂(add1`, V) 3 blame`add1
V ` cons? =⇒ δ̂(car, V) 3 π1(V)

V 6` cons? =⇒ δ̂(car`, V) 3 blame`car
V `∼ cons? =⇒ δ̂(car, V) 3 π1(V)

δ̂(car`, V) 3 blame`car

πi(•/C) = •/{Ci | 〈C1,C2〉 ∈ C} for i ∈ {1, 2}
πi(V1, V2) = Vi for i ∈ {1, 2}

Value proves or refutes base predicate V ` o? and V 6` o?

δ̃(o?, V) 3 #t

V ` o?
C ` o?

V/C ∪ {C} ` o?

δ̃(o?, V) 3 #f

V 6` o?
C 6` o?

V/C ∪ {C} 6` o?

Value proves or refutes contract V ` C and V 6` C

C ∈ C
V/C ` C

V ` o?
V ` bo?c

V 6` o?
V 6` bo?c

V 6` C V 6` D
V 6` C ∨D

V 6` C or V 6` D
V 6` C ∧D

C ∈ {bcons?c, bnat?c, bfalse?c, bbool?c} V ` proc?

V 6` C

V 6` proc?

V 6` C→x.D

V 6` cons?

V 6` 〈C,D〉
π1(V) 6` C or π2(V) 6` D

V 6` 〈C,D〉

U 6` C or V 6` D
(U, V) 6` 〈C,D〉

V 6` [µx.C/x]C

V 6` µx.C

to satisfy o?, V 6` o? means that V is known not to satisfy o?, and
V `∼ o? means V neither is known. For example, 7 ` nat? and
• `∼ o? for any o?.

Projections are defined on all values that do not refute cons?.
When a value is an actual pair, π{1,2} does the usual thing and ac-
cesses the left or right pair value component, respectively. For ab-
stract values, π{1,2} constructs an abstract value that is the projec-
tion of all the left (or right) pair contract components, respectively.
So for example, π1(•/{〈C1,C2〉, 〈D1,D2〉) = •/{C1, D1}. Any
non-pair contracts are ignored, so for example if only cons? is
known about a value, the projection produces an abstract value with
no constraints: π1(•/{bcons?c} = •.

We now define the our proof system used by δ̂, along with the
V ` C judgment used earlier in flat contract checking. We begin
with the relation between values and base predicates. Here, we
simply consult δ̃ where possible, and also examine the contracts

that V remembers by referencing the subsequent relation between
contracts and predicates. Note that consulting only δ̃ is necessary,
as δ̂ relies on the judgment we are defining. The judgment for 6` is
similar.

Second, we define a relation between values and contracts, used
earlier in the definition of checking of flat contracts. The intuition
is that V ` C then V satisfies C, with the opposite relation V 6` C
implying that V does not satisfy C. Again, these rules are simple
inclusions and exclusions based on injectivity of the base types of
our semantics. One complication to note is that the V 6` C relation
is coinductive, to handle recursive contracts properly.

Both of these judgments rely on an auxiliary judgment between
contracts and predicates, C ` o?, which we use merely as for
V ` o?. The key intuition is that any value satisfying given C
contract implies o? holds on that value. The 6` counterpart relation
has a similar intuition—a value satisfying the given contract im-
plies that o? does not hold on that value. These rules are simple
inclusions and exclusions based on injectivity of the base types of
our semantics, and are deferred to the appendix.

5.6 Abstract reduction
We are now equipped to define our full notion of reduction for
programs with opaque components.
Abstract reduction in context P 7−→ĉ Q

M E [E] 7−→ĉ M E [E] if E ĉ F

M E [E] 7−→ĉ M E [F] if (E,F) ∈ ∆̂(M)

M E [blamefh] 7−→ĉ M blame
f
h if E 6= []

However, there is one remaining complication. In any program
with opaque modules, any module might be referenced, and then
treated arbitrarily, by one of the opaque modules. While this does
not complicate the value that the main expression might reduce
to, it does create the possibility of blame that has not been pre-
viously predicted. We therefore place each concrete module into
the previously-defined demonic context and non-deterministically
choose one of these expressions to run prior to running the main
module of the program.

The evaluation function is now defined as:

eval ĉ(ME) = {Q |M F ; E 7−→→ĉ Q},

where F = AMB({#t, (DEMONIC f)}), (module f C V) ∈M .

6. Soundness
In this section we establish the soundness of our abstract reduc-
tion semantics. The soundness theorem states the abstract seman-
tics approximates the concrete behavior of a program for all pos-
sible instantiations of opaque components. Soundness implies an
important corollary for the verification of modules with respect to
their specification: any concrete module that is not blamed during
abstract reduction is contract correct; in all possible contexts, the
module cannot be blamed.

The key intuition of the claim is that any program that has a set
of opaque modules can be instantiated with arbitrary implemen-
tations, making the program fully concrete. Running the instanti-
ated program under the concrete semantics may produce an answer
which is either a value or blame. The abstract semantics semantics
is sound in the following sense: running the uninstantiated, opaque
program under the abstract semantics may produce a set of answers.
If the concrete program produced a value, the opaque program pro-
duces an abstraction of that value. If the concrete program produced
blame of a module that is not the instantiation of an opaque module,
the abstract program produces the same blame.

This soundness result implies, for example, that if a program
with opaque modules does not produce blame, the known modules

7 2011/7/15

cannot be blamed, regardless of the choice of implementation for
the missing components.

Soundness relies on the definition of approximation between
values. The basic intuition for approximation is that two concrete
values approximate each other only if they are identical, but an ab-
stract value, which can be thought of as standing for a set of accept-
able concrete values, approximates a concrete value if that value in
the set the abstract value denotes. For example, •/bbool?c approx-
imates #t, but not 7. By extension, an abstract value approximates
another abstract value if it stands for a superset of values.

The approximation relation on expressions, modules, and pro-
grams is formalized below. We show only the important cases and
omit the straightforward structurally recursive cases.
Approximates P v Q, M vM N , and E vM F

(C⇐E) vM •/C ∪ {C}
V ` C

V vM •/C ∪ {C}

((C 99Kx.D)⇐E) vM •/C ∪ {C→x.D}

(module f C •) ∈M or f = †
blame

f
g vM E

(C⇐E) vM F

(C⇐E) vM (C⇐F)

C ∈ C =⇒ D ∈ C′.D vM C

V/C vM •/C′
N vM M F vM E

NF vME

(module f C •) ∈M

(module f C V) vM (module f C •)
We lift v to evaluation contexts E by structural extension. We
lift v to contracts by structural extension on contracts and v on
embedded values. We liftv to vectors by point-wise extension and
to sets of expressions by point-wise, subset extension.

With the approximation relation in place, we now state and
prove our main soundness theorem.

For space, we omit straightforward proofs of auxiliary lemmas.

Lemma 1. If V vM U , then δ(o,V) vM δ(o,U).

Lemma 2. IfE vM F and V vM U , then [V/x]E vM [U/x]F .

Lemma 3. If C vM D, then FC(C) vM FC(D).

Lemma 4. Let E = FC(C), then

1. if V ` C and V vM U , then (E U) 7−→→ĉ A w #t,
2. if V 6` C and V vM U , then (E U) 7−→→ĉ A w #f.

Lemma 5. If P 7−→ĉ P ′, P ′ 6= M blamefg and P v Q, then
Q 7−→→ĉ Q′ and P ′ v Q′.

Proof. We split into two cases.
Case (1):

P = M E [E] 7−→ĉ M E [E′]

Q = N E ′[F] 7−→ĉ N E ′[F ′]

where E vN E ′. We reason by cases on the step from E to E′.

• Case: E = fg and (fg, E′) ∈ ∆(M)

If f is transparent in N , then (fg, E′) ∈ ∆̂(N) and we are
done. Otherwise, f 6= g and thus

E′ = (C⇐f,g
f V) F ′ = (C⇐f,g

f •/{C}),

but now E′ vN F ′, since E′ vN •/{C}.
• Case: (C → x.D ⇐ V) ĉ ((C 99K x.D) ⇐ U) where
δ(proc?, V) 3 #t and U = V/{C→x.D}.

Since F is a redex, by v we have F = (C′ → y.D′ ⇐ V ′),
where V vN V ′. By lemma 1, δ(proc?, V ′) 3 #t. So F ′ =
((C′ 99K y.D′) ⇐ U ′) where U ′ = V ′/{C′→y.C′} vN

V/{C→x.D} and thus E′ vN F ′.
• Case: (V1 V2)` ĉ blame`Λ, where δ(proc?, V1) 3 #f.

By v, we have F = (U1 U2)` and Ui vN Vi. By lemma 1,
δ(proc?, U1) 3 #f, hence (U1 U2)` ĉ blame`Λ.
• Case: (V1 V2)` ĉ E′, where δ(proc?, V1) 3 #t.

By v, we have F = (U1 U2)` and Ui vN Vi. By lemma 1,
δ(proc?, U1) 3 #t.
Either V1 and U1 are structurally similar, in which case the
result follows by possibly relying on lemma 2, or V1 =
(λyx.E0)/C and U1 = •/C′. There are two possibilities for
the origin of V1: either it was blessed or it was not. If V1 was
not blessed, then C contains no function contracts, implying C′
contains no function contracts, hence F ′ = •, and the result
holds. Alternatively, V1 was blessed and C contains a func-
tion contract C → x.D. But but by the blessed application
rule, we have E = E1[([V ′2/x]D⇐ [])], thus by assumption
E ′ = E ′1[([U ′2/x]D′⇐ [])], implying [V ′2/x]D v [U ′2/x]D′,
finally giving us the needed conclusion:

E1[([V ′2/x]D⇐E′)] vN E ′1[([U ′2/x]D′⇐F ′)],

where F ′ = •/{[U2/x]D′ | C′→x.D′ ∈ C′}.
• Case: (C⇐V) ĉ E′ where C is flat.

If V `∼ C, then the case holds by use of lemma 3. If V ` C,
then the case holds by lemma 4(1). If V 6` C, then the case
holds by lemma 4(2).
• The remaining cases are straightforward.

Case (2):

P = M E1[E2[E]] 7−→ĉ M E1[E2[E′]]

Q = N E ′1[E ′2[F]]

where E1 is the largest context such that E1 vN E ′1 but E2 6vN E ′2.
In this case, we have E2[E] vN E ′2[F], but since E2 6vN E ′2,

this must follow by one of the non-structural rules for v, all of
which are either oblivious to the contents of E and E′, or do not
relate redexes to anything.

Lemma 6. If ME 7−→→c MA, then ME 7−→→ĉ MA/C.

Lemma 7. If there exists a context E such that

M (module f C V) E [f] 7−→→c blamefg ,

then

M (module f C V) (DEMONIC f) 7−→→ĉ blamefg .

Proof. If there exists such an E , then without loss of generality, it
is of some minimal form D in

D = [] | (D V) | (car D) | (cdr D),

but then there exists a D′ equal to D with all values replaced
with • such that M D′[V] 7−→→ĉ blamefg . This is because at
every reduction step, replacing some component of the redex with •
causes at least that reduction to fire, possibly in addition to others.
Further, by inspection of DEMONIC, if M D′[V] 7−→→ĉ blamefg ,
then M (DEMONIC V) 7−→→ĉ blamefg .

Theorem 1 (Soundness). If P v Q where Q = ME and
A ∈ eval ĉ(P) there exists some B ∈ eval ĉ(Q) where A vM B.

8 2011/7/15

Proof. By the definition of eval ĉ, we have P 7−→→c A. Let the
number of steps in P 7−→→c A be n. There are two cases: either
A = V , or A = blame``′ . If A = V , then we proceed by induction
on n and apply lemma 5 at each step.

If A = blame``′ then there are two possibilities. If ` is the
name of an opaque module in M or if ` = †, then A vM B
immediately. If ` = f is the name of a concrete module in M , then
(DEMONIC f) 7−→→ĉ A by lemma 7, and therefore A ∈ eval ĉ(Q)
by the definition of eval ĉ.

With the soundness theorem in hand, we can immediately con-
clude our desired result: that our abstract reduction semantics veri-
fies the absence of blame for concrete modules.

Corollary 1. If P 67−→→ĉ blamefg for some concrete f , then no
instantiation of the opaque modules in P can cause f to be blamed.

7. Computable approximation
At this point, we have constructed an abstract reduction semantics
that gives meaning to programs with opaque components. The se-
mantics is a sound abstraction of all possible instantiations of the
omitted components, thus it can be used to verify modular pro-
grams satisfy their specifications. However, the abstract semantics
subsumes the concrete semantics and consequently cannot, in gen-
eral, be used to automatically verify contract correctness of pro-
grams since the abstract semantics of a program is undecidable.

In this section, we describe a modular program analysis based
on our previous abstract reduction semantics that enables precisely
this kind of automation at the expense of precision.

Program analysis aims to soundly and computably predict the
behavior of programs. Our abstract semantics enjoys the first prop-
erty, but lacks the second. To achieve decidability we will construct
a finite-state approximation to the execution of programs with po-
tentially opaque components. The resulting analysis makes sound
predictions and can be used as the basis for automatic program ver-
ification and analysis.

We adopt the abstracting abstract machines [34] approach to
deriving a program analysis, which provides a recipe for going from
a high-level semantics to a low-level computable approximation.
The recipe is to first derive a first-order state-transition system (an
abstract machine) that precisely characterizes the semantics, then
to refactor the machine to thread any recursive structure through
the machine’s store. Finally the machine, which has a potentially
infinite state-space, is approximated by bounding the size of the
store. Store updates are interpreted as joins to a set of possible
values residing at a location, and store dereferences are interpreted
as a non-deterministic choice among the values in a store location.
Since all recursive structure has been threaded through the store
and store is of finite size, the resulting machine has a finite state-
space, while the non-determinism of store dereference leads to a
straightforward soundness argument.

7.1 An abstract machine for analysis
We begin by deriving an abstract machine for the reduction se-
mantics of section 5. The machine is a variant of the CESK ma-
chine [10]; machine states consist of a control string (an expres-
sion), an environment that closes free variables in the control string,
a store mapping addresses to heap-allocated values, and a continu-
ation, which represents the evaluation context of the control string.
Environments are finite maps from variables to addresses and stores
are finite maps from addresses to values. Values are pairs of terms
and environments, called closures, or pairs of closures. We let a
and b range over value pointers (addresses that resolve to values in
the store), and k and i range over continuation pointers (addresses
that resolve to continuations).

Environments and stores

ρ, % ::= ∅ | ρ[x 7→ a]
σ, ς ::= ∅ | σ[a 7→ {(V, ρ), . . . }] | σ[k 7→ {κ, . . . }]

Values are extended with pairs of closures and blessed pointers.
The former is needed to represent pairs in an environment model.
The latter are needed to ensure programs generate only a finite
amount of new syntax when run.
Values

V += ((V, ρ), (V, ρ))

| ((C 99Kx.C)⇐f,f
f a)

Continuations

κ, ι ::= mt | op`(o, k)
| ar`(E, ρ, k) | opl`(o,E, ρ, k)
| fn`(V, ρ, k) | opr`(o, V, ρ, k)

| if(E,E, ρ, k) | chk-orf,ff (V, ρ, C, ρ, k)

| chkf,ff (C, ρ, k) | chk-consf,ff (C, ρ, V, ρ, k)

Continuations represent evaluation contexts as follows: mt rep-
resents []; ar`(E, ρ, k) represents E [([] E′)`], where ρ closes E
to represent E′ and k points to a continuation κ that represents
E ; and so on. The continuations forms are standard with the ex-
ception of those for contract checking. The chkf,gh (C, ρ, k) con-
tinuation represents an evaluation context (C′ ⇐f,g

h []) where
ρ closes any embedded terms in the contract C to represent C′.
The chk-or and chk-cons special purpose variants that are used to
represent continuations of disjunctive and pair contracts. For ex-
ample, chk-consf,gh (C, %, V, ρ, k) represents (cons [] (C′ ⇐f,g

h

(cdr V ′))), where % closes terms embedded in C to represent C′,
while ρ closes V to represent V ′.

The machine transition system is defined on page 10. Although
the definition is formidable, it can be derived in a systematic way.

States of the machine are represented as quadruples of expres-
sions, environments, continuations, and stores:

Σ ::= 〈E, ρ, κ, σ〉

We give a representative selection of machine transition rules on
page 10. The full machine definition is given in the supplemental
material. We now define the evaluation function of the machine,
which computes the set of reachable machine states:

evalMĉ(P) = {Σ′ | inj (P) 7−→ Σ′},
where inj (ME) = 〈E, ∅,mt, ∅〉.

7.2 Allocation and approximation
The machine is parameterized by an allocation strategy embodied
in the alloc function:

(i, b) = alloc(Σ),

which produces a vector of continuation and value pointers.
When allocation produces only fresh addresses that are not in

use in the store, the machine carries out program execution exactly
as in the reduction semantics. The machine therefore can act as low-
level interpreter for our language. On the other hand, if allocation
produces addresses from some finite set, the machine’s state-space
is bounded, causing the machine to approximate the actual exe-
cution of a program. This restriction implies alloc may allocate an
address already in use. To ensure soundness, the machine interprets
store updates as joins which place multiple values in any given store
location. When dereference the store, a non-deterministic choice is
made as to which value is fetched.

9 2011/7/15

Abstract machine (selected transitions) Σ = 〈E, ρ, κ, σ〉 7−→ 〈F, %, ι, ς〉, where (i, b) = alloc(Σ)

〈fg, ρ, κ, σ〉 7−→ 〈V, ∅, chkf,gh (C, ∅, i1), σ[i1 7→ κ]〉 if (ff, (C⇐f,g
h V)) ∈ ∆̂(M)

〈(C⇐f,g
h E), ρ, κ, σ〉 7−→ 〈E, ρ, chkf,gh (C, ρ, i1), σ[i1 7→ κ]〉

〈V, ρ, fn`(((C 99Kx.D)⇐f,g
h a), %, k), σ〉 7−→ 〈V, ρ, chkg,fh (C, %, i1), σ[i1 7→ fn`(U, %′, i2),

i2 7→ chkf,gh (D, %[x 7→ b1], k),
b1 7→ (V, ρ)]〉

where (U, %′) ∈ σ(a)

〈V, ρ, chkf,gh (C→x.D, %, k), σ〉 7−→ 〈((C 99Kx.D)⇐f,g
h b1), %, κ, σ[b1 7→ (V, ρ)]〉 if δ(proc?, V) 3 #t, κ ∈ σ(k)

〈V, ρ, fn`(•/C, %, k), σ〉 7−→ 〈•/{[V/x]D | C→x.D ∈ C}, ρ, κ, σ〉 if δ(proc?, •/C) 3 #t, κ ∈ σ(k)
〈V, ρ, fn`(•/C, %, k), σ〉 7−→ 〈V, ρ, fn(DEMONIC, ∅, k), σ〉 if δ(proc?, •/C) 3 #t

Typically, machines such as the CESK are constructed on the
basis of a deterministic reduction semantics and are therefore de-
terministic machines. When bounded to perform program analysis
they become non-deterministic. In our setting however, we have
based the machine on a non-deterministic reduction semantics, so
even if the machine uses a fresh allocation strategy, the machine
just as non-deterministic as the semantics. Bounding the machine’s
store imposes an additional level of non-determinism that ensures
computability while retaining soundness.

For the purposes of our implementation, we instantiate alloc
for a 0CFA-like approximation. To allocate bindings, we use the
variable names as addresses. To allocate continuations, we use the
continuation frame (the continuation but without the pointer to the
next frame) as the address. We also incorporate abstract garbage
collection, which improves precision and performance.

7.3 Soundness and decidability
Using an unbounded allocation strategy, it is straightforward to
show the machine is a faithful evaluator for both the abstract re-
duction semantics. The proof follows the outline of a standard
proof [11, page 102], adapted mutatis mutandis. Having estab-
lished the correspondence, relating the computable approximation
to the reduction semantics is now only a matter of relating the ap-
proximating and non-approximating machine. This proof is like-
wise a straightforward adaptation of that given by Van Horn and
Might [34]. The key idea is to define a partial order on the abstract
machine’s state-space and show that the finite machine maintains
a step-wise approximation of the unbounded machine, which in-
volves straightforward reasoning by case analysis on the machine
transition relation.

Decidability follows from the finiteness of the machine’s state-
space. Threading closures and continuations through a bounded
store bounds both the space of function values and the control stack.
Primitive operations and base values are the remaining source of
infinite domains in the machine. We apply a simple widening oper-
ation on the results of δ that ensures the set of abstract base values
is finite.

Discussion It is worth noting that in this section we have applied
a semantics-based technique for deriving whole-program analy-
sis. However, by applying the recipe to a semantics that reasons
about modular programs, a modular analysis was obtained. Al-
though modular program analysis has been the topic of significant
research, this observation suggests that modularity and approxima-
tion may be considered orthogonal.

8. Implementation
We have implemented our system in a prototype tool for verifying
contracts, as seen in figure 1. We make use of the Redex tool [11]
to directly translate our reduction semantics as well as our ab-
stract machine definition into executable form. This produces a tool

Figure 1. Interactive program verification environment

which, when given a program written in the concrete syntax seen
in figure 1, produces the set of possible results predicted by the
semantics.

As seen above, we can take the example directly from the
introduction, define the relevant modules, and explore the behavior
of different choices for the main expression. In other words, we
have an interactive environment for exploring the behavior of our
verification system. The labeling and annotation required in our
model is automatically inserted.

Our tool is built on top of Racket [15] and DrRacket [13],
which provide an extensible programming language and develop-
ment environment. We are able to define our semantics as a new
language [33], so that files written in our new language can be com-
piled and executed with the Racket toolchain, using the semantics
of this paper.

We also take advantage of the built-in visualization support in
Redex so that users of our tool can select to visualize the graph
of the state-space explored by the reduction system. Users can
select either the uncomputable reduction semantics of section 5,
the computable semantics of section 7, or a visualization of the
behavior of either one.

Implementation extensions To make our prototype more useful,
we have implemented several extensions to the system described
in foregoing discussion to bring our language closer to existing
Racket programs, our goal for verification.

• First, we support multiple argument functions. This complicates
the definitions of the reduction relation as new possibilities arise
for errors due to arity mismatches.

10 2011/7/15

• Second, we add additional base values and operations to the
model to support more realistic programs.
• Third, we make the implementation of the FC metafunction

more sophisticated, so that it generates less complex functions,
improving running time and simplifying visualization.
• Fourth, we implement abstract garbage collection [27] in the

computable model, reducing the size of the state-space explored
in practice. In particular, abstract GC enables naive allocation
strategies to perform with high precision since store merges are
avoided by reclaiming unreachable space.
• Fifth, we add simpler rules to the model to handle such cases

as non-recursive functions and non-dependent contracts. This
brings the model closer to programmers expectation of the
semantics of the language, and simplifies visualizations.
• Finally, we provide richer blame information when programs go

wrong, as can be seen in the screen shot of figure 1. In addition
to the blame``′ result, which indicates the blamed party between
` and `′, our semantics is extended to track the first-order
component of the contract that witnessed the failure, and the
first-order value that directly caused the failure, along with the
higher-order value that was ultimately responsible for causing
the contract failure. This is the full complement of information
available in Racket’s production contract library, which reports
the failure of our dbl example as:

> ((dbl (λ (x) 7)) 4)
the top-level broke the contract
(even? → even?) → (even? → even?)
on dbl; expected <even?>, given: 7

Our prototype is available as open source software at

http://github.com/samth/var/

9. Related work
The verification of programs and specifications has been a research
topic for half a century; we survey only closely related work here.

Symbolic evaluation and abstract interpretation Symbolic exe-
cution [19] is the idea of running a program, but with abstract in-
puts. The technique can be used either for testing, to avoid the need
to specify certain test data, or for verification and analysis.

Most approaches to symbolic execution focus on abstracting
first order data such as numbers, typically with constraints such
as inequalities on the values. In this paper, we present an approach
to symbolic execution based on contracts as symbols, which scales
straightforwardly to higher-order values.

Abstract interpretation provides a general theory of semantic ap-
proximation [6] that relates concrete semantics to abstract seman-
tics interpreting programs over a domain of abstract values. Our
approach is very much an instance of abstract interpretation. The
reachable state semantics of c is our concrete semantics. The ĉ is
an abstract interpretation defined over the union of concrete values
and abstract values represented as sets of contracts. In a first-order
setting, contracts have been used as abstract values [8]. Our work
applies this idea to behavioral contracts and higher-order programs.

Verification of contracts The most closely related work to ours
is the modular set-based analysis based on contracts by Meunier
et al. [24, 25]. Meunier et al. take a program analysis approach,
generating set constraints describing the flow of values through the
program text. When solved, the analysis maps source labels to sets
of abstract values to which that expression may evaluate. Meunier’s
system is more limited than ours in several significant ways.

First, the set-based analysis is defined as a separate semantics,
which must be manually proved to correspond to the concrete se-

mantics. This proof requires substantial support from the reduction
semantics, making it significantly and artificially more complex by
carrying additional information only used in the proof. Despite this,
the system is unsound, since it lacks an analogue of DEMONIC. This
unsoundness has been verified in Meunier’s prototype.

Second, while our semantics allows the programmer to choose
how much to make opaque and how much to make concrete, Meu-
nier’s system always treats the entire rest of the program opaquely
from the perspective of each module.

Third, our language of contracts is much more expressive: we
consider disjunction and conjunction of contracts, dependent func-
tion contracts, and data structure contracts. Our ability to statically
reason about contract checks that always pass is also greater—
Meunier’s system includes only the first of our rules for V ` C.

Finally, Meunier approximates conditionals by the union of its
branches’ approximation; the test is ignored. This seemingly minor
point becomes significant when considering predicate contracts.
Since predicate contracts reduce to conditionals, this effectively
approximates all predicates as both holding and not holding, and
thus all predicate contracts may both fail and succeed.

Xu et al. [35] describe a static contract verification system for
Haskell. Their approach is to compile contract checks into the
program, using a transformation modeled on Findler and Felleisen
[12], run the GHC optimizer, and examine the result to see if any
contract checks are left in the residual program. If there are, the
system reports them as potentially failing.

In addition to the manifest limitations of relying on what the
compiler can optimize away to implement contract verification, Xu
et al. also consider a more limited set of contracts, not including
disjunction, conjunction, or data structures, and explicitly prohibit
contracts from containing code that might possibly go wrong. In
contrast, we directly reason about the semantics of our language,
handle a rich contract language, and allow arbitrary code in pred-
icates. As with Meunier et al.’s work, the user has no control
over what is precisely analyzed; indeed, Xu et al. inline all non-
contracted functions. Further, their system does not attempt to track
the possible parties to blame errors.

Blume and McAllester [5] provide a semantic model of con-
tracts which includes a definition of when a term is Safe, which
is when it can never be caused to produce blame. We use a related
technique to verify that modules cannot be blamed, by construct-
ing the DEMONIC context. However, we do not attempt to construct
a semantic model of contracts; instead we merely approximate the
run-time behaviors of programs with contracts.

Many researchers have studied verifying first-order properties
of programs expressed as contracts [4, 8]. Such analyses could
improve precision for first-order predicate checks in our system.

Combining expressions with specifications Giving semantics to
programs combined with specifications has a long history in the set-
ting of program refinements [18]. Our key innovations are (a) treat-
ing specifications as abstract values, rather than as programs in a
more abstract language, (b) applying abstract reduction to modular
program analysis, as opposed to program derivation or verification,
and (c) the use of higher-order contracts as specifications.

Type inference and checking can be recast as a reduction seman-
tics [22], and doing so bears a conceptual resemblance to our types-
as-values reduction. The principal difference is that Kuan et al. are
concerned with producing a type, and so all expressions are reduced
to types before being combined with other types. Instead, we are
concerned with values, and thus types and contracts are maintained
as specification values, but concrete values are not abstracted away.

Also related to our specification-as-values notion of reduction is
Reppy’s [29] variant of 0CFA that uses “a more refined representa-
tion of approximate values”, namely types. The analysis is modular
in the sense that all module imports are approximated by their type,

11 2011/7/15

http://github.com/samth/var/

whereas our approach allows more refined analysis whenever com-
ponents are not opaque. Reppy’s analysis can be considered as an
instance of our framework and thus could be derived from the se-
mantics of the language rather than requiring custom design.

Modular program analysis Shivers [32], Serrano [31], and Ash-
ley and Dybvig [1] address modularity (in the sense of open-world
assumptions of missing program components) by incorporating a
notion of an external or undefined value, which is analogous to al-
ways using the abstract value • for unknown modules, and therefore
allowing more descriptive contracts can be seen as a refinement of
the abstraction on missing program components.

Another sense of the words modular and compositional is that
program components can be analyzed in isolation and whole pro-
grams can be analyzed by combining these component-wise anal-
ysis results. Flanagan [14] presents a set-based analysis in this
style for analyzing untyped programs, with many similar goals
to ours, but without considering specifications and requiring the
whole program before the final analysis is available. Banerjee and
Jensen [2, 3] and Lee et al. [23] take similar approaches to type-
based and 0CFA-style analyses, respectively.

Other approaches to higher-order verification Kobayashi et al.
[20, 21] have recently proposed approaches to verification of tem-
poral properties of higher-order programs based on model check-
ing. This work differs from ours in three important respects. First, it
addresses temporal properties while we focus on behavioral proper-
ties. Second, it uses externally-provided specifications, whereas we
use contracts, which programmers already add to their programs.
Third, and most importantly, our system handles opaque compo-
nents, while model-checking approaches are whole-program. De-
spite these differences, we believe that the combination of reduc-
tion semantics and model checking approaches to higher-order pro-
gram verification is a fruitful area of future work.

Rondon et al. [30] present Liquid Types, an extension to the
type system of OCaml which incorporates dependent refinement
types, and automatically discharges the obligations using a solver.
This naturally supports the encoding of some uses of contracts,
but restricts the language of refinements to make proof obligations
decidable. We believe that a combination of our semantics with an
extension to use such a solver to decide the V ` C relation would
increase the precision and effectiveness of our system.

10. Conclusion
We have presented a spectrum of abstractions for verifying modu-
lar higher-order programs with behavioral software contracts. Con-
tracts are a powerful specification mechanism that are already used
in existing languages. We have shown that by using contracts as
abstract values that approximate the behavior of omitted compo-
nents, a reduction semantics for contracts becomes a verification
system. Further, we can scale this system both to a rich contract
language, allowing expressive specifications, as well as to a com-
putable approximation for automatic verification derived directly
from our semantics. Our central lesson is that abstract reduction
semantics is a powerful technique which turns the semantics of a
programming language with executable specifications in a modular
verifier for those specifications.

Acknowledgments: We are grateful to Phillipe Meunier for dis-
cussions of his prior work and providing code for the prototype
implementation of his system; to Casey Klein for help with Redex;
and to Christos Dimoulas for discussions and advice.

References
[1] J. M. Ashley and R. K. Dybvig. A practical and flexible flow analysis

for higher-order languages. ACM TOPLAS, 20(4), 1998.

[2] A. Banerjee. A modular, polyvariant and type-based closure analysis.
In A. M. Berman, editor, ICFP ’97. ACM, 1997.

[3] A. Banerjee and T. Jensen. Modular control-flow analysis with rank
2 intersection types. Mathematical. Structures in Comp. Sci., 13(1),
2003.

[4] M. Barnett, M. Fähndrich, K. R. M. Leino, P. Müller, W. Schulte,
and H. Venter. Specification and verification: The Spec# experience.
Comm. of the ACM, 2010.

[5] M. Blume and D. McAllester. Sound and complete models of con-
tracts. Journal of Functional Programming, 16, 2006.

[6] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approxima-
tion of fixpoints. In POPL ’77. ACM, 1977.

[7] C. Dimoulas, R. B. Findler, C. Flanagan, and M. Felleisen. Correct
blame for contracts: no more scapegoating. POPL ’11. ACM, 2011.

[8] M. Fähndrich and F. Logozzo. Static contract checking with abstract
interpretation. In FoVeOOS’10. Springer-Verlag, 2011.

[9] M. Fähndrich, M. Barnett, and F. Logozzo. Embedded contract lan-
guages. In SAC’10. ACM, 2010.

[10] M. Felleisen and D. P. Friedman. A calculus for assignments in higher-
order languages. In POPL’87. ACM, 1987.

[11] M. Felleisen, R. B. Findler, and M. Flatt. Semantics Engineering with
PLT Redex. MIT Press, 2009.

[12] R. B. Findler and M. Felleisen. Contracts for higher-order functions.
In ICFP ’02. ACM, 2002.

[13] R. B. Findler, J. Clements, C. Flanagan, M. Flatt, S. Krishnamurthi,
P. Steckler, and M. Felleisen. Drscheme: a programming environment
for Scheme. JFP, 12(02), 2002.

[14] C. Flanagan. Effective Static Debugging via Componential Set-Based
Analysis. PhD thesis, Rice University, 1997.

[15] M. Flatt and PLT. Reference: Racket. Technical Report PLT-TR-2010-
1, PLT Inc., 2010.

[16] M. Greenberg. personal communication.
[17] R. Hinze, J. Jeuring, and A. Löh. Typed contracts for functional pro-

gramming. In M. Hagiya and P. Wadler, editors, FLOPS’10, volume
3945 of LNCS, chapter 15. Springer, 2006.

[18] R. Johan, A. Akademi, and J. V. Wright. Refinement Calculus: A
Systematic Introduction. Springer-Verlag New York, Inc., 1998.

[19] J. C. King. Symbolic execution and program testing. Commun. ACM,
19(7), 1976.

[20] N. Kobayashi. Types and higher-order recursion schemes for verifica-
tion of higher-order programs. POPL ’09. ACM, 2009.

[21] N. Kobayashi, R. Sato, and H. Unno. Predicate abstraction and CE-
GAR for higher-order model checking. In PLDI’11. ACM, 2011.

[22] G. Kuan, D. MacQueen, and R. B. Findler. A rewriting semantics for
type inference. In R. D. Nicola, editor, ESOP ’07, volume 4421, 2007.

[23] O. Lee, K. Yi, and Y. Paek. A proof method for the correctness of
modularized 0CFA. IPL, 81, 2002.

[24] P. Meunier. Modular Set-Based Analysis from Contracts. PhD thesis,
Northeastern University, 2006.

[25] P. Meunier, R. B. Findler, and M. Felleisen. Modular set-based analy-
sis from contracts. In POPL ’06. ACM, 2006.

[26] B. Meyer. Eiffel : The Language. Prentice Hall PTR, 1991.
[27] M. Might and O. Shivers. Improving flow analyses via ΓCFA: Ab-

stract garbage collection and counting. In ICFP’06, 2006.
[28] S. S. Muchnick and N. D. Jones, editors. Program Flow Analysis:

Theory and Applications. Prentice Hall, 1981.
[29] J. Reppy. Type-sensitive control-flow analysis. In ML ’06. ACM,

2006.
[30] P. M. Rondon, M. Kawaguci, and R. Jhala. Liquid types. PLDI ’08.

ACM, 2008.
[31] M. Serrano. Control flow analysis: a functional languages compilation

paradigm. In SAC ’95. ACM, 1995.
[32] O. Shivers. Control-flow analysis of higher-order languages. PhD

thesis, Carnegie Mellon University, 1991.
[33] S. Tobin-Hochstadt, V. St-Amour, R. Culpepper, M. Flatt, and

M. Felleisen. Languages as libraries. PLDI ’11. ACM, 2011.
[34] D. Van Horn and M. Might. Abstracting abstract machines. In

ICFP’10. ACM, 2010.
[35] D. N. Xu, S. Peyton Jones, and S. Claessen. Static contract checking

for Haskell. In POPL ’09. ACM, 2009.

12 2011/7/15

A. Auxiliary definitions
A.1 Operations on concrete values
We assume V , U are concrete here.

(add1, n, n+ 1) ∈ δ̃

(car, (U, V), U) ∈ δ̃

(cdr, (U, V), V) ∈ δ̃

(+, n,m, n+m) ∈ δ̃

(=, n, n, #t) ∈ δ̃

n 6= m =⇒ (=, n,m, #f) ∈ δ̃

(cons, U, V, (U, V)) ∈ δ̃

(nat?, n, #t) ∈ δ̃

V 6∈ N =⇒ (nat?, V, #f) ∈ δ̃

V ∈ {#t, #f} =⇒ (bool?, V, #t) ∈ δ̃

V 6∈ {#t, #f} =⇒ (bool?, V, #f) ∈ δ̃

(empty?, empty, #t) ∈ δ̃

V 6= empty =⇒ (empty?, V, #f) ∈ δ̃

(cons?, (U, V), #t) ∈ δ̃

V ′ 6= (U, V) =⇒ (cons?, V ′, #f) ∈ δ̃

(proc?, (λxy.E), #t) ∈ δ̃

V 6= (λxy.E) =⇒ (proc?, V, #f) ∈ δ̃

(false?, #f, #t) ∈ δ̃

V 6= #f =⇒ (false?, V, #f) ∈ δ̃

(We have omitted the rules producing blame for arity mismatch
and undefined cases.)

A.2 Operations on abstract values
We assume V , U are abstract here.

V ` o? =⇒ (o?, V, #t) ∈ δ̂

V 6` o? =⇒ (o?, V, #f) ∈ δ̂

V `∼ o? =⇒ (o?, V, •/bbool?c) ∈ δ̂

V ` nat? =⇒ (add1, V, •/bnat?c) ∈ δ̂

V 6` nat? =⇒ (add1`, V, blame`add1) ∈ δ̂

V `∼ nat? =⇒ (add1, V, •/bnat?c) ∈ δ̂

∧ (add1`, V, blame`add1) ∈ δ̂

V ` cons? =⇒ (car, V, π1(V)) ∈ δ̂

V 6` cons? =⇒ (car`, V, blame`car) ∈ δ̂

V `∼ cons? =⇒ (car, V, π1(V)) ∈ δ̂

∧ (car`, V, blame`car) ∈ δ̂

V ` cons? =⇒ (cdr, V, π2(V)) ∈ δ̂

V 6` cons? =⇒ (cdr`, V, blame`cdr) ∈ δ̂

V `∼ cons? =⇒ (cdr, V, π2(V)) ∈ δ̂

∧ (cdr`, V, blame`cdr) ∈ δ̂

V ` nat? ∧ U ` nat? =⇒ (+, V, U, •/bnat?c) ∈ δ̂

V 6` nat? =⇒ (+, V, U, blame`+) ∈ δ̂

U 6` nat? =⇒ (+, V, U, blame`+) ∈ δ̂

V `∼ nat? ∧ U `∼ nat? =⇒ (+, V, U, •/bnat?c) ∈ δ̂

V `∼ nat? =⇒ (+, V, U, blame`+) ∈ δ̂

U `∼ nat? =⇒ (+, V, U, blame`+) ∈ δ̂

V ` nat? ∧ U ` nat? =⇒ (=, V, U, •/bbool?c) ∈ δ̂

V 6` nat? =⇒ (=, V, U, blame`=) ∈ δ̂

U 6` nat? =⇒ (=, V, U, blame`=) ∈ δ̂

V `∼ nat? ∧ U `∼ nat? =⇒ (=, V, U, •/bbool?c) ∈ δ̂

V `∼ nat? =⇒ (=, V, U, blame`=) ∈ δ̂

V1 `∼ nat? =⇒ (=, V, U, blame`=) ∈ δ̂

(cons, V, U, (V,U)) ∈ δ̂

Contract proves or refutes base predicate C ` o? and C 6` o?

bfalse?c ` bool? 〈C,D〉 ` cons? C→x.D ` proc?

bo?c ` o?
C ` o? D ` o?
C ∨D ` o?

C ` o? or D ` o?
C ∧D ` o?

o? 6= proc?

C→x.D 6` o?
o? 6= cons?

〈C,D〉 6` o?
C 6` o? D 6` o?
C ∨D 6` o?

C 6` o? or D 6` o?
C ∧D 6` o?

[µx.C/x]C 6` o?
µx.C 6` o?

o? 6= o?′ {o?, o?′} 6= {false?, bool?}
bo?′c 6` o?

13 2011/7/15

Basic reductions 〈E, ρ, κ, σ〉 7−→ 〈F, %, ι, ς〉

〈(E F)`, ρ, κ, σ〉 7−→ 〈E, ρ, ar`(F, ρ, k), σ[k 7→ κ]〉
〈(if E F1 F2), ρ, κ, σ〉 7−→ 〈E, ρ, if(F1, E2, ρ, k), σ[k 7→ κ]〉
〈(o E)`, ρ, κ, σ〉 7−→ 〈E, ρ, op`(o, k), σ[k 7→ κ]〉
〈(o E F)`, ρ, κ, σ〉 7−→ 〈E, ρ, opl`(o, F, ρ, k), σ[k 7→ κ]〉
〈x, ρ, κ, σ〉 7−→ 〈V, %, κ, σ〉 if (V, %) ∈ σ(ρ(x))
〈V, ρ, ar`(E, %, k), σ〉 7−→ 〈E, %, fn`(V, ρ, k), σ[k 7→ κ]〉
〈V, ρ, fn`((λyx.E), %, k), σ〉 7−→ 〈E, %[x 7→ a, y 7→ b], κ, σ[a 7→ (V, ρ), b 7→ ((λyx.E), %)]〉
〈V, ρ, fn`(U, %, k), σ〉 7−→ 〈blame`Λ, ∅,mt, ∅〉 if δ(proc?, U) 3 #f
〈V, ρ, if(E,F, %, k), σ〉 7−→ 〈E, %, κ, σ〉 if δ(false?, V) 3 #f
〈V, ρ, if(E,F, %, k), σ〉 7−→ 〈F, %, κ, σ〉 if δ(false?, V) 3 #t

〈V, ρ, op`(o, a), σ〉 7−→ 〈A, ∅, κ, σ〉 if δ(o`, V) 3 A
〈((U, %), (V, ρ)), ∅, op(car, a), σ〉 7−→ 〈U, %, κ, σ〉
〈((U, %), (V, ρ)), ∅, op(cdr, a), σ〉 7−→ 〈V, ρ, κ, σ〉
〈V, ρ, opl`(o,E, %, k), σ〉 7−→ 〈E, %, opr`(o, V, ρ, k), σ〉
〈V, ρ, opr`(cons, U, %, a), σ〉 7−→ 〈((U, %), (V, ρ)), ∅, κ, σ〉
〈V, ρ, opr`(o, U, %, a), σ〉 7−→ 〈A, ∅, κ, σ〉
〈blame``′ , ρ, κ, σ〉 7−→ 〈blame``′ , ∅,mt, ∅〉

Module references

〈ff, ρ, κ, σ〉 7−→ 〈V, ∅, κ, σ〉 if (ff, V) ∈ ∆̂(M)

〈fg, ρ, κ, σ〉 7−→ 〈V, ∅, chkf,gh (C, ∅, k), σ[k 7→ κ]〉 if (ff, (C⇐f,g
h V)) ∈ ∆̂(M)

Contract checking

〈(C⇐f,g
h E), ρ, κ, σ〉 7−→ 〈E, ρ, chkf,gh (C, ρ, k), σ[k 7→ κ]〉

〈V, ρ, chkf,gh (C, %, k), σ〉 7−→ 〈V, ρ, fn(U, %, k′), σ[k′ 7→ if(V/{C}, blamefg , ρ, k)]〉
where C is flat and U = FC(C, V)

〈V, ρ, fn`(((C 99Kx.D)⇐f,g
h a), %, k), σ〉 7−→ 〈V, ρ, chkg,fh (C, %, k′), σ[k′ 7→ fn`(U, %′, k′′),

k′′ 7→ chkf,gh (D, %[x 7→ b], k),
b 7→ (V, ρ)]〉

where (U, %′) ∈ σ(a)

〈V, ρ, chkf,gh (C→x.D, %, k), σ〉 7−→ 〈((C 99Kx.D)⇐f,g
h a), %, ι, σ[a 7→ (V, ρ)]〉 if δ(proc?, V) 3 #t

〈V, ρ, chkf,gh (C→x.D, %, k), σ〉 7−→ 〈blamefh, ∅,mt, ∅〉 if δ(proc?, V) 3 #f

〈V, ρ, chkf,gh (C ∧D, %, k), σ〉 7−→ 〈V, ρ, chkf,gh (C, %, i), σ[i 7→ chkf,gh (D, %, k)]〉
〈V, ρ, chkf,gh (C ∨D, %, k), σ〉 7−→ 〈V, ρ, ar(U, %, i), σ[i 7→ chk-orf,gh (V, ρ, C ∨D, %, k)]〉

where U = FC(C)

〈V, ρ, chk-orf,gh (U, %, C ∨D, ρ′, k), σ〉 7−→ 〈U/{C}, %, κ, σ〉 if δ(false?, V) 3 #f

〈V, ρ, chk-orf,gh (U, %, C ∨D, ρ′, k), σ〉 7−→ 〈U, %, chkf,gh (D, ρ′, k), σ〉 if δ(false?, V) 3 #t

Abstract values

〈V, ρ, fn`(•/C, %, k), σ〉 7−→ 〈E, ρ, begin(U, %, k), σ〉 if δ(proc?, •/C) 3 #t
where E = AMB({#t, DEMONIC(

∧
DOM(C), V)}) and U = •/RNG(C)

〈V, ρ, begin(E, %, k), σ〉 7−→ 〈E, %, κ, σ〉
〈•/C ·∪ {C1 ∨ C2}, ρ, κ, σ〉 7−→ 〈•/C ∪ {Ci}, ρ, κ, σ〉
〈•/C ·∪ {µx.C}, ρ, κ, σ〉 7−→ 〈•/C ·∪ {[µx.C/x]C}, ρ, κ, σ〉

Higher-order pair contract checking

〈V, ρ, chkf,gh (〈C,D〉, %, k), σ〉 7−→ 〈blamefh, ∅,mt, ∅〉 if δ(cons?, V) 3 #f

〈V, ρ, chkf,gh (〈C,D〉, %, k), σ〉 7−→ 〈U, ρ, op(car, i), σ[i 7→ chkf,gh (C, %, k′), k′ 7→ chk-consf,gh (D, %, U, ρ, k)]〉
if δ(cons?, V) 3 #t, where U = V/{bcons?c}

〈V, ρ, chk-consf,gh (C, %, U, ρ′, k), σ〉 7−→ 〈U, ρ′, op(cdr, i), σ[i 7→ chkf,gh (C, %, k′), k′ 7→ opr(cons, V, ρ, k)]〉

14 2011/7/15

	1 Behavioral contracts as symbolic values
	2 Our key technical tools
	3 A whirlwind tour
	4 Semantics of modules and contracts
	4.1 Syntax
	4.2 Reductions
	4.3 Applications, operations, and conditionals
	4.4 Contract checking
	4.5 Module references
	4.6 Basic operations

	5 Contracts as abstract values
	5.1 Opaque module references
	5.2 Remembering contracts
	5.3 Reduction with abstract values
	5.4 Improving precision via non-determinism
	5.5 Base operations on abstract values
	5.6 Abstract reduction

	6 Soundness
	7 Computable approximation
	7.1 An abstract machine for analysis
	7.2 Allocation and approximation
	7.3 Soundness and decidability

	8 Implementation
	9 Related work
	10 Conclusion
	A Auxiliary definitions
	A.1 Operations on concrete values
	A.2 Operations on abstract values

