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Abstract

This paper shows how type effect systems can be combined with model-checking techniques

to produce powerful, automatically verifiable program logics for higher order programs. The

properties verified are based on the ordered sequence of events that occur during program

execution, so-called event traces. Our type and effect systems infer conservative approximations

of the event traces arising at run-time, and model-checking techniques are used to verify logical

properties of these histories. Our language model is based on the λ-calculus. Technical results

include a type inference algorithm for a polymorphic type effect system, and a method for

applying known model-checking techniques to the trace effects inferred by the type inference

algorithm, allowing static enforcement of history- and stack-based security mechanisms. A

type safety result is proven for both unification and subtyping constraint versions of the type

system, ensuring that statically well-typed programs do not contain trace event checks that

can fail at run-time.

1 Introduction

Safe and secure program execution is crucial for modern information systems, but

is difficult to attain in practice because of both programmer errors and intentional

attacks. Various programming language-based techniques exist for increasing pro-

gram safety, by verifying at compile- and/or run-time that programs possess certain

safety properties. In addition to narrowly focused systems for verification of specific

properties such as memory safety or stack inspection security, recent research has

explored security paradigms for enforcing general classes of properties. One such

paradigm comprises the class of properties of program event traces that can be

expressed in temporal logics (Igarashi & Kobayashi 2002; K. Marriott & Sulzmann

2003; Skalka & Smith 2004; Skalka 2005; Bartoletti et al. 2005b). This paper

establishes a foundation for automated verification of higher order programs in this
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paradigm, using type and effect analysis. We develop a process for automatically

predicting program event traces at compile-time and for statically verifying properties

of traces.

Events are records of program actions, explicitly inserted into program code

either manually (by the programmer) or automatically (by the compiler). Events

are sufficiently abstract to represent a variety of program actions—e.g., opening

a file, access control privilege activation, or entry to or exit from critical regions.

Event traces maintain the ordered sequences of events that occur during program

execution, and assertions enforce properties of event traces. While such properties

can be anything in the abstract, in practice they must be expressed in automatically

verifiable logics. Therefore, we use model-checkable linear temporal logics that

express regular properties of traces Steffen & Burkart (1992).

For example, if a program is sending and receiving data over an SSL socket, the

relevant events are opening and closing of sockets, and reading and writing of data

packets. An example event trace produced by a program run could be

ssl_open("snork.cs.jhu.edu",4434); ssl_hs_begin(4434);
ssl_hs_success(4434); ssl_put(4434); ssl_get(4434);
ssl_open("moo.cs.uvm.edu",4435); ssl_hs_begin(4434);
ssl_put(4435); ssl_close(4434); ssl_close(4435)

Here, ssl_open is a sample event with two arguments, a url and a port. Event

traces can then be used to detect logical flaws or security violations. For SSL,

sockets must first be opened, handshake begun, handshake success, and only then

can data be got/put over the socket. Thus, the above trace is illegal because data

are put on socket 4435 before notification has been received that handshake was

successful on that socket. Codifying this property of event traces as a local check

in a decidable logic provides a rigorous definition of well-formedness, and allows

mechanical verification of it.

Trace-based analyses have been shown capable of statically enforcing flow-

sensitive security properties such as safe locking behavior (Foster et al. 2002)

and resource usage policies such as file usage protocols and memory management

(Igarashi & Kobayashi 2002; K. Marriott & Sulzmann 2003). In Bartoletti et al.

(2005a), an analysis adapted from the one presented in this paper is used to enforce

secure service composition. The history-based access control model of Abadi and

Fournet (2003) can be implemented with event traces and checks (Skalka & Smith

2004), as can be the policies realizable in that model, e.g., sophisticated Chinese Wall

policies (Abadi & Fournet 2003). Stack-based security policies are also amenable to

this form of analysis, as shown in the references (Skalka & Smith 2004; Skalka et al.

2005) and this paper. In short, the combination of a primitive notion of program

events with a temporal program logic for asserting properties of event traces yields

a powerful and general tool for enforcing program properties.

1.1 A type-based approach

The focus of this paper is on the compile-time verification of higher order program

trace properties expressible in linear temporal logic. The verification itself is based

on known model-checking techniques for program abstractions, and we define a
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novel type theory to infer program trace abstractions, yielding a fully automated

analysis. These abstractions, called trace effects, are integrated directly into the type

language, so that type reconstruction automates abstract interpretation of program

trace behaviour. We develop both a Hindley–Milner (HM) style system where types

are represented in term form and the implementation relies on unification, and a

subtyping constraint system where the implementation relies on constraint closure.

The flexibility of parametric polymorphism over types and effects is available in

both systems. Type theory provides an especially rigorous and extensible foundation

for the static analysis of trace-based program properties in a higher order language

setting. The main contribution of this paper is the development and study of this

foundation, and definition of a sound automated system covering both automatic

extraction of program trace approximations and their verification.

To characterize the analysis and prove its correctness, the metatheory of types

provides an appealing formalism. We demonstrate subject reduction, progress, and

type safety results for constraint subtyping, which extend to the HM system by

virtue of conservation of the latter in the former. Conservativity of both systems

with respect to the underlying pure HM system is also demonstrated. Soundness

and completeness of subtyping constraint inference are proved, as is soundness

for unification-based inference. Completeness of constraint subtyping also entails a

principal types result for the system. So-called trace approximation is demonstrated

for both type systems, meaning that trace effects conservatively approximate run-time

trace behavior.

To complete the analysis, we define and prove correct an automatic verification

technique for trace effects, based on model checking in the linear µ-calculus. We also

develop a variation on the language model so that stack-based trace policies can

be defined. In a stack-based model, trace events are “popped” with their associated

activations, allowing definition of policies such as stack inspection. The static analysis

and type safety result are modified to accommodate this variation, requiring only a

postprocessing transformation of inferred trace effects to implement.

An OCaml implementation of our analysis is presented and discussed in Van

Horn (2006a), and is available for download Van Horn (2006b). The implementation

includes both the HM style and constraint subtyping systems, and the stack-based

postprocessing transformation of effects.

1.2 Organisation of the Paper

In Section 2, we introduce the language model λtrace, which includes dynamic traces

in configurations and dynamic checks on traces. In Section 3, we define a language

of trace effects for static approximation of dynamic traces. In Section 4, we define a

HM style polymorphic type system for assigning effects to programs. In Section 5,

we give a unification-based inference algorithm for automatically reconstructing

program effects. In Section 6, we define a more flexible constraint subtyping system,

and in Section 7, we define an inference algorithm for reconstructing types in this

system. In Section 8, we define an alternate stack-based version of the language and

show how postprocessing inferred effects can approximate traces in this variation.
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c ∈ C atomic constants

b ::= true | false boolean values

v ::= x | λzx.e | c | b | ¬ | ∨ | ∧ | () values

e ::= v | e e | ev (e) | if e then e else e | let x = v in e expressions

η ::= ε | ev (c) | η; η traces

E ::= [ ] | v E | E e | ev (E) | ifE then e else e evaluation contexts

Fig. 1. λtrace language syntax.

In Section 9, we develop an automatic model-checking technique for verification of

effects. In Section 10, we describe examples of how the system can be applied to

language-based security. We conclude with a discussion of related work and final

summary in Section 11.

2 The language λtrace

In this section we develop the syntax and semantics of our language model λtrace.

2.1 Syntax

The syntax of the theory λtrace is given in Figure 1. The base values include booleans

and the unit value (). Expressions let x = v in e are included to implement let-

polymorphism in the type system (Section 4). Functions, written λzx.e, possess a

recursive binding mechanism where z is the self-variable. We assume the following

syntactic sugarings:

e1 ∧ e2 � ∧e1e2 e1 ∨ e2 � ∨e1e2 λx.e � λzx.e z not free in e

λ .e � λx.e x not free in e e1; e2 � (λ .e2)(e1)

Events ev are named entities parameterized by constants c (we treat only the unary

case in this presentation, but the extension to n-ary events is straightforward). These

constants c ∈ C are abstract, with C formally defined as a countably infinite set of

arbitrary identifiers; this set could, for example, be strings or IP addresses. Ordered

sequences of these events constitute traces η, which maintain the sequence of events

experienced during program execution. We let η̂ denote the string obtained from this

sequence by removing delimiters (;). We distinguish a subset of events evφ identified

by assertions φ in a to-be-specified logical syntax (defined in Section 9). These are

check events, and the semantics will require that run-time checks succeed in order

for computation to progress. We presuppose existence of a meaning function Π such

that Π(φ(c), η̂) holds iff φ(c) is valid for η̂; we also leave the meaning function Π

abstract until later (Section 9).

Parameterizing events and checks with constants c allow for a more expressive

event language; for example, in Section 10, we show how the parameterized privileges

of Java stack inspection can be encoded with the aid of these parameters.
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η, (λzx.e)v � η, e[v/x][λzx.e/z] (β)

η,¬true � η, false (notT )

η,¬false � η, true (notF )

η,∧ true � η, λx.x (andT )

η,∧ false � η, λ .false (andF )

η,∨ true � η, λ .true (orT )

η,∨ false � η, λx.x (orF )

η, if true then e1 else e2 � η, e1 (ifT )

η, if false then e1 else e2 � η, e2 (ifF )

η, let x = v in e � η, e[v/x] (let)

η, ev (c) � (η; ev (c)), () (event)

η, evφ(c) � (η; evφ(c)), () if Π(φ(c), η̂ evφ(c)) (check )

η, E[e] → η′, E[e′] if η, e� η′, e′ (context)

Fig. 2. λtrace language semantics.

2.2 Semantics

The operational semantics of λtrace is defined in Figure 2 via the call-by-value small

step reduction relations � and → on configurations η, e, where η is the run-time

program event trace. We write →� to denote the reflexive, transitive closure of →.

Note that in the event reduction rule, an event ev (c) encountered during execution

is added to the end of the trace. The check rule specifies that when a configuration

η, evφ(c) is encountered during execution, it is appended to the end of η like other

events, and also φ(c) is required to be satisfied by the string (η̂ evφ(c)), which is

the concatenation of η̂ and evφ(c) (see Definition 3.1), according to our meaning

function Π. The reasons for treating checks as dynamic events are manifold; for

one, some checks may ensure that other checks have occurred in the trace. Also,

this scheme will simplify the definition of Π, as well as typing and verification. In

case a check fails at run-time, execution is “stuck”; formally:

Definition 2.1

We say that a configuration η, e is stuck iff e is not a value and there does not exist

η′ and e′ such that η, e → η′, e′. If ε, e →� η, e′ and η, e′ is stuck, then e is said to go

wrong.

The following example demonstrates the basics of syntax and operational semantics.

Example 2.1 (File state)

Let the function w/file be defined as

w/file � λfn .λf.open(fn); f(fn); close(fn)

And, let readtwice be defined as

readtwice � λfn .read (fn); read (fn); ()
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where open(fn), close(fn), and read (fn) each induce events evopen , evclose , ev read , re-

spectively, parameterized by the filename fn , and readtwice reads twice from file

fn and returns the unit value (), i.e., it is evaluated only for effect. Then in the

operational semantics, we have

ε,w/file f readtwice →� evopen (f); ev read (f); ev read (f); evclose(f), ()

3 Trace Effects

The goal of our static analysis is to conservatively approximate trace behavior of

programs, specifically the trace that will be generated by a program during its

evaluation, and to predict success or failure of program checks on the basis of

this approximation. We will use a type system to reconstruct trace effects, which

constitute the approximation.

In essence, trace effects H conservatively approximate traces η that may develop

during execution, by representing a set of traces containing at least η. Trace effects

are generated by the following grammar:

H ::= ε | h | ev (c) | H;H | H |H | µh.H trace effects

A trace effect may be an event ev (c), a sequencing of trace effects H1;H2, a

nondeterministic choice of trace effects H1|H2, or a recursively bound trace effect

µh.H that finitely represents the set of possibly infinite traces that may be generated

by recursive functions. Trace effects may contain check events evφ(c), allowing

verification of checks at the right points in trace approximations.

We now make precise the way in which a trace effect approximates the run-time

trace of a program. We define a Labelled Transition System (LTS) interpretation

of trace effects as sets of strings over the alphabet of events plus a ↓ symbol to

denote termination; abusing terminology, we also call these strings traces. Note that

traces arising from program evaluation may be infinite, because programs may not

terminate, but traces arising from the interpretation of trace effects will always be

finite.

Definition 3.1

We write θ to denote possibly ↓ terminated strings over the alphabet of events:

s ::= ev (c) | ε | s s
θ ::= s | s↓

We endow strings with an equational theory to interpret ε as the empty string and

string concatenation as usual– more precisely, for all s, s1, s2, and s3 the following

equations hold:

s ε = s ε s = s (s1s2)s3 = s1(s2s3)

The symbol Θ is defined to range over prefix-closed sets of traces θ.

Trace effects generate traces by viewing them as programs in a simple nondetermin-

istic transition system.



Types and trace effects of higher order programs 185

Definition 3.2

The trace effect transition relation on closed trace effects is defined as follows:

ev (c)
ev (c)

−−→ ε H1|H2
ε−→ H1 H1|H2

ε−→ H2 µh.H
ε−→ H[µh.H/h]

ε;H
ε−→ H H1;H2

s−→ H ′
1;H2 if H1

s−→ H ′
1

We formally determine the sets of traces Θ associated with a closed trace effect in

terms of the transition relation:

Definition 3.3

The interpretation of trace effects is defined as follows:

�H� = {s1 . . . sn | H s1−→ · · · sn−→ H ′} ∪ {s1 . . . sn ↓ | H s1−→ · · · sn−→ ε}

Any trace effect interpretation is clearly prefix-closed. In this interpretation, an

infinite trace is viewed as the set of its finite prefixes.

Note that prefix closure does not cause any loss of information, since the postpending

of ↓ to terminating traces allows them to be distinguished from their prefixes. In

particular, this means that (H1;H2) 	= H1 for arbitrary closed H1 and H2 	= ε.

Equivalence of trace effects is defined via their interpretation; i.e., H1 = H2 iff

�H1� = �H2�. This relation is, in fact, undecidable: traces are equivalent to Basic

Process Algebras (BPAs), as demonstrated in Section 9, and equivalence of BPAs is

known to be undecidable (Burkart et al. 2001).

Some trace effects contain occurrences of checks; i.e., their interpretation contains

traces of the form θevφ(c). We define validity of trace effects in terms of the

satisfiability of these checks, given their context θ; the check must hold for its

immediate prefix:

Definition 3.4

A trace effect H is valid iff for all θevφ(c) ∈ �H�, Π(φ(c), θevφ(c)) holds.

3.1 Properties

Various properties of trace effect equivalence are enumerated as follows. The

equivalences will be exploited for brevity and clarity in examples throughout the

text, as well as for later proofs:

Lemma 3.1

We note the following properties of trace effect equivalence for all closed H , H1,H2,

and H3:

1. H |H = H

2. ε;H = H = H; ε

3. µh.H = H

4. H1|H2 = H2|H1

5. H1; (H2;H3) = (H1;H2);H3

6. H1|(H2|H3) = (H1|H2)|H3

7. H1; (H2|H3) = (H1;H2)|(H1;H3)
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α ∈ VSing, t ∈ VType, h ∈ VEff type variables

β ∈ VSing ∪ VType ∪ VEff

s ::= c | α singleton types

H ::= ε | h | ev (s) | H;H | H |H | µh.H trace effects

τ ::= β | s | {s} | H | τ H−→ τ | bool | unit types

σ ::= ∀β̄.τ type schemes

Γ ::= � | Γ; x : σ type environments

Fig. 3. λtrace type syntax.

8. (H1|H2);H3 = (H1;H3)|(H2;H3)

9. H ′[µh.H ′/h] = µh.H ′ for all closed µh.H ′.

10. Trace effect equivalence is homomorphic for all constructors

We also note some properties related to trace effect interpretation containment;

these properties are important, since our type analyses will allow weakening of trace

effects for flexibility. That is, if a trace effect H approximates the traces generated by

a program, and �H� ⊆ �H ′�, then H ′ is also a sound approximation. Like equality,

containment is known to be undecidable.

Lemma 3.2

Writing H ⊆ H ′ iff �H� ⊆ �H ′�, the following properties hold:

1. H ⊆ H ′ is undecidable

2. H ⊆ H |H ′

3. If H ⊆ H ′ then H |H ′′ ⊆ H ′|H ′′ and H ′′;H ⊆ H ′′;H ′ and H;H ′′ ⊆ H ′;H ′′ for

all closed H ′′.

4. If H ⊆ H ′ then validity of H ′ implies validity of H .

Finally, noting that the syntax of traces η is the same as linear, variable-free trace

effects, we abuse syntax and let η also range over linear, variable-free trace effects,

interpreting traces η as the identical trace effect. This syntax is used, e.g., in the

statement of subject reduction, Lemmas 4.2 and 6.10.

4 Hindley–Milner Style Typing for λtrace

The syntax of types for λtrace is given in Figure 3. This syntax is more liberal

than what is actually allowed in type derivations; e.g., function domain and range

types cannot be trace effects or “bare” singletons s, and the three different kinds

of variables must occur only in the appropriate positions. Formally, we define as

well-kinded only those type terms that have an interpretation in the ground tree

model given in the sense of Definitions 5.2 and 5.3, below. Hereafter we restrict our

presentation to well-kinded types. The syntax of types includes forms for booleans,

unit, and function types of the form τ1
H−→ τ2, where latent effects H represent the

traces that may result by use of the function. Events are side effects, and so these

function types are a form of effect type (Talpin & Jouvelot 1992; Amtoft et al. 1999).
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Var

Γ(x) = σ

Γ, ε � x : σ

Const

Γ, ε � c : ∆(c)

Event

Γ, H � e : {s}
Γ, H; ev (s) � ev (e) : unit

∀-Intro

Γ, ε � v : τ β̄#fv(Γ)

Γ, ε � v : ∀β̄.τ

∀-Elim

Γ, ε � v : ∀β̄.τ
Γ, ε � v : τ[τ̄/β̄]

Weaken

Γ, H ′ � e : τ H ′  H

Γ, H � e : τ

If

Γ, H1 � e1 : bool Γ, H2 � e2 : τ Γ, H2 � e3 : τ

Γ, H1;H2 � if e1 then e2 else e3 : τ

App

Γ, H1 � e1 : τ′ H3−→ τ Γ, H2 � e2 : τ′

Γ, H1;H2;H3 � e1e2 : τ

Fix

Γ; x : τ; z : τ
H−→ τ′, H � e : τ′

Γ, ε � λzx.e : τ
H−→ τ′

Let

Γ, ε � v : σ Γ; x : σ,H � e : τ

Γ, H � let x = v in e : τ

Fig. 4. λtrace Hindley-Milner style typing rules.

In addition, since events and predicates are parameterized, we must be especially

accurate with respect to our typing of singleton constants. Thus, we adopt a very

simple form of singleton type {c} (Stone 2000), where only atomic constants can

have singleton type.

Types contain three kinds of variables: regular-type variables t, singleton-type

variables α, and trace effect-type variables h. The metavariable β ranges over all

kinds of variables. Universal type schemes ∀β̄.τ bind any kind of type variable in

τ, where β̄ is a vector of type variables. Note that let-polymorphism over types,

singletons, and trace effects are included in our system. We formally define some

convenient notation for vectors of variables:

Definition 4.1

Variable vectors, denoted β̄, range over sequences of distinct variables β1 . . . βn, with

the empty vector denoted �. Vectors are equivalent up to reordering; hence, we may

treat vectors β1 . . . βn as analogous sets {β1, . . . , βn}, in particular adapting notation

β ∈ β̄ and β̄1 ∪ β̄2 and β̄1 ∩ β̄2 with the obvious meaning. We write β̄1#β̄2 iff

β̄1 ∩ β̄2 = �. For any type scheme σ, we write fv(σ) to denote the free variables in

σ, extending the notation to environments Γ in the obvious manner. We write τ as

syntactic sugar for ∀�.τ.

Without loss of generality, we equate type schemes up to α-renaming and extraneous

bindings. That is, we assume the following axiom:

∀β̄1β̄2.τ = ∀β̄1.τ if β̄2#fv(τ)

Source code type derivation rules for judgements Γ, H � e : τ are given in Figure 4,

where Γ is an environment of variable-typing assumptions, H is the effect of the
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expression e, and τ is the type of e. To assign types to constants, we posit a constant

type binding environment ∆ as follows.

Definition 4.2

Constants c range over the set {(), true, false,¬,∨,∧} ∪ C. The binding environment

∆ contains bindings for all constants, consisting of c : {c} for all c ∈ C, and the

following:

() : unit true : bool false : bool ¬ : bool
ε−→ bool

∧ : bool
ε−→ bool

ε−→ bool ∨ : bool
ε−→ bool

ε−→ bool

Type safety will be defined in terms of valid typing judgments, which are derivable

judgments where the top-level effect is valid. A subject reduction result will show

that effects assigned by type analysis are conservative approximations of program

trace behavior while validity of top-level effects will guarantee success of run-time

checks.

Definition 4.3

A derivable type judgement Γ, H � e : σ is valid iff H is valid.

Example 4.1

Let w/file and readtwice be defined as in Example 2.1. Then the following judgments

are derivable:

�, ε � w/file : ∀fn , h, α.{fn} ε−→ ({fn} h−→ α)
evopen ;h;evclose−−−−−−−→ α

�, ε � readtwice : ∀fn .{fn}
evread (fn);ev read (fn)

−−−−−−−−−−→ unit

�, evopen (f); ev read (f); ev read (f); evclose(f) � w/file f readtwice : unit

4.1 Properties

One of the basic claims about our type system is that it is conservative, in that

the addition of trace effects is a conservative extension to an underlying HM-style

let-polymorphic type system: by using weakening before each if-then-else typing,

any derivation in the underlying effect-free type system may be replayed here. This

result is formalized as follows.

Definition 4.4

We define the “event erasure” function eraseη on expressions as follows:

eraseη(x) = x

eraseη(c) = c

eraseη(ev (c)) = ()

eraseη(e1e2) = eraseη(e1)eraseη(e2)

eraseη(λzx.e) = λzx.eraseη(e)

eraseη(if e1 then e2 else e2) = if eraseη(e1) then eraseη(e2) else eraseη(e3)

eraseη(let x = e1 in e2) = let x = eraseη(e1) in eraseη(e2)
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We also define the “trace effect erasure” function eraseH on types as follows:

eraseH (τ) = τ τ ∈ {t, bool, unit, {s}}

eraseH (τ1
H−→ τ2) = eraseH (τ1) → eraseH (τ2)

The function eraseH is extended to type environments Γ in the obvious manner.

Definition 4.5

We write Γ � e : τ for judgments in a standard simple type system with let-

polymorphism, e.g., that of Pierce (2002), extended with singleton constants and our

Const rule.

Lemma 4.1 (Conservativity)

Γ, H � e : τ is derivable iff eraseH (Γ) � eraseη(e) : eraseH (τ) is.

Proof

Straightforward by definition and induction on typing derivations. �

Our type safety results are stated as follows. The proof of each is immediate by

conservation of the HM-style system in the constraint subtyping system presented

in Section 6, Lemma 6.3, and analogous results in that system, which are proven in

detail in Section 6.

Theorem 4.1 (Type Safety)

If Γ, H � e : τ is valid for closed e, then e does not go wrong.

Theorem 4.2 (Progress)

If Γ, H � e : τ is derivable for closed e and η, e is irreducible with η;H valid, then e

is a value.

A subject reduction result for the HM-style system can also be proved via Lemma 6.3

and subject reduction in the constraint subtyping system.

Lemma 4.2 (Subject Reduction)

If Γ, H � e : τ is derivable for closed e and η, e� η′, e′, then Γ, H ′ � e′ : τ is derivable

with η′;H ′ ⊆ η;H .

A significant corollary of this result is one of our guiding intuitions: that trace

effects conservatively approximate the set of possible run-time traces, formalised as

follows. Prefix closure of effect interpretation ensures that traces produced at any

point in the computation, not just at termination, will be approximated.

Corollary 4.1

If Γ, H � e : τ is derivable for closed e and ε, e →� η, e′ then η̂ ∈ �H�.

5 Unification-based type inference

In this section we show that a type inference algorithm exists for the HM-style type

system for λtrace presented in the previous section. The type inference algorithm will

be partly based on unification, in keeping with the HM subset of the system, but

the presence of effect weakening requires a simple form of constraint solution. Thus,
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Var

Γ(x) = ∀β̄.τ/C
Γ, ε �β̄′ x : (τ/C)[β̄′/β̄]

Const

Γ, ε �� c : ∆(c)/true

Event

Γ, H �β̄ e : τ/C

Γ, H; ev (α) �β̄∪{α} ev (e) : unit/C ∧ τ  {α}

If

β̄1#β̄2#β̄3

β̄ = β̄1β̄2β̄3 ∪ {t} Γ, H1 �β̄1
e1 : τ1/C1 Γ, H2 �β̄2

e2 : τ2/C2 Γ, H3 �β̄3
e3 : τ3/C3

Γ, H1;H2|H3 �β̄ if e1 then e2 else e3 : t/C1 ∧ C2 ∧ C3 ∧ τ1  bool ∧ τ2  t ∧ τ3  t

App

β̄1#β̄2 Γ, H1 �β̄1
e1 : τ1/C1 Γ, H2 �β̄2

e2 : τ2/C2

Γ, H1;H2; h �β̄1β̄2∪{t,h} e1 e2 : t/C1 ∧ C2 ∧ τ1  τ2
h−→ t

Fix

Γ; x : t; z : t
h−→ t′, H �β̄ e : τ/C

Γ, ε �β̄∪{t,h,t′} λzx.e : t
h−→ t′/C ∧ τ  t′ ∧H  h

Let

β̄1#β̄2 Γ, ε �β̄1
v : τ′/D Γ; x : ∀β̄1.τ

′/D,H �β̄2
e : τ/C

Γ, H �β̄1β̄2
let x = v in e : τ/C ∧ D

Fig. 5. λtrace type constraint inference rules.

our approach to inference will be constraint based, with type constraints interpreted

as equality constraints, and effect constraints interpreted as containment constraints.

In addition to being an effective approach in this context, we will see in Section 7

that it allows the same type inference algorithm to be used for a subtyping system,

by imposing a subtyping interpretation of type constraints, and introducing a new

constraint solution algorithm. That is, type inference is modular with respect to

interpretation of constraints, in the spirit of systems such as HM(X) Sulzmann

(2001).

5.1 Syntax and meaning of constraints

We begin by defining the syntax of constraints, where  is the constraint relation

between types.

Definition 5.1

Constraints C are defined as follows:

C ::= true | τ  τ | C ∧ C

Constraints are required to agree in kind, i.e. for any constraint τ  τ′, we require

that τ : k and τ′ : k for some k.
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ρ(h, hs) = ρ(h) h 	∈ hs

ρ(h, hs) = h h ∈ hs

ρ(ev (s), hs) = ev (ρ(s))

ρ(ε, hs) = ε

ρ(H1;H2, hs) = ρ(H1, hs); ρ(H2, hs)

ρ(H1|H2, hs) = ρ(H1, hs)|ρ(H2, hs)

ρ(µh.H, hs) = µh.ρ(H, hs ∪ {h})

ρ(c) = c

ρ({s}) = {ρ(s)}
ρ(unit) = unit

ρ(bool) = bool

ρ(τ1
H−→ τ2) = ρ(τ1)

ρ(H)−−→ ρ(τ2)

ρ(H) = ρ(H,�)

Fig. 6. Interpretations extended to types and effects.

The appropriate meaning of constraints is obtained by interpretation in a model �,

which for the HM system we define as a universe of monotypes, endowed with a

partial order � that is an equality relation on types, and a containment relation on

effects. Later, to obtain a subtyping interpretation of constraints, we will redefine �
and � appropriately.

Definition 5.2 (Ground Type Model )

Let � be the set of ground, or variable free, types τ, denoted τ̂ and generated by the

following grammar, where Ĥ ranges over variable free trace effects:

τ̂ ::= unit | bool | {c} | Ĥ | τ̂ Ĥ−→ τ̂

Furthermore, � is endowed with a partial order � axiomatized as follows:

�H� ⊆ �H ′�

H � H ′

Definition 5.3 (Interpretation of Constraints)

Interpretations ρ are total mappings from type variables β to �. We impose the

sanity condition that each kind of type variable is mapped to elements of � of

the appropriate form, i.e. for all α, t, h, ρ we require that ρ(α) is a singleton c, and

ρ(h) is a closed effect H , and ρ(t) is one of the other element forms. Interpretations

are extended to types and effects as in Figure 6, where in abuse of notation the

interpretation of effects is parameterized by sets hs of effect variables, to prevent

substitution of µ-bound variables. The relation ρ � C , pronounced ρ satisfies or

solves C , is axiomatized as follows:

ρ � true
ρ(τ1) � ρ(τ2)

ρ � τ1  τ2

ρ � C ρ � D
ρ � C ∧ D
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The relation C � D holds iff ρ � C implies ρ � D for all interpretations ρ. Constraints

C and D are equivalent, written C = D, iff C � D and D � C .

5.2 Type inference and constraint solution

Type inference judgments are of the form Γ, H �β̄ e : τ/C , where H , τ, and C

are the reconstructed top-level effect, type, and constraint, and β̄ are the variables

introduced during the derivation. Type schemes are now constrained, written ∀β̄.τ/C ,

and type environments Γ now bind variables to constrained type schemes. We write

τ as shorthand for ∀�.τ/true. Type inference rules are defined in Figure 5; they

are deterministic except for arbitrary choice of variables. We call canonical those

derivations where fresh variables are chosen whenever possible, where a variable β is

fresh with respect a judgement Γ, H �β̄ e : τ/C iff it occurs nowhere in the judgement.

Note that disjointness conditions on fresh variables chosen in subderivation are

imposed in derivations, by the If, App, and Let rules, ensuring “global” freshness

of variable choice in canonical derivations.

To automatically obtain HM-style types for λtrace expressions, it is also necessary

to convert inferred types and constraints into unified, constraint-free form. To

accomplish this, we define a unification algorithm, extended to also apply to effect

constraints. Given a constraint generated by type inference, the resulting algorithm

will generate a type substitution that solves the constraint.

Definition 5.4

Substitutions, written [τ1/β1, . . . , τn/βn], are mappings from type variables to types,

extended to types, type schemes, type environments, and constraints in the usual

manner. We write dom([τ1/β1, . . . , τn/βn]) to mean β1, . . . , βn. We let ψ range over

substitutions [τ1/β1, . . . , τn/βn], although the former is prefix notation while the latter

is postfix. We write ψ1 ◦ ψ2 to denote the substitution ψ such that ψ(τ) = ψ1(ψ2(τ))

for all τ. Extending the vector notation of Definition 4.1, we write [τ̄/β̄] to denote

[τ1/β1, . . . , τn/βn], where τ̄ = τ1, . . . , τn and β̄ = β1, . . . , βn.

Since any solution of a constraint C must unify the type constraints in C , and also

satisfy the effect constraints in C , constraint solutions need to be defined generally,

as follows:

Definition 5.5

A substitution ψ is a solution of a constraint C iff ρ � ψ(C) for all ρ.

To define how to construct solutions of constraint, here and for the subtyping

version of our type analysis presented later, it is useful to interpret constraints as sets,

rather than conjunctions, of atomic constraints. Thus, we introduce the following

notation.

Definition 5.6

Let Ĉ range over atomic constraints, i.e.:

Ĉ ::= true | τ  τ
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soln(C) = let C1, C2 = hsplit(C) and ψ1 = unify(C1) in solnH(ψ1(C2)) ◦ ψ1

hsplit(C) = C1, C2 where set(C2) = {H1  H2 | H1  H2 ∈ C}
and C1 = C − C2

bounds(h, C) = H1| · · · |Hn where {H1, . . . , Hn} = {H | H  h ∈ C}

solnH(�) = �

solnH(C) = let ψ = [(µh.bounds(h, C))/h] in

solnH(ψ(C − {H  h | H  h ∈ C})) ◦ ψ

Fig. 7. Unification-based solution.

unify(true) = true

unify(C ∧ τ  τ) = unify(C)

unify(C ∧ β  τ) = fail if β ∈ fv(τ), else

unify(C[τ/β]) ◦ [τ/β]

unify(C ∧ τ  β) = fail if β ∈ fv(τ), else

unify(C[τ/β]) ◦ [τ/β]

unify(C ∧ {s1}  {s2}) = unify(C ∧ s1  s2)

unify(C ∧ τ1
h−→ τ2  τ′

1

h′
−→ τ′

2) = unify(C ∧ h  h′ ∧ τ′
1  τ1 ∧ τ2  τ′

2)

Fig. 8. Constraint set unification.

and given C = Ĉ1 ∧ · · · ∧ Ĉn, let set(C) =
{
Ĉ1, . . . , Ĉn

}
. Then:

C ⊆ D ⇐⇒ set(C) ⊆ set(D)

Ĉ ∈ C ⇐⇒ Ĉ ∈ set(C)

C1 − C2 = D ⇐⇒ set(C1) − set(C2) = set(D)

Now, since effect containment is known to be undecidable, as observed in Section 3,

it seems there can be no general constraint solution algorithm. However, type

inference generates effect constraints of a particular form, in particular it yields a

system of lower bounds H  h on effect variables h, as is immediately demonstrated

by observation of the type inference rules in Figure 5. For this restricted form of

effect constraints, there exists a solution algorithm solnH, defined in Figure 7, that

joins lower bounds in the solution of effect variables h. By composing this with the

unification algorithm unify defined in Figure 8, a constraint solution algorithm soln

is obtained for constraints generated by type inference. Note that inferred constraints

need to be split into type and effect components by hsplit , before applying unify to

the former and solnH to the latter. Soundness of the type inference technique can

be stated as follows; a proof of this result is given in Van Horn (2006a).
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Theorem 5.1 (Soundness of Inference)

Given closed e; then if �, H �β̄ e : τ/C is derivable, and ψ = soln(C), then

�, ψ(H) � e : ψ(τ) is derivable.

6 Constraint subtyping for λtrace

In this section we propose a more expressive system—whereby a strictly larger

class of valid programs is verifiable—based on subtyping constraints. The HM-style

system developed in the previous section suffers from a certain degree of imprecision

due to the interpretation of  as an equivalence relation on types. This imprecision

results in program effect characterizations that are sound but not as tight as can be

achieved through subtyping. In general, tighter effect characterizations result in the

verifiability of more programs. Consider the following example and its typing under

the HM style system:

f � λx.(if true then λ .ev 1(c) else x); x

Observe that the effect of x and λ .ev 1(c) must be weakened into equivalence as

required by the typing rule for conditionals; hence, we derive

f : ∀ht.(t
ev1(c)|h−−−→ unit)

ε−→ (t
ev1(c)|h−−−→ unit)

In other words, the effect of λ .ev 1(c) is forced to be subsumed by the effect of x,

resulting in a lack of precision, further illustrated by application of f:

f(λ .ev 2(c)) : t
ev1(c)|ev2(c)−−−−−−→ unit

Although this expression evaluates to λ .ev 2(c), which clearly has only the effect

ev 2(c) when applied, the latent effect of this function is given as ev1(c) | ev 2(c) by the

type system. Supposing that the function is applied with a subsequent check for the

occurrence of ev 2(c), the program would fail to validate since ev2(c) may—but not

must—occur according to this characterization of the program’s effect.

To remedy the situation and obtain a more expressive system, the subtyping

relation will allow types, as well as effects, to be weakened as necessary. In treating

the above example, the type of x will not be forced to be equivalent to λ .ev 1(c),

but can be weakened via subsumption to allow typing of the conditional expression

in the body of f, while retaining a purely abstract latent effect on x in a most

general typing of f. The essence of the subtyping relation is an adaptation of effect

weakening to latent effect on function types, for example:

t
h−→ unit  t

ev1(c)|h−−−−→ unit

Thus we can derive a more precise typing for f:

f : ∀ht.(t h−→ unit)
ε−→ (t

h−→ unit)

and also for f(λ .ev 2(c)):

f(λ .ev 2(c)) : t
ev2(c)−−−→ unit
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Again supposing the resulting function is applied with a subsequent check for ev 2(c),

the program would validate since this tighter characterization of the program’s effect

appropriately gives that ev 2(c) must occur. Taken together with the conservativity

result demonstrated in Lemma 6.3, which states that any HM-style derivation may

be replayed in the subtyping system, this shows that a strictly larger class of valid

programs is verifiable under the constraint subtyping system as compared to the

HM-style unification–based system of the previous section.

Subtleties of the relation include contravariance (covariance) in function domain

(range) types, respectively, and treatment of free variables in related types; these

issues are resolved in Section 6.2 below.

The use of a constraint representation of types has several distinct benefits

resulting from the greater precision of constraint types. For one, constraints may be

recursive, allowing typing of self-referential expressions such as λx.xx. Furthermore,

constraints allow a representation of conjunctive and disjunctive types Eifrig et al.

(1995), without requiring conjunctive and disjunctive type syntax and interpretation.

While disjunction can be represented in effect terms via the nondeterministic choice

operator (|), a term representation of effect conjunction would require the addition

of a parallel and operation in effects, which is known to significantly increase

the complexity of model-checking Burkart et al. (2001). In short, a constraint

representation simplifies the subtyping analysis; while it yields a more cumbersome,

less readable typing than a unified representation, model-checkable effects can still

be extracted, as we show in Section 7. Since our goal is an automatic program

analysis tool, this is agreeable.

6.1 Logical subtyping judgments and derivations

Logical subtyping judgments are of the form Γ, C,H � e : τ, with all syntactic forms

as defined in previous sections. In any such judgement, we refer to C and H as the

top-level constraint and effect. The constant type binding environment ∆ is also as

defined previously. Note that constraints C , previously occurring only in inference

judgments, now occur in logical judgments; of course, a significant difference in the

current system is the interpretation of  as a subtyping relation, formalized below

in Section 6.2. Note well that we adopt the interpretation of constraints given in

Definition 5.3; subtyping will be realized purely through a redefinition of the model

� in Definition 6.3.

To allow more flexibility in the typing of singleton constants, we make a small

extension to the type and effect language:

Definition 6.1

We extend the language of singleton types in Figure 3 with the form s|s. In addition,

we define the semantics of an effect ev (c1|c2) as equivalent to ev (c1)|ev (c2).

Anticipating the interpretation, the meaning of a type s1|s2 subsumes the meaning

of s1 and s2– i.e., it is a disjunctive singleton type.

While the logical typing rules are based on previous subtyping constraint systems

such as Eifrig et al. (1995) and Skalka and Pottier (2003), there is a difference, in
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Var

Γ(x) = σ

Γ, C, ε � x : σ

Const

Γ, C, ε � c : ∆(c)

Event

Γ, C,H � e : {s}
Γ, C,H; ev (s) � ev (e) : unit

∀-Intro

Γ, C, ε � v : τ β̄#fv(Γ)

Γ, C, ε � v : ∀β̄.τ

∀-Elim

Γ, C, ε � v : ∀β̄.τ C � [τ̄/β̄]

Γ, C, ε � v : τ[τ̄/β̄]

Sub

Γ, C,H ′ � e : τ′ C � τ′  τ C � H ′  H

Γ, C,H � e : τ

If

Γ, C,H1 � e1 : bool Γ, C,H2 � e2 : τ Γ, C,H2 � e3 : τ

Γ, C,H1;H2 � if e1 then e2 else e3 : τ

App

Γ, C,H1 � e1 : τ′ H−→ τ Γ, C,H2 � e2 : τ′

Γ, C,H1;H2;H � e1 e2 : τ

Fix

Γ; x : τ′; z : τ′ H−→ τ, C,H � e : τ

Γ, C, ε � λzx.e : τ′ H−→ τ

Let

Γ, C, ε � v : σ Γ; x : σ, C,H � e : τ

Γ, C,H � let x = v in e : τ

Fig. 9. λtrace constraint typing, logical rules.

that in any judgement Γ, C,H � e : τ, the scope of quantified type variables β̄ in

type schemes in Γ effectively extend to C; in particular, noting the form of the rule

∀-Elim, we define:

Definition 6.2

Write C � [τ̄/β̄] iff C � C[τ̄/β̄].

Thus, given a top-level constraint C � h1  h2, the type scheme ∀h1h2.unit
h1−→ unit is

more general than ∀h1.unit
h1−→ unit, even though h2 does not occur in the quantified

type. Observe that given the former type scheme, the rule ∀-Elim essentially imposes

monomorphism on h1 due to its relation with h2 specified in C , whereas the

latter type scheme allows any instantiation [H1/h1] as long as there also exists a

substitution [H2/h2] such that C � H1  H2. This state of affairs is implicitly due

to a simplification we have made in the type system, where all relevant typing

constraints are subsumed in the top-level constraint C . In the type inference system

presented in Section 7, where constraints must be reconstructed, rather than given a

priori, we will return to constrained type scheme forms.

The logical subtyping derivation rules defined in Figure 9 are quite similar to

the HM-style rules defined in Figure 4, other than the rule Sub, which incorporates

type subsumption as well as weakening of top-level effects. As mentioned above,

type subsumption allows weakening of latent effects on function types. The meaning
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��,⊥� : Type unit� : Type bool� : Type sc� : Sing {sc}� : Type

H� : Eff (· ·−→ ·)Type,Eff,Type : Type

Fig. 10. Kinding rules for regular tree constructors.

of the subtyping relation and validity of type judgments are defined in terms of

constraint solutions, formalized in the next section.

6.2 Interpretation of subtyping constraints

Following Trifonov and Smith (1996), subtyping is defined via interpretation in a

regular tree model endowed with a primitive subtyping relation, a technique that

allows us to accommodate recursive constraints. The relation is defined inductively

via finite approximations. Intuitively, the subtyping relation is invariant on bool

and unit types, is contravariant (resp. covariant) on the domain (resp. range) types

of functions, and is covariant on latent function effects. As before, the relation 
on trace effects is defined via set containment in the LTS interpretation of related

effects.

Definition 6.3 (Regular Tree Model )

Let the tree constructor kinds be defined as

k ::= Type | Eff | Sing

and let signatures ς range over ordered sequences of kinds, where � denotes the

empty sequence and ς(n) denotes the 0-indexed nth kind in ς. The alphabet L of

tree constructors tc is built from the following grammars:

sc ::= c | sc|sc
tc ::= � | ⊥ | sc | unit | bool | {sc} | H | · ·−→ ·

where each element of the alphabet is indexed by a signature, written tcς, and must

be well-kinded according to the rules given in Figure 10.

A tree ϕ is a partial function from finite sequences (paths) π of natural numbers

�� to L such that dom(ϕ) is prefix-closed. Furthermore, for all πn ∈ dom(ϕ), with

tcς = ϕ(π), it is the case that ϕ(πn) : ς(n). The subtree at π ∈ dom(ϕ) is the function

λπ′.ϕ(ππ′), while |π| is the level of that subtree. A tree is regular iff the set of its

subtrees is finite, and we define � as the set of regular trees over L.

A partial order over � is then defined via an approximate relation over finite

ϕ ∈ �. First, define a level-n cut ϕ | n for ϕ ∈ � as the finite tree obtained by

replacing all subtrees at level n of ϕ with �. Then, �fin is the partial order over finite

ϕ ∈ � axiomatized in Figure 11, and � is the partial order over � approximated by

�fin axiomatized in Figure 11.

By retaining Definition 5.3 with � and � refigured in this manner, and extending

interpretations as defined in Figure 6 to disjunctive singleton types as ρ(s1|s2) =
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ϕ is finite

⊥ �fin ϕ

ϕ is finite

ϕ �fin �
ϕ �fin ϕ|ϕ′ ϕ �fin ϕ

′|ϕ
ϕ �fin ϕ

′

{ϕ} �fin {ϕ′}

�H� ⊆ �H ′�

H �fin H
′

ϕ′
1 �fin ϕ1 ϕ2 �fin ϕ

′
2 H �fin H

′ ϕ1, ϕ
′
1, ϕ2, ϕ

′
2 finite

ϕ1
H−→ ϕ2 �fin ϕ

′
1

H−→ ϕ′
2

ϕ | n �fin ϕ
′ | n for all n ∈ �

ϕ � ϕ′

Fig. 11. Primitive subtyping for regular trees.

ρ(s1)|ρ(s2), we obtain a subtyping interpretation of constraints. We immediately note

that this imposes transitivity and reflexivity on :

Lemma 6.1

The relation  is transitive and reflexive, by which we mean C � τ  τ, and

C � τ1  τ2 ∧ τ2  τ3 implies C � τ1  τ3.

It also is useful to characterize what sort of types cannot be placed in a  relation,

especially to establish a canonical forms result (Lemma 6.14).

Lemma 6.2

Let � be the least symmetric relation on types (pronounced “clashes with”)

axiomatised by the following relational schemas:

unit � bool unit � {s} unit � τ1
H−→ τ2 bool � {s} bool � τ1

H−→ τ2

{s} � τ1
H−→ τ2

If C is solvable then for all τ1, τ2 such that τ1 � τ2 it is the case that C 	� τ1  τ2.

Given our interpretation of constraints, we can now define validity of type

judgments. Note that top-level effects may contain free variables that must be

interpreted via top-level constraints in order to ascertain validity of expression effects.

Definition 6.4

A judgement Γ, C,H � e : τ is satisfiable iff it is derivable and C has a solution. The

judgement is valid iff it is satisfiable and there exists a solution ρ of C such that

ρ(H) is valid.

6.3 Properties

In this section we demonstrate our type safety and progress results, which along

with correctness of type reconstruction will constitute the main results of this paper.

The result proceeds via a subject reduction argument, modified to account for trace

effects. Type safety is explicitly demonstrated for the constraint subtyping system; to

allow application to the unified system of Section 4, we demonstrate the following

conservativity result. Note that this also allows conservativity of HM typings à la

Lemma 4.1 to be extended to constraint subtyping.
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Lemma 6.3

If Γ, H � e : τ is derivable, then so is Γ, true, H � e : τ.

Proof

Straightforward by induction and case analysis on the last rule instance in the

derivation of Γ, H � e : τ. Each derivation step in Γ, H � e : τ can be mimicked by a

same-named rule instance in the constraint subtyping system, other than instances

of Weaken, which can be simulated by instances of Sub, by reflexivity of  and

since it is easy to show that H  H ′ implies C � H  H ′ for all C . �

In later proofs the following observations about effect subtyping will be important;

since interpretation of effect subtyping is defined in terms of containment in the

LTS semantics defined in Section 3, the stated properties follow by Lemma 3.2.

Lemma 6.4

The following properties hold:

1. C � H  H |H ′

2. If C � H  H ′ then C � H |H ′′  H ′|H ′′ and C � H ′′;H  H ′′;H ′ and

C � H;H ′′  H ′;H ′′.

On the way to proving type safety and progress, we demonstrate a suite of standard

results for the current type system. This includes weakening and instantiation; both

properties follow in a similar manner to corresponding results in Skalka and Pottier

(2003):

Lemma 6.5 (Weakening)

If Γ, C,H � e : τ is derivable and C ′ � C , then so is Γ, C ′, H � e : τ by a derivation

of the same structure.

Lemma 6.6 (Instantiation)

If Γ, C,H � e : τ is derivable, then so is the judgement ψ(Γ), ψ(C), ψ(H) � e : ψ(τ)

by a derivation of the same structure.

Although the following Lemma seems obscure, it brings to light some subtle

issues related to polymorphism and generalization, including the requirement that

top-level effects be ε for generalization and instantiation, and that generalisation

cannot be performed on free environment variables. It also highlights the soundness

of generalization over variables in the top-level constraint, provided the requirements

on instantiation. In essence, the result shows that the ∀ introduction and elimination

forms do not allow over generalization.

Lemma 6.7

Consecutive instances of ∀-Intro and ∀-Elim may be suppressed.

Proof

Assume the following derivation structure:

Γ, C, ε � e : τ β̄#fv(Γ)

Γ, C, ε � e : ∀β̄.τ C � [τ̄/β̄]

Γ, C, ε � e : τ[τ̄/β̄]
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where Γ, C, ε � e : τ is derivable by assumption. Thus Γ[τ̄/β̄], C[τ̄/β̄], ε[τ̄/β̄] �
e : τ[τ̄/β̄] is derivable by a derivation of the same structure, by Lemma 6.6. But

ε[τ̄/β̄] = ε, and Γ[τ̄/β̄] = Γ since β̄#fv(Γ) by assumption; therefore, the result

follows by Lemma 6.5 since C � C[τ̄/β̄] by assumption and Definition 6.2. �

The following result allows normalization of type derivations. When inducting on

the structure of type derivations, normal form derivations allow type judgments to

be inverted ; their subderivations can be deconstructed from root judgments, given

the form of the root expression.

Lemma 6.8 (Normalization)

If Γ, C,H � e : τ is derivable, then it must follow by an instance of Sub from a

judgement J such that

i. if e = λzx.e
′ then J follows by Fix;

ii. if e = e1e2 then J follows by App;

iii. if e = if e1 then e2 else e3 then J follows by If;

iv. if e = ev (e′) then J follows by Event;

v. if e is one of true, false, (),∨,∧,¬, c, then J follows by Const;

vi. if e = x then J follows by Var and ∀-Elim;

vii. if e = (let x = v in e′) the J follows by Let.

Proof

By Lemma 6.7, any consecutive instances of ∀-Intro and ∀-Elim can be suppressed.

In effect, this allows us to restrict all instances of ∀-Elim to immediately follow

instances of Var, and all instances of ∀-Intro to immediately precede Let. Fur-

thermore, by Lemma 6.1 it is easy to show that consecutive instances of Sub can

be collapsed into a single instance, and due to reflexivity of Sub, trivial instances of

Sub can be inserted anywhere in a derivation other than following ∀-Intro. Since

any derivation of a judgement Γ, C,H � e : τ must contain a syntax-directed rule

instance corresponding to the form of e, with a judgement J–as the consequence,

the result follows by suppressing, collapsing, or inserting non-syntax-directed rule

instances as appropriate between J and Γ, C,H � e : τ. �

Corollary 6.1

If Γ, C,H � v : τ is derivable, then so is Γ, C, ε � v : τ′ with C � τ′  τ and

C � ε  H .

Proof

Straightforward by the previous Lemma, and by observing that if a judgement

Γ, C,H ′ � v : τ′ follows by a syntax-directed rule applicable to a value v, then

H ′ = ε. �

To demonstrate the let and β reduction cases of subject reduction, we prove a

values substitution Lemma as follows:

Lemma 6.9 (Substitution)

If both Γ; x : σ′, C,H � e : σ and Γ, C, ε � v : σ′ are derivable, then so is

Γ, C,H � e[v/x] : σ.
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Proof

By induction on the derivation of Γ; x : σ′, C,H � e : σ and case analysis on the last

step in the derivation. We restrict our consideration to the most interesting cases.

Case ∀-INTRO. In this case σ = ∀β̄.τ, where by definition of ∀-Intro we can

reconstruct:

Γ; x : σ′, C,H � e : τ β̄#fv(Γ; x : σ′)

Γ; x : σ′, C,H � e : ∀β̄.τ
But by the induction hypothesis the judgement Γ, C,H � e[v/x] : τ is derivable,

and since clearly fv(Γ) ⊆ fv(Γ; x : σ′) therefore β̄#fv(Γ), so this case holds via an

instance of ∀-Intro.

Case VAR. In this case e = y, H = ε, and by definition of Var we have that

(Γ; x : σ′)(y) = σ. Now, suppose on the one hand that x 	= y. Then e[v/x] = y, and

Γ(y) = σ, so this case holds via an instance of Var. Suppose on the other hand that

x = y; then e[v/x] = v and σ = σ′, so the result follows by an assumption of the

Lemma.

Case FIX. In this case e = λzy.e
′ and σ = τ1

H ′

−→ τ2 and H = ε, and by definition

of Fix we can reconstruct:

Γ; x : σ′; y : τ1; z : τ1
H ′

−→ τ2, C,H
′ � e′ : τ2

Γ; x : σ′, C, ε � λzy.e′ : τ1
H ′

−→ τ2

Supposing that x 	= y and x 	= z, it is the case that:

Γ; x : σ′; y : τ1; z : τ1
H ′

−→ τ2 = Γ; y : τ1; z : τ1
H ′

−→ τ2; x : σ′

Hence the following is derivable by the induction hypothesis:

Γ; y : τ1; z : τ1
H ′

−→ τ2, C,H
′ � e′[v/x] : τ2

and by Fix:

Γ; y : τ1; z : τ1
H ′

−→ τ2, C,H
′ � e′[v/x] : τ2

Γ; x : σ′, C, ε � λzy.(e′[v/x]) : τ1
H ′

−→ τ2

so the result follows, since λzy.(e
′[v/x]) = e[v/x] by definition of substitution.

Supposing that x = y, it is the case that

Γ; x : σ′; y : τ1; z : τ1
H ′

−→ τ2 = Γ; y : τ1; z : τ1
H ′

−→ τ2

and e[v/x] = v by definition of substitution, so we can reconstruct by Fix:

Γ; y : τ1; z : τ1
H ′

−→ τ2, C,H
′ � e′ : τ2

Γ, C, ε � (λzy.e
′)[v/x] : τ1

H ′

−→ τ2

The result follows similarly supposing that x = z. �

Type safety ultimately relies on the preservation of type validity by →�. Since the

relation →� is predicated on both � and → forms of reduction, we, therefore, need

to prove subject reduction results for each form. First, for �:
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Lemma 6.10 (Subject Reduction �)

If Γ, C,H � e : τ is derivable and η, e� η′, e′, then Γ, C,H ′ � e′ : τ is derivable with

C � η′;H ′  η;H .

Proof

By induction on the derivation of Γ, C,H � e : τ and case analysis on the rule form

of η, e � η′, e′. We restrict our consideration to the most interesting representative

cases.

Case β. The following assertions hold by assumption in this subcase:

e = (λzx.e
′′)v e′ = e′′[v/x][λzx.e

′′/z] η′ = η

By Lemma 6.8, reconstruct the following, moving from the root upwards; by Sub:

Γ, C,H1;H2;H3 � (λzx.e
′′)v : τ2 C � τ2  τ C � H1;H2;H3  H

Γ, C,H � (λzx.e
′′)v : τ

and by App:

Γ, C,H1 � λzx.e′′ : τ1
H3−→ τ2 Γ, C,H2 � v : τ1

Γ, C,H1;H2;H3 � (λzx.e
′′)v : τ2

and by Sub:

Γ, C, ε � λzx.e′′ : τ′
1

H ′
3−→ τ′

2 C � τ′
1

H ′
3−→ τ′

2  τ1
H3−→ τ2 C � ε  H1

Γ, C,H1 � λzx.e′′ : τ1
H3−→ τ2

and by Fix:

Γ; x : τ′
1; z : τ′

1

H ′
3−→ τ′

2, C,H
′
3 � e′′ : τ′

2

Γ, C, ε � λzx.e′′ : τ′
1

H ′
3−→ τ′

2

and by Sub and Corollary 6.1:

Γ, C, ε � v : τ3 C � ε  H2 C � τ3  τ1

Γ, C,H2 � v : τ1

Now, observe that by contravariance of  in function domain types and transitivity

of  we have C � τ3  τ′
1, hence by Sub and the above we can derive Γ, C,H2 � v : τ′

1,

so by successive applications of Lemma 6.9 we have that Γ, C,H ′
3 � e′ : τ′

2 is derivable.

But C � H ′
3  ε; ε;H ′

3 by Lemma 3.1, and since by the above and definition of :

C � H ′
3  H3 C � ε  H1 C � ε  H2

therefore by Lemma 6.4:

C � H ′
3  H1;H2;H3

and since C � H1;H2;H3  H and C � τ′
2  τ by the above and transitivity of ,

by Sub:

Γ, C,H ′
3 � e′ : τ′

2 C � τ′
2  τ C � H ′

3  H

Γ, C,H � e′ : τ

so this case holds.



Types and trace effects of higher order programs 203

Case let. In this case e = let x = v in e0 and e′ = e0[v/x] and η = η′ by definition.

By Lemma 6.8, reconstruct the following; by Sub:

Γ, C,H0 � let x = v in e0 : τ0 C � H0  H C � τ0  τ

Γ, C,H � let x = v in e0 : τ

and by Let:

Γ, C, ε � v : σ Γ; x : σ, C,H0 � e0 : τ0

Γ, C,H0 � let x = v in e0 : τ0

But then Γ, C,H0 � e′ : τ0 is derivable by Lemma 6.9, hence by the above and Sub:

Γ, C,H0 � e′ : τ0 C � H0  H C � τ0  τ

Γ, C,H � e′ : τ

so this case holds.

Case event . In this case e = ev (c) and e′ = () and η′ = η; ev (c). By Lemma 6.8 and

definition of the Sub, Event, and Const, we can reconstruct:

Γ, C,H ′; ev (s) � ev (c) : unit C � unit  τ C � H ′; ev (s)  H

Γ, C,H � ev (c) : τ

and

Γ, C, ε � c : {c} C � {c}  {s} C � ε  H ′

Γ, C,H ′ � c : {s}
Γ, C,H ′; ev (s) � ev (c) : unit

But then by applications of Const and Sub:

Γ, C, ε � () : unit C � unit  τ C � ε  H ′

Γ, C,H ′ � () : τ

and since C � {c}  {s} by the above, therefore C � c  s and hence C � ev (c) 
ev (s) by Definition 5.3, thus by Lemma 6.4 we have C � η; ev (c);H ′  η; ev (s);H ′,

so this case holds. �

Before proving subject reduction for →, we need to establish some typing results

related to evaluation contexts. First, if e is a redex, then the effect of E[e] should

reflect that the trace predicted for e is the “first effect that will happen” in the

evaluation of E[e]. Formally, we characterize this as follows:

Lemma 6.11 (Context Inversion)

If Γ, C,H � E[e] : τ is derivable for closed E[e], then there exists H1;H2 such that

Γ, C,H1;H2 � E[e] : τ is derivable with a subderivation concluding in Γ, H1 � e : τ′

for e in the hole, where C � H1;H2  H .

Proof

By induction on E. In the basis E = [] and E[e] = e so the result follows by

assumption and Lemma 3.1, taking H2 = ε. Otherwise, the remaining forms of E–

E ′e′, vE ′, ifE ′ then e1 else e2, and ev (E ′)– ensure that H will at least reflect that the
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effect of e “happens first.” Taking E = E ′e′, for example, so that E[e] = E ′[e]e′, by

Lemma 6.8 and Sub and App we can reconstruct

Γ, C,H ′
1;H

′
2;H

′
3 � E ′[e]e′ : τ′ C � τ′  τ C � H ′

1;H
′
2;H

′
3  H

Γ, C,H � E ′[e]e′ : τ

and

Γ, C,H ′
1 � E ′[e] : τ1

H ′
3−→ τ2 Γ, C,H ′

2 � e′ : τ1

Γ, C,H ′
1;H

′
2;H

′
3 � E ′[e]e′ : τ′

But then by the induction hypothesis, there exists H ′′
2 such that Γ, C,H1;H

′′
2 � E ′[e] :

τ1
H ′

3−→ τ2 is derivable with C � H1;H
′′
2  H ′

1, so the result follows by an instance

of App, Lemmas 3.1 and 6.4, taking H2 = H ′′
2 ;H ′

2;H
′
3. The other cases follow in a

similar manner, case E = vE ′ with a little help from Corollary 6.1. �

Corollary 6.2

If Γ, C,H � E[ev (c)] : τ is derivable, there exists H ′ such that C � ev (c);H ′  H .

We also show that typing is preserved by contextual substitution:

Lemma 6.12 (Context Substitution)

If Γ, C,H1;H2 � E[e] : τ is derivable with a subderivation concluding in Γ, C,H1 � e :

τ′ for e in the hole, and Γ, C,H ′
1 � e′ : τ′ is derivable, then so is Γ, C,H ′

1;H2 � E[e′] : τ.

Proof

Straightforward by induction on E and Lemma 6.11. �

Now, the main result for → reduction:

Lemma 6.13 (Subject Reduction →)

If Γ, C,H � e : τ is derivable for closed e and η, e → η′, e′, then Γ, C,H ′ � e′ : τ is

derivable with C � η′;H ′  η;H .

Proof

The following hold by assumption and definition of →:

e = E[e1] with e1 a redex e′ = E[e2] η, e1 � η′, e2

Also, by Lemma 6.11 there exists a derivation of Γ, C,H1;H2 � e : τ with C �
H1;H2  H , and with a subderivation concluding in Γ, C,H1 � e1 : τ′ for e1 in the

hole. Furthermore, by Lemma 6.10 we have that Γ, H ′
1 � e2 : τ′ is derivable with:

C � η′;H ′
1  η;H1

Now, the following judgement is derivable by Lemma 6.12:

Γ, C,H ′
1;H2 � E[e2] : τ

and by Lemma 3.1, Lemma 6.4, preceding facts, and Lemma 6.1:

C � η;H1;H2  η;H

C � η′;H ′
1;H2  η;H1;H2

C � η′;H ′
1;H2  η;H

The result follows taking H ′ = H ′
1;H2. �
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Note that as a corollary of this result, we may formalise the intuition that “trace

effects predict run-time program traces”:

Corollary 6.3 (Trace Approximation)

If Γ, C,H � e : τ is derivable for closed e and ε, e →� η, e′ and C � H  H ′ for

closed H ′, then η̂ ∈ �H ′�.

Proof

By Lemma 6.13 and induction on the length of reduction there exists H ′′ such that

Γ, C,H ′′ � e′ : τ is derivable with C � η;H ′′  H . Now, suppose that ρ is a solution

of C , meaning that �η; ρ(H ′′)� ⊆ �ρ(H)�, therefore clearly η̂ ∈ �ρ(H)�. Since also

�ρ(H)� ⊆ H ′, the result follows. �

Using well-known strategy, we demonstrate progress on the basis of a canonical

forms lemma, establishing the form of values denoted by a particular type:

Lemma 6.14 (Canonical Forms)

If Γ, C,H � v : τ is satisfiable for closed v, then the following conditions hold:

i. If τ = bool then v is either true or false.

ii. If τ = unit then v = ().

iii. If there exists s such that τ = {s} then there exists c such that v = c.

iv. If there exists τ1, H, τ2 such that τ = τ1
H−→ τ2 then either v is some function

λzx.e, or v is in {∧,∨,¬}.
Proof

Suppose that τ = bool, and suppose on the contrary that v 	∈ {true, false}. Then by

Lemma 6.8 and remaining possible forms of v it is the case that Γ, C, ε � v : τ′ such

that C � τ′  bool where τ′ is of the form unit, {c}, or τ1
H−→ τ2. Lemma 6.2 implies

the contradiction. The other cases follow in a similar manner. �

Finally, on the basis of the proceeding, we can prove our main type safety results.

Theorem 6.1 (Progress)

Suppose Γ, C,H � e : τ is satisfiable, there exists a solution ρ of C such that ρ(η;H)

is valid, and η, e is irreducible. Then e is a value.

Proof

Suppose on the contrary that e is not a value. Then by definition of →, e is of the

form E[f], with Γ, C,H ′ � f : τ′ derivable as a subderivation of Γ, C,H � e : τ, and

where one of the following cases holds by definition of �:

Case (f is one of {if v then e1 else e2,∧v,∨v,¬v}, where v is not a boolean value).

In this case it is easy to show by inversion of either If or App that Γ, C,H ′′ � v : bool.

The contradiction follows by Lemma 6.14.

Case (f is ev (v) and v is not a singleton constant c). Similar to the previous case.

Case (f is φ(c) where Π(φ(c), η̂ evφ(c)) does not hold). By Corollary 6.2, there

exists H2 such that C � evφ(c);H2  H . By assumption there exists a solution ρ

of C such that ρ(η;H) is valid, and �ρ(η; evφ(c);H2)� ⊆ �ρ(η;H)� by Definition 5.3,

hence ρ(η; evφ(c);H2) is also valid by Lemma 3.2. But interpretations of effects are

prefix-closed, so clearly η̂ evφ(c) ∈ �ρ(η; evφ(c);H2)�, so Π(φ(c), η̂ evφ(c)) holds by

Definition 3.4, which is a contradiction. �
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C-Fn

(τ1
H−→ τ2  τ′

1

H ′
−→ τ′

2)�close (τ′
1  τ1 ∧ τ2  τ′

2 ∧H  H ′)

C-Trans

(τ1  τ2 ∧ τ2  τ3)�close τ1  τ3

C-Singleton

{τ1}  {τ2}�close τ1  τ2

C-Context

C ′ ⊆ C C ′ �close D D 	⊆ C

C →close C ∧ D

Fig. 12. Constraint closure rules.

Theorem 6.2 (Type Safety)

If Γ, C,H � e : τ is valid for closed e, then e does not go wrong.

Proof

Suppose on the contrary that ε, e →n η, e′ with η, e′ irreducible and e′ not a value.

Then Γ, C,H ′ � e′ : τ is derivable with C � η;H ′  H by Lemma 6.13, induction

on n, and Lemma 6.1. Now, since Γ, C,H � e : τ is valid by assumption; therefore,

there exists a solution ρ of C such that ρ(H) is valid by Definition 6.4. But since

�ρ(η;H ′)� ⊆ �ρ(H)� by Definition 5.3; therefore, ρ(η;H ′) is valid by Lemma 3.2. The

contradiction follows by Theorem 6.1. �

7 Subtyping constraint inference

Like the HM-style type system of Figure 4, typings specified by the subtyping

system of Figure 9 are inferable. We now give a type inference algorithm for

constraint subtyping, and prove that it is sound and complete with respect to logical

judgments. Furthermore, our completeness result yields a principal types property

for λtrace constraint subtyping. The inference algorithm and form of judgments

are the same as for the HM style system, defined in Figure 5. The difference is

in the constraint solution technique. Rather than a unification-based solver as in

the HM style system, we use a closure technique. The technique is standard, with

extensions to accommodate trace effects and singleton types. To exploit model-

checking techniques to verify inferred effects, we also develop an effect extraction

algorithm to represent top-level effects in term form. Our technical development

culminates in Corollary 7.1 and Lemma 7.22, formally establishing correctness of

the composition of inference, closure, and effect extraction, but before the proofs we

provide some initial definitions and intuitions.

Closure and consistency. In contrast to unification, which literally generates a solu-

tion to the constraint system, closure only verifies that a constraint is solvable.

The closure algorithm is the iteration of a single-step rewrite relation defined in

Figure 12. Each rewrite rule makes explicit constraints that are implicit in existing

ones for example, observe that closure of a constraint {s1}  {s2} adds s1  s2 to

the closure. When no new constraints can be added, closure terminates. Formally:
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� true : ok
� C : ok � D : ok

� C ∧ D : ok
� H  H ′ : ok � τ  τ : ok

τ, β : k

� τ  β : ok

τ, β : k

� β  τ : ok
� τ1

H−→ τ2  τ′
1

H ′
−→ τ′

2 : ok � {τ1}  {τ2} : ok

Fig. 13. Constraint consistency rules.

hextract C H = hextractC (H,�)

hextractC (ε, hs) = ε

hextractC (ev (α), hs) = ev (boundsC α)

hextractC (h, hs) = h h ∈ hs

hextractC (h, hs) = µh.hextractC ((boundsC h), hs ∪ {h}) h 	∈ hs

hextractC (H1;H2, hs) = (hextractC (H1, hs)); (hextractC (H2, hs))

hextractC (H1|H2, hs) = (hextractC (H1, hs))|(hextractC (H2, hs))

boundsC β = τ1| · · · |τn where {τ1, . . . , τn} = {τ | τ  β ∈ C and τ 	∈ Vk}

Fig. 14. hextract , hextractC , and bounds functions.

Definition 7.1 (Constraint Closure)

The rewrite relations �close and →close are defined in Figure 12. C is closed iff

there does not exist D such that C →close D. The relation →�
close is the reflexive,

transitive closure of →close . We define close(C) as a closed constraint such that

C →�
close close(C).

When closure terminates, all “atomic elements” of the constraint system are made

evident. A simple structural consistency check, defined in Figure 13, can then be

used to ensure that all constraints entailed by the closure are solvable. For example,

observe that clashing types in the sense of Lemma 6.2 cannot populate a consistent

constraint. The definition of consistency exploits kinding rules extended to type

terms to ensure consistency of constraints involving variables. Formally:

Definition 7.2

A type term τ has kind k, written τ : k, iff the root constructor of any interpretation

of τ has kind k as specified in Figure 11.

Note that sanity conditions on interpretations imply that if β ∈ Vk , then β : k.

Extracting effects from constraints. While demonstrating solvability is sufficient for

constraints in general, model checking of inferred trace effects requires that they be

presented in term form, not constraint form. Thus, we define another algorithm in

Figure 14, called hextract , that extracts a term representation of the inferred top-level

trace effect from a given constraint. The algorithm hextract is defined in a curried
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style that integrates nicely with a combinator fixpoint construction proof technique,

used for proving soundness of hextract in Section 7.3. The definition of hextractC
specifies a family of functions, each element of which has is defined in terms of a

fixed parameter C . Note that hextractC is not defined on the µ-bound form of trace

effects, because this form does not occur in inferred types and constraints. However,

hextractC does introduce µ-bindings, in order to solve recursively constrained effect

variables.

Like the solution technique for the HM style system, hextract exploits the property

that inferred constraints define a system of lower bounds on effect variables.

However, in the subtyping constraint system, there is the added complication of

singleton union types, as presented in Definition 6.1, although it turns out that

singleton constraints also define a system of lower bounds on variables. The function

boundsC obtains the set of lower bounds of a given variable in C .

7.1 Soundness of inference

Before delving into our main results, here are some auxiliary lemmas concerning

variable freshness and constraint entailment that will be useful in later proofs.

Lemma 7.1

If Γ, H �β̄ e : τ/C is canonically derivable, then β̄#fv(Γ) and also fv(τ, C,H) ⊆
fv(Γ) ∪ β̄.

Lemma 7.2

All of the following properties hold:

1. If C � τ′  τ, then fv(τ) ⊆ fv(τ′, C).

2. C ∧ D � D.

3. If C � τ  τ′ then ψ(C) � ψ(τ)  ψ(τ′).

We now demonstrate soundness of type inference with respect to constraint

subtyping; that is, we show that inferred judgments are derivable in the logical

constraint subtyping system of Figure 9. For this purpose it is necessary to convert

constrained type schemes in inference environments to unconstrained type schemes

in logical environments.

Definition 7.3

We define the following environment transformation function:

��� = �

�Γ; x : ∀β̄.τ/C� = �Γ�; x : ∀β̄.τ

Now, soundness can be proved by a straightforward induction on inference deriv-

ations. The proof technique essentially rewrites inference derivations into logical

derivations by pushing reconstructed constraints from the root to the leaves.

Lemma 7.3 (Soundness of Subtype Inference)

If Γ, H �β̄ e : τ/C is canonically derivable, then so is �Γ�, C ∧D,H � e : τ for any D.
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Proof

By induction on the derivation of Γ, H �β̄ e : τ/C and case analysis on the last rule

instance.

Case VAR. In this case e = x and H = ε and τ/C = τ0[β̄/β̄0]/C0[β̄/β̄0] by

definition of inference derivations, where

Γ(x) = ∀β̄0.τ0/C0

Γ, ε �β̄ x : τ0[β̄/β̄0]/C0[β̄/β̄0]

But since clearly C0[β̄/β̄0] ∧D � [β̄/β̄0] for arbitrary D, therefore by an instance of

Var and an instance of ∀-Elim we can derive

�Γ�(x) = ∀β̄0.τ0

�Γ�, C0[β̄/β̄0], ε � x : ∀β̄0.τ0 C0[β̄/β̄0] � [β̄/β̄0]

�Γ�, C0[β̄/β̄0], ε � x : τ0[β̄/β̄0]

Case LET. In this case e = let x = v in e0 and C = C1 ∧ C2 and β̄ = β̄1β̄2 by

definition of inference derivations, and we have

β̄1#β̄2 Γ, ε �β̄1
v : τ1/C1 Γ; ∀β̄1.τ1/C1, ε �β̄2

e0 : τ2/C2

Γ, H �β̄1β̄2
let x = v in e0 : τ/C1 ∧ C2

But by the induction hypothesis both of

�Γ�, C1 ∧ C2, ε � v : τ1 �Γ�; x : ∀β̄1.τ1, C1 ∧ C2, H � e0 : τ2

are derivable, and by Lemma 7.1 we have that β̄1#fv(Γ), hence β̄1#fv(�Γ�), so by

applications of ∀-Intro and Let:

�Γ�, C1 ∧ C2, ε � v : τ1 β̄1#fv(�Γ�)
�Γ�, C1 ∧ C2, ε � v : ∀β̄1.τ1 �Γ�; x : ∀β̄1.τ1, C1 ∧ C2, H � e0 : τ2

�Γ�, C1 ∧ C2, H � let x = v in e0 : τ2

Case FIX. In this case:

e = λzx.e
′ β̄ = β̄′ ∪ {t, h, t′} H = h τ = t

h−→ t′ C = C ′ ∧ τ′  t′ ∧H  h

where we have

Γ; x : t; z : t
h−→ t′, H ′ �β̄ e′ : τ′/C

Γ, ε �β̄′∪{t,h,t′} λzx.e
′ : t

h−→ t′/C ′ ∧ τ′  t′ ∧H ′  h

by definition of inference derivations. By the induction hypothesis, the judgement

�Γ�; x : t; z : t
h−→ t′, C,H ′ � e′ : τ′

is derivable, so by applications of Sub and Fix:

�Γ�; x : t; z : t
h−→ t′, C,H ′ � e′ : τ′ C ′ � τ′  t′ C ′ � H ′  h

�Γ�; x : t; z : t
h−→ t′, C, h � e′ : t′

�Γ�, C, ε � λzx.e′ : t
h−→ t′
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Case EVENT. In this case we have

e = ev (e′) H = H ′; ev (α) τ = unit C = C ′ ∧ τ′  {α} β̄ = β̄′ ∪ {α}

by definition of inference derivations, and as the last derivation step:

Γ, H ′ �β̄′ e′ : τ′/C ′

Γ, H ′; ev (α) �β̄′∪{α} ev (e′) : unit/C ′ ∧ τ′  {α}

By the induction hypothesis, the judgement �Γ�, C,H ′ � e′ : τ is derivable, and since

C � τ′  {α}, by instances of Sub and Let:

�Γ�, C,H ′ � e′ : τ C � τ′  {α}
�Γ�, C,H ′ � e′ : {α}

�Γ�, C,H ′; {α} � ev (e′) : unit

Case APP. In this case by definition of inference derivations we have

e = e1e2 C = C1 ∧C2 ∧τ1  τ2
h−→ t H = H1;H2; h τ = t β̄ = β̄1β̄2 ∪{t, h}

and as the last derivation step:

β̄1#β̄2 Γ, H1 �β̄1
e1 : τ1/C1 Γ, H2 �β̄2

e2 : τ2/C2

Γ, H1;H2; h �β̄1β̄2∪{t,h} e1e2 : t/C1 ∧ C2 ∧ τ1  τ2
h−→ t

But by the induction hypothesis, both of Γ, H1, C � e1 : τ1 and Γ, H2, C � e2 : τ2 are

derivable, and since C � τ1  τ2
h−→ t by Lemma 7.2, we can derive by applications

of Sub and App:

Γ, H1, C � e1 : τ1 C � τ1  τ2
h−→ t

Γ, H1, C � e1 : τ2
h−→ t Γ, H2, C � e2 : τ2

Γ, H1;H2; h, C � e1e2 : t

so this case holds.

Case IF. In this case we have

e = if e1 then e2 else e3 τ = t H = H1;H2|H3

C = C1 ∧ C2 ∧ C3 ∧ τ1  bool ∧ τ2  t ∧ τ3  t β̄ = β̄1β̄2β̄3 ∪ {t}

by definition of inference derivations, where as the last derivation step

β̄1#β̄2#β̄3 Γ, H1 �β̄1
e1 : τ1/C1 Γ, H2 �β̄2

e2 : τ2/C2 Γ, H3 �β̄3
e3 : τ3/C3

Γ, H1;H2|H3 �β̄ if e1 then e2 else e3 : t/C

By the induction hypothesis, each of:

�Γ�, C,H1 � e1 : τ1 �Γ�, C,H2 � e2 : τ2 �Γ�, C,H3 � e3 : τ3

is derivable, and by Lemma 7.2 and Lemma 6.4:

C � H2  H2|H3 C � H3  H3|H3 C � τ1  bool C � τ2  t

C � τ3  t
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so by an application of Sub:

�Γ�, C,H1 � e1 : τ1 C � τ1  bool

�Γ�, C,H1 � e1 : bool

and also by an application of Sub:

�Γ�, C,H2 � e2 : τ2 C � H2  H2|H3 C � τ2  t

�Γ�, C,H2|H3 � e2 : t

and by another application of Sub:

�Γ�, C,H3 � e3 : τ3 C � H3  H2|H3 C � τ3  t

�Γ�, C,H2|H3 � e3 : t

so by an application of If:

�Γ�, C,H1 � e1 : bool �Γ�, C,H2|H3 � e2 : t �Γ�, C,H2|H3 � e3 : t

�Γ�, C,H1;H2|H3 � if e1 then e2 else e3 : t

So this case holds. Case Const is immediate by nearly exact correspondence of the

Const rule forms in the logical and inference systems, so the result follows. �

7.2 Completeness of inference

As is usually the case, completeness is a more difficult manner than soundness, and

the development requires more formal overhead. To wit, we extend the  relation to

constrained types, to relate constrained type schemes (taken from logical judgments)

with unconstrained type schemes (taken from inference judgments), and to relate

constrained type environments with unconstrained type environments. This is all

with a view to relating the generality of type inference judgments with logical type

judgments. The extended  relation between type schemes also takes into account

generalization of type variables.

Definition 7.4

The relation  is extended to constrained types, type schemes, and type environments

as follows:

C � C ′ C � τ′  τ

τ′/C ′  τ/C

∀[τ̄/β̄] . C � [τ̄/β̄] ⇒ ∃[τ̄′/β̄′] . (τ′/C ′)[τ̄′/β̄′]  (τ[τ̄/β̄]/C)

C � ∀β̄′.τ′/C ′  ∀β̄.τ

∀x ∈ dom(Γ) . C � Γ(x)  Γ′(x)

C � Γ  Γ′

Lemma 7.4

Definition 7.4 preserves reflexivity and transitivity of  .

To formalize “maximum” generalization of type schemes, we define the gen

function, and to specify the generalizable variables in a judgement, we define the

genvars function.
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Definition 7.5

Define gen(Γ, C, ∀β̄.τ) = ∀β̄′.τ where β̄ = fv(τ, C) − fv(Γ). Define genvars

(Γ, C,H, ∀β̄.τ) = fv(C,H, τ) − fv(Γ).

Lemma 7.5

Given ∀β̄.τ, and Γ such that β̄#fv(Γ), then C � gen(Γ, C, ∀β̄.τ)  ∀β̄.τ for any C .

Furthermore, for all σ and x such that Γ(x) = σ, we have gen(Γ, C, σ) = σ.

Note that in the second part of the above definition, while extraneous bindings in σ

may be eliminated in its generalization, the equivalence still holds since we equate

type schemes up to elimination of extraneous variables in Section 4.

Next, we formalize the principality relation on type judgments, relating inference

judgments with logical judgments. We will show that most general types are

inferred, according to this relation. The relation is parameterized by a substitution

ψ, which may instantiate free variables in inference judgments for relation to

logical judgments; intuitively, ψ imposes the unnecessary assumptions made in type

environments in logical derivations.

Definition 7.6

Given genvars(Γ, C,H, ∀β̄0.τ) = β̄. The relation:

Γ′, H ′ �β̄′ e : τ′/C ′ ψ Γ, C,H � e : ∀β̄0.τ

holds iff C � ψ(Γ′)  Γ, and for all ψ′′ = [τ̄/β̄] where C � [τ̄/β̄] there exists

ψ′ = [τ̄′/β̄′] such that

C � ψ′ ◦ ψ(C ′) C � ψ′ ◦ ψ(H ′)  ψ′′(H) C � ψ′ ◦ ψ(τ′)  ψ′′(τ)

The relation ψ takes into account generalizability of top-level effects, but for

typing of values, for which effects are ε, it is simpler to speak in terms of maximal

generalization of types alone. The next Lemmas establish relevant properties.

Lemma 7.6

Supposing that dom(ψ) ⊆ fv(Γ′) and

Γ′, H ′ �β̄′ e : τ′/C ′ ψ Γ, C,H � e : σ

Then C ′ � ∀β̄′.ψ(τ′/C ′)  gen(Γ, C, σ), and H = ε implies H ′ = ε.

Lemma 7.7

Given ψ and judgments Γ, C, ε � e : σ and Γ′, ε �β̄′ e : τ′/C ′ where dom(ψ) ⊆ fv(Γ′)

and C � ψ(Γ′)  Γ. Then C � ∀β̄′.ψ(τ′/C ′)  gen(Γ, C, σ) implies

Γ′, ε �β̄′ e : τ′/C ′ ψ Γ, C, ε � e : σ

Now, a few more auxiliary properties and definitions, including a definition

of substitution restriction, before the main completeness result, which follows by

induction on logical type derivations.

Lemma 7.8

If C � τ1  τ′
1 and for all ψ1 with C � ψ1 there exists ψ2 such that C � ψ2(τ2) 

ψ1(τ1), then C � ψ2(τ2)  ψ1(τ
′
1).
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Proof

By Lemma 7.2 it is the case that ψ1(C) � ψ1(τ1)  ψ1(τ
′
1), so C � ψ1(τ1)  ψ1(τ

′
1)

by Lemma 6.4, thus C � ψ2(τ2)  ψ1(τ
′
1) by Lemma 6.4. �

Definition 7.7

Given β̄ ⊆ dom(ψ); write ψ |β̄ to denote ψ′ such that dom(ψ′) = β̄ and ψ′(β̄) = ψ(β̄).

Lemma 7.9

For all β̄ ⊆ dom(ψ), if C � ψ then C � ψ |β̄ .

Lemma 7.10 (Completeness of Subtype Inference)

Given ψ, Γ′, and derivable judgement Γ, C,H � e : σ such that C � ψ(Γ′)  Γ

and dom(ψ) ⊆ fv(Γ′). Then a judgement Γ′, H ′ �β̄′ e : τ′/C ′ is canonically derivable,

where

Γ′, H ′ �β̄′ e : τ′/C ′ ψ Γ, C,H � e : σ

Proof

By induction on the derivation of Γ, C,H � e : σ, and case analysis on the last rule

instance in the derivation.

Case VAR. In this case by definition of subtyping derivations, H = ε and e = x

and we can reconstruct

Γ(x) = σ

Γ, C, ε � x : σ

But by Var in the inference system we can construct

Γ′(x) = ∀β̄′.τ′/C ′

Γ′, ε �β̄′′ x : τ′[β̄′′/β̄′]/C ′[β̄′′/β̄′]

where β̄′′ are fresh by canonical form derivations. Since dom(ψ) = fv(Γ′), observe

that

ψ(∀β̄′.τ′/C ′) = ∀β̄′.ψ(τ′/C ′)

Now, letting σ = ∀β̄.τ, take some arbitrary [τ̄/β̄] such that C � [τ̄/β̄]; then we have

by assumption and Definition 7.4

∃[τ̄′/β̄′] . (ψ(τ′/C ′))[τ̄′/β̄′]  (τ[τ̄/β̄]/C)

Let

τ′′ = τ′[β̄′′/β̄′] C ′′ = C ′[β̄′′/β̄′]

Since β̄′′ are fresh; therefore, β̄′#β̄′′#dom(ψ); hence,

(ψ(τ′′/C ′′))[τ̄′/β̄′′] = (ψ(τ′/C ′))[τ̄′/β̄′]

so

(ψ(τ′′/C ′′))[τ̄′/β̄′′]  (τ[τ̄/β̄]/C)

Since ∀β̄.τ = gen(Γ, C, σ) by Lemma 7.5, the result follows by Definition 7.4 and

Lemma 7.7.
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Case LET. In this case e = let x = v in e′ and σ = τ and by definition of subtyping

derivations we can reconstruct

Γ, C, ε � v : σ′ Γ; x : σ′, C,H � e′ : τ

Γ, C,H � let x = v in e′ : τ

By the induction hypothesis, a judgement Γ′, ε �β̄1
v : τ1/C1 is canonically derivable,

where there exists ψ1 = [τ̄1/β̄1] such that

C � ψ1 ◦ ψ(C1)

and by Lemma 7.6:

C � ∀β̄1.ψ(τ1/C1)  gen(Γ, C, σ′)

But dom(ψ)#β̄1 by Lemma 7.1, hence

∀β̄1.ψ(τ1/C1) = ψ(∀β̄1.τ1/C1)

so by Lemmas 7.4 and 7.5:

C � ψ(∀β̄1.τ1/C1)  σ′

Thus, C � ψ(Γ′; x : ∀β̄1.τ1/C1)  Γ; x : σ by Definition 7.4. By Lemma 7.1 and the

induction hypothesis, letting β̄ = genvars(Γ, C,H, τ) we have that

Γ′; x : ∀β̄1.τ1/C1, H2 �β̄2
e′ : τ2/C2

is canonically derivable, where there exists ψ2 with dom(ψ2) = [τ̄2/β̄2] such that for

arbitrary ψ′′ = [τ̄/β̄] with C � [τ̄/β̄]:

C � ψ2 ◦ ψ(C2) C � ψ2 ◦ ψ(τ2)  ψ′′(τ) C � ψ2 ◦ ψ(H2)  ψ′′(H)

Assume β̄2#β̄1 wlog, so that as an instance of Let:

Γ′, ε �β̄1
v : τ1/C1 Γ′; x : ∀β̄1.τ1/C1, H2 �β̄2

e′ : τ2/C2

Γ′, H2 �β̄1β̄2
let x = v in e′ : τ2/C1 ∧ C2

Now, we have by assumption and Lemma 7.1 that β̄2#β̄1#fv(Γ), and also by

Lemma 7.1:

fv(τ1, C1) ⊆ fv(Γ) ∪ β̄1 fv(τ2, C2, H2) ⊆ fv(Γ) ∪ β̄2

so clearly:

ψ1 ◦ ψ(C1) = ψ1 ◦ ψ2 ◦ ψ(C1) ψ2 ◦ ψ(C2) = ψ1 ◦ ψ2 ◦ ψ(C2)

ψ2 ◦ ψ(τ2) = ψ1 ◦ ψ2 ◦ ψ(τ2) ψ2 ◦ ψ(H2) = ψ1 ◦ ψ2 ◦ ψ(H2)

therefore by the above:

C � ψ1 ◦ ψ2 ◦ ψ(C1 ∧ C2) C � ψ1 ◦ ψ2 ◦ ψ(τ2)  ψ′′(τ)

C � ψ1 ◦ ψ2 ◦ ψ(H2)  ψ′′(H)

and dom(ψ1 ◦ ψ2) = β̄1β̄2, so this case holds by Definition 7.6.
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Case ∀-INTRO. In this case by definition of subtyping derivations we have that

e = v and σ = ∀β̄.τ, and we can reconstruct

Γ, C, ε � v : τ β̄#fv(Γ)

Γ, C, ε � v : ∀β̄.τ

By the induction hypothesis and Lemma 7.6 there exists derivable Γ′, ε �β̄′ v : τ′/C ′,

with C � ∀β̄′.ψ(τ′/C ′)  gen(Γ, C, τ). But C � gen(Γ, C, τ)  ∀β̄.τ by Lemma 7.5,

therefore by Lemma 7.4 we have C � ∀β̄′.ψ(τ′/C ′)  ∀β̄.τ, so this case holds by

Lemma 7.7.

Case ∀-ELIM. In this case by definition of subtyping derivations we have that

e = v and σ = τ[τ̄/β̄], and we can reconstruct

Γ, C, ε � v : ∀β̄.τ C � [τ̄/β̄]

Γ, C, ε � v : τ[τ̄/β̄]

By the induction hypothesis and Lemma 7.6, there exists derivable Γ′, ε �β̄′ v :

τ′/C ′, with C � ∀β̄′.ψ(τ′/C ′)  gen(Γ, C, ∀β̄.τ). Let ∀β̄0.τ = gen(Γ, C, ∀β̄.τ) and

β̄1 =
{
β|β ∈ β̄0 − β̄

}
. Then τ[τ̄/β̄] = τ[τ̄/β̄][β̄1/β̄1]. Let ψ0 = [τ̄/β̄][β̄1/β̄1] and let

gen(Γ, C, τ[τ̄/β̄]) = ∀β̄2.τ[τ̄/β̄]. It is easy to show that β̄2 ⊆ β̄1 ∪ fv(τ̄); hence for

arbitrary [τ̄2/β̄2] such that C � [τ̄2/β̄2], we have dom([τ̄2/β̄2] ◦ψ0) ⊆ β̄0, hence there

exists τ̄3 such that [τ̄3/β̄0] = [τ̄2/β̄2] ◦ ψ0. Thus by Definition 7.4 and above facts

there exists [τ̄′/β̄′] such that the following entailments hold:

C � (ψ(C ′))[τ̄′/β̄′] C � (ψ(τ′))[τ̄′/β̄′]  τ[τ̄3/β̄0]

the latter of which is to say by the above equivalences:

C � (ψ(τ′))[τ̄′/β̄′]  (τ[τ̄/β̄])[τ̄2/β̄2]

so this case holds by Definition 7.4 and Lemma 7.7.

Case EVENT. In this case e = ev (e0) and σ = unit and H = H0; ev (s) by definition

of subtyping derivations, where we can reconstruct the following rule instance:

Γ, C,H0 � e0 : {s}
Γ, C,H0; ev (s) � ev (e0) : unit

Let genvars(Γ, C,H0, {s}) = β̄. Then by the induction hypothesis there exists

derivable Γ′, H ′ �β̄′ ev (e0) : τ′/C ′, where for all ψ0 = [τ̄/β̄] such that C � [τ̄/β̄]

there exists ψ′ = [τ̄′/β̄′] such that

C � ψ′ ◦ ψ(C ′) C � ψ′ ◦ ψ(τ′)  ψ0({s}) C � ψ′ ◦ ψ(H ′)  ψ0(H0)

and by an instance of Event we can canonically infer

Γ′, H ′ �β̄′ ev (e0) : τ′/C ′

Γ′, H ′; ev (α) �β̄′∪{α} ev (e′) : unit/C ′ ∧ τ′  {α}

Now, since α is canonically chosen fresh, by Lemma 7.1 α#β̄′#dom(ψ) and

fv(τ′, C ′, H ′) ⊆ dom(ψ) ∪ β̄′
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Therefore, letting ψ′′ = ψ′ ◦ [ψ0(s)/α]:

ψ′′ ◦ ψ(α) = ψ0(s) ψ′′ ◦ ψ(C ′) = ψ′ ◦ ψ(C ′) ψ′′ ◦ ψ(τ′) = ψ′ ◦ ψ(τ′)

ψ′′ ◦ ψ(H ′) = ψ′ ◦ ψ(H ′)

so by the above facts and Lemma 6.4:

C � ψ′′ ◦ ψ(C ′ ∧ τ′  {α}) C � ψ′′ ◦ ψ(H ′; ev (α))  ψ0(H0; ev (s))

and dom(ψ′′) = β̄′ ∪ {α}, so this case holds by Definition 7.6.

Case FIX. In this case we have e = λzx.e
′ and H = ε and τ = τ1

H ′

−→ τ2 by

definition of subtyping derivations, with the following as the last derivation step:

Γ; x : τ1; z : τ1
H1−→ τ2, C,H1 � e′ : τ2

Γ, C, ε � λzx.e′ : τ1
H1−→ τ2

Let ψ0 = [τ1/t1][τ2/t2][H1/h] ◦ ψ. Since t1, t2, h are chosen fresh in canonical

derivations, therefore C � ψ0(t1
h−→ t2)  τ1

H1−→ τ2 and by Definition 7.4:

C � ψ0(Γ
′; x : t1; z : t1

h−→ t2)  (Γ; x : τ1; z : τ1
H1−→ τ2)

Therefore, since genvars(Γ; x : τ1; z : τ1
H1−→ τ2, C,H1, τ2) = �, by the induction

hypothesis a judgement of the following form is derivable:

Γ′; x : t1; z : t1
h−→ t2, H

′ �β̄′′ e′ : τ′/C ′

where there exists ψ′ = [τ̄/β̄′′] such that

C � ψ′ ◦ ψ0(C
′) C � ψ′ ◦ ψ0(H

′)  H1 C � ψ′ ◦ ψ0(τ
′)  τ2

But letting ψ′′ = ψ′ ◦ [τ1/t1][τ2/t2][H1/h], equivalently:

C � ψ′′ ◦ ψ(C ′) C � ψ′′ ◦ ψ(H ′)  H1 C � ψ′′ ◦ ψ(τ′)  τ2

And, freshness of {t1, t2, h} means {t1, t2, h} #β̄′′#dom(ψ), therefore ψ′′ ◦ ψ(t1) = τ1
and ψ′′ ◦ ψ(t2) = τ2 and ψ′′ ◦ ψ(h1) = H1, thus

C � ψ′′ ◦ ψ(C ′ ∧H ′  h ∧ τ′  t2) C � ψ′′ ◦ ψ(t1
h−→ t2)  τ1

H1−→ τ2

and dom(ψ′) = β̄′′ ∪ {t1, t2, h}. By an application of Fix:

Γ′; x : t1; z : t1
h−→ t2, H

′ �β̄′′ e′ : τ′/C ′

Γ′, ε �β̄′′∪{t1 ,t2 ,h} λzx.e
′ : t1

h−→ t2/C
′ ∧H ′  h ∧ τ′  t2

so this case holds by Definition 7.6.

Case APP. In this case e = e1e2 and H = H1;H2;H3 by definition of subtyping

derivations, and as the last step in the derivation:

Γ, C,H1 � e1 : τ′ H3−→ τ Γ, C,H2 � e2 : τ′

Γ, C,H1;H2;H3 � e1e2 : τ
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Let

genvars(Γ, C,H1, τ
′ H3−→ τ) = β̄ genvars(Γ, C,H2, τ

′) = β̄′

genvars(Γ, C,H1;H2;H3, τ) = β̄′′

Let ψ′ be an arbitrary substitution such that dom(ψ′) = β̄β̄′ and C � ψ′, and let:

ψβ̄ = ψ′ |β̄ ψβ̄′ = ψ′ |β̄′ ψβ̄′′ = ψ′ |β̄′′

Then by Lemma 7.9 and the induction hypothesis there exists a canonically derivable

judgement Γ′, H ′
1 �β̄1

e1 : τ1/C1 and substitution ψ1 = [τ̄1/β̄1] such that

C � ψ1 ◦ ψ(C1) C � ψ1 ◦ ψ(τ1)  ψβ̄(τ
′ H3−→ τ) C � ψ1 ◦ ψ(H ′

1)  ψβ̄(H1)

Also by Lemma 7.9 and the induction hypothesis there exists canonically derivable

Γ′, H ′
2 �β̄2

e2 : τ2/C2 and substitution ψ2 = [τ̄2/β̄2] such that

C � ψ2 ◦ ψ(C2) C � ψ2 ◦ ψ(τ2)  ψβ̄′ (τ′) C � ψ2 ◦ ψ(H ′
2)  ψβ̄′(H2)

Note that

ψβ̄(H1) = ψβ̄′′(H1) ψβ̄′ (H2) = ψβ̄′′(H2) ψβ̄(H3) = ψβ̄′′ (H3) ψβ̄(τ) = ψβ̄′′ (τ)

ψβ̄(τ
′) = ψβ̄′(τ′)

Now, let ψ3 = ψ2 ◦ [ψβ̄′′(τ)/t][ψβ̄′′ (H3)/h]. Taking β̄1#β̄2 wlog, by Lemma 7.1 it is the

case that β̄1#β̄2#dom(ψ) and

fv(τ1, H
′
1, C1) = fv(Γ) ∪ β̄1 fv(τ2, H

′
2, C2) = fv(Γ) ∪ β̄2

therefore

ψ3 ◦ ψ(τ1) = ψ1 ◦ ψ(τ1) ψ3 ◦ ψ(H1) = ψ1 ◦ ψ(H1) ψ3 ◦ ψ(C1) = ψ1 ◦ ψ(C1)

ψ3 ◦ ψ(τ2) = ψ2 ◦ ψ(τ2) ψ3 ◦ ψ(H2) = ψ2 ◦ ψ(H2) ψ3 ◦ ψ(t) = ψβ̄′′(τ)

ψ3 ◦ ψ(h) = ψβ̄′′ (H3)

Combining these equivalences with preceding facts and Lemma 6.4, we have

C � ψ3 ◦ ψ(H ′
1;H

′
2; h)  ψβ̄′′(H1;H2;H3) C � ψ3 ◦ ψ(t)  ψβ̄′′ (τ)

We can also assert

C � ψ3 ◦ ψ(C1 ∧ C2) C � ψβ̄(τ
′ H3−→ τ)  ψ3 ◦ ψ(τ2

h−→ t)

C � ψ3 ◦ ψ(τ1)  ψβ̄(τ
′ H3−→ τ)

so by transitivity of , etc., we have

C � ψ3 ◦ ψ(C1 ∧ C2 ∧ τ1  τ2
h−→ t)

Finally, by App we can derive

Γ′, H ′
1 �β̄1

e1 : τ1/C1 Γ′, H ′
2 �β̄2

e2 : τ2/C2

Γ′, H ′
1;H

′
2; h �β̄1β̄2{t,h} e1e2 : t/C1 ∧ C2 ∧ τ1  τ2

h−→ t

and since dom(ψ3) = β̄1β̄2 {t, h}, this case holds.
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Case IF. In this case e = if e1 then e2 else e3, and H = H1;H2, and as the last step

in the derivation:

Γ, C,H1 � e1 : bool Γ, C,H2 � e2 : τ Γ, C,H2 � e3 : τ

Γ, C,H1;H2 � if e1 then e2 else e3 : τ

Let

genvars(Γ, C,H1, bool) = β̄ genvars(Γ, C,H2, τ) = β̄′

and taking arbitrary dom(ψ′) = β̄β̄′ such that C � ψ′, define ψβ̄ = ψ′ |β̄ and

ψβ̄′ = ψ′ |β̄′ . Then by Lemma 7.9 and the induction hypothesis, there exist derivable

judgments:

Γ′, H ′
1 �β̄1

e1 : τ1/C1 Γ′, H ′
2 �β̄2

e2 : τ2/C2 Γ′, H ′
3 �β̄3

e3 : τ3/C3

and substitutions ψ1, ψ2, ψ3 with dom(ψ1) = β̄1, dom(ψ2) = β̄2, dom(ψ3) = β̄3 such

that:

C � ψ1 ◦ ψ(C1) C � ψ1 ◦ ψ(H ′
1)  ψβ̄(H1) C � ψ1 ◦ ψ(τ1)  ψβ̄(bool)

C � ψ2 ◦ ψ(C2) C � ψ2 ◦ ψ(H ′
2)  ψβ̄′(H2) C � ψ2 ◦ ψ(τ2)  ψβ̄′(τ)

C � ψ3 ◦ ψ(C3) C � ψ3 ◦ ψ(H ′
3)  ψβ̄′(H2) C � ψ3 ◦ ψ(τ3)  ψβ̄′(τ)

Assume β̄1#β̄2#β̄3 wlog. Note the following equivalences:

ψβ̄(bool) = bool ψβ̄′(τ) = ψ′(τ) ψβ̄(H1) = ψ′(H1) ψβ̄′(H2) = ψ′(H2)

and let ψ4 = ψ1 ◦ ψ2 ◦ ψ3 ◦ [τ/t]. Then since β̄1#β̄2#β̄3#t#dom(ψ) by assumption,

canonical freshness of t, and Lemma 7.1, we have ψ4(t) = τ, and for all i ∈ [1..3]:

ψi ◦ ψ(Ci) = ψ4 ◦ ψ(Ci) ψi ◦ ψ(H ′
i ) = ψ4 ◦ ψ(H ′

i ) ψi ◦ ψ(τi) = ψ4 ◦ ψ(τi)

By the above facts and equivalences and Lemma 6.4 we can then assert

C � ψ4 ◦ ψ(t)  ψ′(τ) C � ψ4 ◦ ψ(H ′
1;H

′
2|H ′

3)  ψ′(H1;H2)

C � ψ4 ◦ ψ(τ1)  bool C � ψ4 ◦ ψ(τ2  t) C � ψ4 ◦ ψ(τ3  t)

C � ψ4 ◦ ψ(C1 ∧ C2 ∧ C3)

and letting C ′ = C1 ∧ C2 ∧ C3 ∧ τ1  bool ∧ τ2  t ∧ τ3  t, observe C � ψ4 ◦ ψ(C ′),

and by If we can derive

β̄1#β̄2#β̄3 β̄4 = β̄1β̄2β̄3 ∪ {t}
Γ′, H ′

1 �β̄1
e1 : τ1/C1 Γ′, H ′

2 �β̄2
e2 : τ2/C2 Γ′, H ′

3 �β̄3
e3 : τ3/C3

Γ′, H ′
1;H

′
2|H ′

3 �β̄4
if e1 then e2 else e3 : t/C ′

Therefore since dom(ψ4) = β̄1β̄2β̄3 ∪ {t}, this case holds.

Case SUB. In this case by definition of subtyping derivations, we have as the last

step in the derivation:

Γ, C,H ′ � e : τ′ C � τ′  τ C � H ′  H

Γ, C,H � e : τ
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Letting genvars(Γ, C,H ′, τ′) = β̄ and taking arbitrary ψ′ such that dom(ψ′) = β̄ and

C � ψ′, by the induction hypothesis there exists derivable Γ′, C0 �β̄0
e : τ0/C0 and

substitution ψ0 such that

C � ψ0 ◦ ψ(C0) C � ψ0 ◦ ψ(H0)  ψ′(H ′) C � ψ0 ◦ ψ(τ0)  ψ′(τ′)

But by Lemma 7.8 we have

C � ψ0 ◦ ψ(H0)  ψ′(H) C � ψ0 ◦ ψ(τ0)  ψ′(τ)

and since genvars(Γ, C,H, τ) = genvars(Γ, C,H, τ) by Lemma 7.2, this case holds.

Case Const follows trivially, so the result follows. �

7.3 Closure, consistency, and hextract ion

Now we prove correctness of the closure, consistency, and effect extraction tech-

niques. Since our closure and consistency algorithms are standard with respect to

type constraints, we mainly appeal to existing results, especially those in Palsberg &

O’Keefe (1995), to establish correctness in that regard. The focus of our proof

development is on satisfaction of singleton and effect constraints, and extraction of

effect terms from constraints via hextract . In fact, correctness of hextract provides a

constructive proof of the satisfiability of closed, consistent effect constraints.

We begin by observing that closure does not change the meaning of constraints,

i.e. a constraint is logically equivalent to its closure:

Lemma 7.11

C = close(C).

One benefit of closure is that it provides a way to split constraints into distinct

type, effect, and singleton components, the solutions for which can be composed

to solve the entire constraint. We formalize this with the following definition and

Lemma, where f |S denotes the restriction of the domain of a function f to S as

usual.

Definition 7.8

For each kind k, the k component of a constraint C is a constraint D such that

set(D) = {τ1  τ2 | τ1  τ2 ∈ C and τ1, τ2 : k}

Given that D is the k component of C , the constraint C has a k solution iff there

exists ρ such that ρ � D.

Lemma 7.12

Suppose C is closed, and ρ1, ρ2, and ρ3 are Type, Sing, and Eff solutions of C ,

respectively. Then

(ρ1 |VType
) ◦ (ρ2 |VSing

) ◦ (ρ3 |VEff
) � C

The following Lemma establishes the crucial property that effect and singleton

constraints form a system of lower bounds on variables. This property implies that

any consistent closure has a singleton and effect solution. It also suggests a technique
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for deriving term representations of singletons and effects, by joining lower bounds

of variables. This is not just convenient, but demonstrates that while effect constraint

solution is not decidable in general, it is so for the restricted form generated by

inference.

Lemma 7.13

Suppose that �, H �β̄ e : τ/C is derivable and τ1  τ2 ∈ close(C). If τ2 : Sing then

τ2 is a singleton variable α, and if τ2 : Eff then τ2 is an effect variable h.

Now, we show that the singleton component of a closed, consistent constraint has

a solution that can be obtained via the boundsC function.

Definition 7.9

Suppose that f is a partial mapping from type variables to types. Write f � ρ iff

there exists ρ′ such that ρ = ρ′ ◦ f.

Lemma 7.14

Suppose �, H �β̄ e : τ/C is derivable and close(C) is consistent. Then there exists a

Sing solution ρ of close(C) such that boundsclose(C) |VSing
� ρ.

Next, we show that the effect component of a closed, consistent constraint has a

solution, that can be obtained via the hextract function. We show that this is the

case constructively, by demonstrating that hextract is defined on top-level effects,

and that hextract is a solution of given constraints. The first step is to show that

top-level effects have concrete lower bounds so that their term form is closed.

Definition 7.10

Let C be closed and consistent. Then τ1 is a component of τ2 in C iff τ1 is a subterm

of τ2, or there exists a subterm τ′
1 of τ1 such that τ′

2  τ′
1 ∈ C and τ2 is a component

of τ′
2 in C .

Definition 7.11

Let C be closed and consistent. Then the abstract components of τ in C , denoted

abstract(τ, C) are the variable components of τ that have no lower bound in C .

More precisely:

abstract(τ, C) = {β | β is a component of τ in C ∧ ¬∃τ′.τ′  β ∈ C}

On the basis of these definitions, we can now show that top-level effects have

concrete lower bounds in inferred constraints, meaning that hextract is defined

and closed on top-level effects. The result follows by a tedious and unilluminating

induction on derivations. Essentially, the property holds because any effect variable

occurring in a top-level effect is the upper bound of a function effect by definition of

inference, and since top-level expressions are closed, the function must be a closed

lambda abstraction, which have defined, concrete effects.

Lemma 7.15 (Top-level effects are concrete)

Suppose �, H �β̄ e : τ/C is derivable and close(C) is consistent. Then H has no

abstract components in close(C).
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HX f C ε = ε

HX f C ev (α) = ev (boundsC α)

HX f C h = f C (boundsC h) if boundsC h defined

HX f C h = f C h if boundsC h not defined

HX f C H1;H2 = (f C H1); (f C H2)

HX f C H1|H2 = (f C H1)|(f C H2)

Fig. 15. The HX combinator.

Lemma 7.16

Suppose �, H �β̄ e : τ/C is derivable and close(C) is consistent. Then (hextract

close(C) H) is defined and closed.

Having established that hextract is defined on top-level effects, we now show that

hextract is a solution of given constraints. The recursive definition of hextract makes

a direct proof of this property difficult. Instead, we demonstrate the property via a

combinator fixpoint construction. We define a nonrecursive combinator HX in Fig-

ure 15, that characterizes the solution of closed, consistent effect constraints, and then

show that hextract is a fixpoint of this combinator. The first step is to show that HX

correctly characterizes solutions of closed, consistent effect constraints, as follows.

Lemma 7.17

Suppose �, H �β̄ e : τ/C is derivable and close(C) is consistent. If f is a fixpoint of

HX , then there exists an Eff solution ρ of close(C) such that (f close(C)) � ρ.

Proof

Let D be the Eff component of close(C), and suppose that f is a fixpoint of HX .

Let ρ′ be a Sing solution of close(C), which must exist by Lemma 7.14, and let

g = ρ′ ◦ (f close(C))

To proceed, we number the clauses of HX from top to bottom, starting with 1. Since

we assume that f is a fixpoint of HX , clauses 1–2 and 5–6 establish the following

equalities:

g(ε) = ε g(ev (α)) = ρ′(ev (boundsC α)) g(H1;H2) = g(H1); g(H2)

g(H1|H2) = g(H1)|g(H1)

Thus, g is an interpretation, as defined in Figure 6. Furthermore, clause 3 establishes

that for all H  h ∈ D, it is the case that g(H) � g(h), meaning that g satisfies every

constraint in D by Lemma 7.13, and is therefore a solution of D. Letting ρ = g, the

result follows by Definition 7.9. �

It would now be possible to show that any closed, consistent effect constraint has

a solution, by showing that HX is monotonic over a partial ordering of solutions,

since classic results in Tarski (1955) would then imply that HX has a fixpoint.

Instead, we prove that hextract is a fixpoint of HX in Lemma 7.17, establishing
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both correctness of hextract and existence of a solution of closed consistent effect

constraints. We first prove the essential auxiliary Lemma for proving the tricky µ

case of Lemma 7.17, and then Lemma 7.17 itself.

Lemma 7.18

Let h 	∈ hs and H ′ = hextractC(h, hs). Then

hextractC(H, hs ∪ {h})[H ′/h] = hextractC (H, hs)

Proof

The proof proceeds by induction on the call tree of hextractC and case analysis on

H . In case H = ε or H = ev (α) the result is immediate. In case H = H1|H2 or H1;H2

the result follows in a straightforward manner via the induction hypothesis. The

more interesting case is that in which H is an effect variable h′. Here we consider

subcases h′ 	= h and h′ = h, where the former breaks down into subcases with h′ ∈ hs

on the one hand and h′ 	∈ hs on the other. If h′ 	= h and h′ ∈ hs, then by definition

of hextractC:

hextractC (h′, hs ∪ {h})[H ′/h] = hextractC(h′, hs) = h′

so the result follows.

On the other hand, if h′ 	= h and h′ 	∈ hs, then by definition of hextractC

hextractC (h′, hs ∪ {h})[H ′/h] = (µh′.hextractC((boundsC h
′), hs ∪ {h, h′}))[H ′/h]

and

hextractC(h′, hs) = µh′.hextractC((boundsC h
′), hs ∪ {h′})

Let H ′′ = hextractC((boundsC h
′), hs ∪ {h, h′}). Since h′ 	= h by assumption:

(µh′.H ′′)[H ′/h] = µh′.(H ′′[H ′/h])

and by the induction hypothesis:

hextractC ((boundsC h
′), hs ∪ {h′}) = H ′′[H ′/h]

Hence

hextractC(h′, hs ∪ {h})[H ′/h] = hextractC (h′, hs) = µh′.(H ′′[H ′/h])

so the result follows.

Now, consider the subcase h′ = h. Then by the definition of hextractC :

hextractC (h, hs ∪ {h}) = h

and clearly

hextractC(h, hs ∪ {h})[H ′/h] = H ′

and hextractC(H, hs) = H ′ in this case, so the result follows. �

Lemma 7.19

hextract is a fixpoint of HX .

Proof

We begin by noting the obvious point hextract C H = hextractC (H,�). To prove

the result, it suffices to show that for all C and for all H in the domain of HX f C
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we have

HX hextract C H = hextract C H

The proof proceeds by case analysis on H .

Case H = ε. By definition of HX and hextract:

HX hextract C ε = hextract C ε = ε

so this case holds.

Case H = ev (α). By definition of HX and hextract:

HX hextract C ev (α) = hextract C ev (α) = ev (boundsC α)

so this case holds.

Case H = (H1|H2). By definition of HX:

HX hextract C (H1|H2) = (hextract C H1)|(hextract C H2)

and by definition of hextract:

hextract C (H1|H2, C) = hextract(H1, C)|hextract (H2, C)

so this case holds. Case H = H1;H2 follows similarly.

Case H = h. By definition of HX:

HX hextract C h = hextract C (boundsC h)

and by definition of hextract:

hextract C h = hextractC (h,�) = µh.hextractC((boundsC h), {h})

Now, let H ′ = µh.hextractC(boundsC (h), {h}). By Lemma 7.18 we have

hextractC ((boundsC h),�) = (hextractC(boundsC (h), {h}))[H ′/h]

and by properties of trace effect equivalence noted in Lemma 3.1:

ρ((hextractC ((boundsC h), {h}))[H ′/h]) = ρ(H ′)

so the result follows in this case, which was the last to be proven. �

Having shown that hextract is a fixpoint of HX , we can immediately demonstrate

that hextract implements a solution of given constraints when applied to top-level

effects.

Lemma 7.20 (Correctness of hextract)

Suppose �, H �β̄ e : τ/C is derivable and close(C) is consistent. Then C has an Eff

solution ρ such that (hextract close(C)) � ρ.

Proof

By Lemma 7.19, hextract is a fixpoint of HX . The result follows immediately by

Lemma 7.17. �

Composition of the above Lemmas establishing solvability of singleton and effect

constraints, with standard results for closure and consistency of type constraints,

allows us to obtain that consistency of closure is equivalent to satisfiability.
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Lemma 7.21 (Correctness of Closure)

If �, H �β̄ e : τ/C is derivable, then C has a solution iff close(C) is consistent.

Proof

That solvability of C entails consistency of C follows via reductio ad absurdum, since

if we assume on the contrary that close(C) is inconsistent, this implies that close(C)

contains a clashing constraint and thus the contradiction by Lemma 6.2. The other

direction proceeds as follows. By Lemma 7.14, there exists a Sing solution of close(C).

By Lemma 7.20, there exists an Eff solution of close(C). Given this, we can show

that close(C) has a Type solution by appeal to standard results, particularly those in

Palsberg and O’Keefe (1995), since our closure and consistency techniques for Type

constraints are standard. The result follows by Lemma 7.12 and Lemma 7.11. �

Finally, we can tie all the results together to state high-level properties of the

system. Since we have demonstrated completeness of inference in Lemma 7.10

and shown that consistent closure is equivalent to satisfiability in Lemma 7.21, we

immediately obtain a completeness result for inference.

Corollary 7.1 (Implementation Completeness)

If a closed expression e is typable in the system of Figure 9, then a judgement

�, H �β̄ e : τ/C is derivable and close(C) is consistent.

However, since we have only shown that hextract is a fixpoint of HX , not the least

fixpoint, the best we can demonstrate for the algorithm is soundness. We informally

conjecture that hextract implements a least solution of the given constraint, since

it adds no extraneous constraints in the construction, but in any case soundness is

sufficient to obtain a type safety result for the implementation, as follows.

Lemma 7.22 (Implementation Soundness)

Suppose �, H �β̄ e : τ/C is derivable and close(C) is consistent. Then �, H, C � e : τ

is satisfiable, and there exists a solution ρ of C such that (hextract close(C) H) =

ρ(H).

Proof

If �, H �β̄ e : τ/C is derivable then so is �, H, C � e : τ by Lemma 7.3. If close(C)

is consistent then C has a solution ρ′ by Lemma 7.21, and by Lemma 7.20 C has

an Eff solution ρ′′ such that (hextract close(C)) � ρ′′. Let ρ = ρ′ ◦ ρ′′ |VEff
. Since

(hextract close(C) H) is defined and closed by Lemma 7.16, therefore,

ρ′′(H) = (hextract close(C) H) = ρ(H)

and ρ is a solution of C by Lemma 7.12. �

8 The stack-based variation

In this section we define a stack-based variation on the framework of the previous

sections, allowing properties of the run-time stack at a program point to be verified

at compile-time. Instead of keeping track of all events, only events for functions

on the current call stack are maintained, in keeping with a general stack-based



Types and trace effects of higher order programs 225

S ::= nil | S ::η history stacks

S, (λzx.e)v � S ::ε, ·e[v/x][λzx.e/z]· (β)

S ::η, ev (c) � S ::η; ev (c), () (event)

S ::η, evφ(c) � S ::η; evφ(c), () (check )

if Π(φ(c), (Ŝ ::η)evφ(c))

S ::η, ·v· � S, v (pop)

Fig. 16. Semantics of λStrace (selected rules).

security model (as in, e.g., Jensen et al. 1999). Assertions φ in this framework are

run-time assertions about the active event sequence, not all events. While the stack-

based model is somewhat distinct from the trace-based model, we show that this

variation requires only a minor “postprocessing” of inferred trace effects for a sound

analysis. There are results showing how it is possible to directly model-check stack

properties of a Push-Down Automata (PDA) computation Esparza et al. (2001); our

approach based on postprocessing trace effects represents an alternative method,

which may also prove useful for modelling features such as exceptions: the raising

of an exception implies any subsequent effect is discarded.

We note that our system captures a more fine-grained stack-based model than

has been previously proposed; in particular, the use of stacks of traces allows the

ordering of events within individual stack frames to be taken into account, along

with the ordering of frames themselves.

8.1 Syntax and semantics

The values, expressions, and evaluation contexts of λStrace are exactly those of λtrace,

extended with an expression form ·e· and evaluation context form ·E· for delimiting

the scope of function activations. We impose the requirement that in any function

λzx.e, there exist no subexpressions ·e′· of e. The operational semantics of λStrace is

a relation on configurations S, e, where S ranges over stacks of traces, defined in

Figure 16. The active security context for run-time checks is obtained from the trace

stack in configurations, by appending traces in the order they appear in the stack.

To formalize this, we define the notation �S� inductively as follows:

�nil� = ε �S ::η� = �S�; η

Abusing notation, we write Ŝ as syntactic sugar for ˆ�S�.
Selected rules for the reduction relations � and → on configurations are then

specified in Figure 16 (those not specified are obtained by replacing metavariables η

with S in reductions for other expression forms in Figure 2). The trace interpretation

function Π is defined as for λtrace.
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stackify(ε) = ε

stackify(ε;H) = stackify(H)

stackify(ev (c);H) = ev (c); stackify(H)

stackify(h;H) = h|stackify(H)

stackify((µh.H1);H2) = (µh.stackify(H1)) | stackify(H2)

stackify((H1|H2);H) = stackify(H1;H) | stackify(H2;H)

stackify((H1;H2);H3) = stackify(H1; (H2;H3))

stackify(H) = stackify(H; ε)

Fig. 17. The stackify algorithm.

8.2 Stackified trace effects

Although λStrace uses stack rather than trace contexts at run-time, we are able to use

the type and verification framework developed previously, assigning types to λStrace

expressions in the same manner as λtrace expressions. The only additional requirement

will be to process trace effects to stackify them, yielding an approximation of the

stack contexts that will evolve at run-time. The trick is to use µ-delimited scope in

trace types, since this corresponds to function scope in inferred types as discussed

in Section 7, and function activations and deactivations induce pushes and pops at

run-time. The stackify algorithm is defined inductively in Figure 17. This algorithm

works over effects that are sequences; for effects that are not sequences, the last

clause massages into sequence form.

The last three clauses use trace effect equalities characterized in Section 3 to

“massage” trace effects into appropriate form. Observe that the range of stackify

consists of trace effects that are all tail-recursive; stacks are therefore finite-state

transition systems and more efficient model-checking algorithms are possible Esparza

et al. (2001).

Example 8.1

With a, b, c representing arbitrary events, and results of stackification simplified via

effect equivalences to increase readability:

stackify(a; b) = a; b stackify(a; (µh.b)) = a; b stackify((µh.a); b) = a|b

stackify(µh.a|(b; h)) = (µh.a|(b; h))|ε stackify(µh.a|(h; b)) = (µh.a|b|h)|ε

In the third example, since µh.a precedes b, but µh.a denotes the effect of a function

call, stackification specifies that no events precede b since a will be popped before

encountering b. In the last example, since b is preceded by h, which represents

recursive µ-scope and hence a recursive call, any events preceding b will be popped

before b is encountered, hence stackification specifies that no events precede b. The

εs in the last two examples are artifacts of the transformation, that could be cleaned

up with some minor alterations to stackify .
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8.3 Properties

In this section we prove a trace approximation result for λStrace (Theorem 8.1), showing

how stackified effects generated by λtrace type inference approximate program trace

behavior in the λStrace model. The result is obtained by simulation of λStrace in λtrace

(Lemma 8.8), and reuse of trace approximation (Corollary 6.3) for λtrace. Because

we are concerned only with showing that stackification is correct, by proving that it

yields an approximation of program event traces, we omit consideration of checks,

since simulation of checks would be a needless complication.

As the basis of the simulation, we define an embedding � e � of λStrace expressions

in λtrace expressions; expressions are essentially unchanged, except that distinguished

events push and pop are inserted in programs to mark function invocation and

return. Later, we will define a trace transformation that deduces the stack context

from the push and pop markers.

Definition 8.1

Let cdummy be a distinguished singleton constant, and let

push � ev push(cdummy) pop � ev pop(cdummy)

Then the λStrace to λtrace encoding of expressions, denoted � e �, is defined inductively

as follows:

� λzx.e � = λzx.push; (λx.pop; x)� e �

� ·e· � = (λx.pop; x)� e �

� c � = c

� ev (e) � = ev (� e �)

� x � = x

� e1e2 � = � e1 �� e2 �

� if e1 then e2 else e3 � = if � e1 � then � e2 � else � e3 �

� let x = v in e � = let � x � = � v � in � e �

Given this encoding, it is clear that traces of images in the encoding will be

of a particular form ς– every pop event has a matching push, with possible

nestings, corresponding to the activation control flow structure. We specify this

form grammatically:

s ::= push; pop | push; s; pop | ε | ev (c) | s; s ev (c) 	∈ {push, pop}
ς ::= s | push | ς; ς

The point of the encoding is that a stack context can faithfully be obtained from

traces ς. The proof of simulation will also require that simulation of stack contexts

in traces ς include a reflection of stack structure—every stack frame connector ::

should be simulated by an unmatched push. To this end, we define the following.



228 C. Skalka et al.

Definition 8.2

The stack context simulation function sctx is defined as

sctx(ε) = ε

sctx(push) = ε

sctx(ev (c)) = ev (c)

sctx(push; pop) = ε

sctx(push; ς; pop) = ε

sctx(ς1; ς2) = sctx(ς1) sctx(ς2)

A trace ς simulates a stack S, written S ∼ ς, iff the relation can be derived given the

following rules:

sctx(ς) = ε

nil ∼ ς

S ∼ ς sctx(s) = η̂

S ::η ∼ ς; push; s

Since stack traces ς are special forms of trace effects, interpretations and equivalence

of them an defined as for trace effects in general. Thus, we can characterize sctx

with the following Lemmas.

Lemma 8.1

If S ∼ ς then Ŝ = sctx(ς).

Lemma 8.2

If ς = ς′ then sctx(ς) = sctx(ς′).

The following auxiliary lemma will allow us to “pop” the simulated stack by

postpending a pop event, which is essential to simulating λStrace using λtrace machinery.

Lemma 8.3

If S ::η ∼ ς, then S ∼ ς; pop.

Proof

By definition of ∼, we have that ς = (ς′; push; s) where sctx(s) = η̂ and S ∼ ς′. The

proof then proceeds by case analysis on S.

Case S = nil. Since S ∼ ς′, therefore sctx(ς′) = ε by definition of ∼. But also

sctx(push; s; pop) = ε by definition of sctx, and also by definition of sctx we have

sctx(ς; pop) = sctx(ς′) sctx(push; s; pop), i.e. sctx(ς; pop) = ε, so S ∼ ς; pop in this

case by definition of ∼.

Case S = S′ :: η. Since S ∼ ς′, therefore ς′ = ς′′; push; s′ where S′ ∼ ς′′

and sctx(s′) = η̂ by definition of ∼. But since sctx(push; s; pop) = ε by defin-

ition of sctx, and also sctx(s′; push; s; pop) = sctx(s′) sctx(push; s; pop), therefore

sctx(s′; push; s; pop) = sctx(s′) = η̂, so S ∼ ς; pop in this case by definition

of ∼. �

After the following auxiliary lemma, we show that � reduction is simulated in

the encoding � · �. Note that the proof allows one step of λStrace reduction to be

simulated by multiple steps in λtrace reduction. The essential feature of the result is

the simulation of stacks by traces ς.
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Lemma 8.4

� e �[� v �/x] = � e[v/x] �.

Lemma 8.5

Given ςε = ς such that S ∼ ςε. If S, e � S′, e′ then ς, � e � →� ς′, � e′ � where there

exists ς′
ε = ς′ such that S′ ∼ ς′

ε.

Proof

By case analysis on the rule form of the reduction S, e� S′, e′.

Case β. In this case e = (λzx.e0)v, e
′ = ·e0[v/x][e/z]·, and S′ = S :: ε. By

Definition 8.1 we have

� e � = � (λzx.e0) �� v � � λzx.e0 � = λzx.push; (λx.pop; x)� e0 �

and since � v � is a value by Definition 8.1, therefore by β:

ς, (λzx.push; (λx.pop; x)� e0 �)� v �

�

ς, (push; (λx.pop; x)� e0 �)[� v �/x][� λzx.e0 �/z]

But by definition of substitution and Lemma 8.4:

(push; (λx.pop; x)� e0 �)[� v �/x][� λzx.e0 �/z]

=

push; (λx.pop; x)� e0[v/x][λzx.e0/z] �

and by context , event , and seq:

ς, push; (λx.pop; x)� e0[v/x][λzx.e0/z] �

→�

ς; push, (λx.pop; x)� e0[v/x][λzx.e0/z] �

But since S ∼ ςε by assumption, therefore (S :: ε) ∼ (ςε; push; ε) by definition of ∼,

and by Definition 8.1:

� ·e0[v/x][λzx.e0/z]· � = (λx.pop; x)� e0[v/x][λzx.e0/z] �

so this case holds, since ςε; push; ε = ς; push.

Case pop. In this case e = ·v·, S = S′ ::η, and e′ = v. By Definition 8.1:

� ·v· � = (λx.pop; x)� v �

and since � v � is a value by Definition 8.1, by β:

ς, (λx.pop; x)� v �� ς, pop; � v �

and by event , seq , and context:

ς, pop; � v � →� ς; pop, � v �

Furthermore, by assumption S′ :: η ∼ ςε, therefore S′ ∼ ςε; pop by Lemma 8.3, so

this case holds since ςε; pop = ς; pop.

The rest of the proof follows in a straightforward manner by homomorphism of

� e � in the remaining cases. �
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To extend the simulation result to → reduction, the encoding � · � needs to be

extended to evaluation contexts.

Definition 8.3

The encoding � · � is extended to evaluation contexts as follows, where a homo-

morphic extension to other context forms is elided:

� [ ] � = [ ]

� ·E· � = (λx.pop; x)�E �

�Ee � = �E �� e �

� vE � = � v ��E �

� ifE then e1 else e2 � = if �E � then � e1 � else � e2 �

...

After the following auxiliary lemma, we prove a simulation result for → reduction,

which follows easily on the basis of Lemma 8.5. This is immediately followed by the

main simulation result, for →� reduction.

Lemma 8.6

�E[e] � = �E �[� e �].

Lemma 8.7

Given ςε = ς such that S ∼ ςε. If S, E[e] → S′, E[e′] then ς, �E[e′] � →� ς′, �E[e′] �

where there exists ς′
ε = ς′ such that S′ ∼ ς′

ε.

Proof

By context it is the case that S, e � S′, e′. Therefore ς, � e � →� ς′, � e′ � where

there exists ς′
ε = ς′ such that S′ ∼ ς′

ε, by Lemma 8.5. This means ς, �E �[� e �] →�

ς′, �E �[� e′ �] by context , and since �E �[� e �] = �E[e] � and �E �[� e′ �] = �E[e′] � by

Lemma 8.6, the result follows. �

Lemma 8.8 (λStrace Simulation)

If nil, e →� S, e′, then ε, � e � →� ς, � e′ � with Ŝ = sctx(ς).

Proof

Since nil ∼ ε by definition of ∼, therefore by Lemma 8.7 and induction on the

length of the reduction nil, e →� S, e′, we can assert ε, � e � →� ς, � e′ � where there

exists ςε = ς such that S ∼ ςε. By Lemma 8.1 it is the case that sctx(ςε) = Ŝ, so by

Lemma 8.2 the result follows. �

Having established the dynamic simulation, we now turn to stackification of trace

effects. Our strategy is to show that the sctx transformation of traces ς is contained

in the interpretation of stackified effect approximations of ς. The simulation result

just proved will then allow us to make the bridge to λStrace stack contexts. First, it

will ease matters to define an alternate transformation of traces ς, one that “lines

up” better with stackification. We do so as follows; note the structural similarity

with stackification:
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Definition 8.4

Let ς trace sctxs transformation be defined inductively as follows:

sctxs(ε) = ε

sctxs(ε; ς) = sctxs(ς)

sctxs(push; ς) = sctxs(ς)

sctxs(ev (c); ς) = ev (c); sctxs(ς)

sctxs((push; ς; pop); ς′) = sctxs(ς)|sctxs(ς′)

sctxs((push; pop); ς) = sctxs(ς)

sctxs((ς1; ς2); ς3) = sctxs(ς1; (ς2; ς3))

sctxs(ς) = sctxs(ς; ε)

We immediately observe that sctx transformations are contained in trace effect

interpretations of sctxs transformations:

Lemma 8.9

sctx(ς) ∈ �sctxs(ς)�.

Now, the crux of our technique will be to use push and pop events to line up traces

ς with effects H , and inductively show that the sctxs transformation is approximated

by stackification. However, we want stackification to be more “aware” of push

and pop events, and in particular to remove them in stackification, in keeping

with the sctxs transformation, so we define an alternate function stackify ′ with

these modifications. The connection with stackify is easily made later, since the

modifications are minor; this is because µ-scope in effect always corresponds to

function scope, which is always delimited by push and pop events in images of � · �
(as we prove below).

Definition 8.5

Let stackify ′ be defined equivalently to stackify , except for the µ case, defined as

follows:

stackify ′((µh.push;H1; pop);H2) = (µh.stackify ′(H1)) | stackify ′(H2)

The following definition formalizes this special form of effects, inferred for images

of � · �, as the stackifiable property of effects.

Definition 8.6

H is stackifiable iff one of the following conditions holds inductively:

1. H ≡ h

2. H ≡ ev (c) and ev (c) 	= push, pop

3. H ≡ H1|H2 and both H1 and H2 are stackifiable

4. H ≡ H1;H2 and both H1 and H2 are stackifiable

5. H ≡ µh.push;H; pop and H is stackifiable

Now, following an important auxiliary lemma necessary to deal with µ-bound

effects, we show that if H approximates a trace ς, then stackify ′(H) approximates

sctxs(ς).
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Lemma 8.10

Given stackifiable H . Then

stackify ′(H[µh.push;H; pop/h]) = stackify ′(H)[µh.stackify ′(H)/h]

Proof

Straightforward by induction on h. �

Lemma 8.11

For all H , define

�H�pre = {θ | θ ∈ �H� and θ 	= (θ′ ↓)}
Then, stackifiable H and ς̂ ∈ �H� implies �sctxs(ς)�pre ⊆ �stackify ′(H)�.

Proof

(Sketch) By case analysis on the match forms of ς in the definition clauses of sctxs and

induction on the recursive call tree of sctxs(ς). By the definitions of sctxs and stackify ′,

and correspondence of the match forms in the defining clauses, it is easy (and tedious)

to “line up” the different cases of ς and H , and demonstrate the result by induction.

The most interesting case is ς = push; ς′; pop; ς′′. It follows in this case that H must

be of the form H = (µh.push;H ′; pop);H ′′, where push; ς′; pop ∈ �µh.push;H ′; pop�

and ς̂′′ ∈ �H ′′�, since the push and pop events occur nowhere but at the limits of

µ-scope in stackifiable effects, hence ς̂′ ∈ �H ′[µh.push;H ′; pop/h]�. Therefore, by the

induction hypothesis:

�sctxs(ς′)�pre ⊆ stackify ′(H ′[µh.push;H ′; pop/h])

�sctxs(ς′′)�pre ⊆ stackify ′(H ′′)

Since

sctxs(push; ς′; pop; ς′′) = sctxs(ς′)|sctxs(ς′′)

stackify ′((µh.push;H ′; pop);H ′′) = µh.stackify ′(H ′)|stackify ′(H ′′)

It remains to be shown that �sctxs(ς′)�pre ⊆ �µh.stackify ′(H ′)�. Observing the equality

µh.stackify ′(H ′) = stackify(H ′)[µh.stackify ′(H ′)/h] implied by Lemma 3.1, we can

assert µh.stackify ′(H ′) = stackify ′(H ′[µh.push;H ′; pop/h]) by Lemma 8.10. The result

follows. �

Now, we show that type inference generates stackifiable effects. The typing rules

actually do not “cleanly” place push and pop events at the limits of µ-scope, but

rather there will be intervening cruft such as εs and dummy µ-bindings, due to

the nature of the encoding of functions. Therefore, a simple transformation f is

necessary to obtain an equivalent stackifiable form of effects.

Lemma 8.12

Given satisfiable �, H �β̄ e : τ/C for closed e. Then �, H ′ �β̄′ � e � : τ/C ′ is satisfiable,

where there exists a function f such that each of the following conditions hold:

1. f(hextract C H ′) is stackifiable

2. f(hextract C H ′) = (hextract C H ′)

3. stackify(hextract C H) = stackify ′(f(hextract C ′ H ′))
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Proof

(Sketch) Observe that any effect is stackifiable if the only occurrence of push and

pop is at the limits of µ-bound subeffects, and that all µ-bound subeffects have such

delimitation. Also, the only place where µ-bound effects occur in (hextract C H)

will be in hextract ion of effect variable components of H in C (in the sense of

Definition 7.10). Now, if e is closed, and H has a variable component h, then

it is demonstrable by definition of type inference and Lemma 7.15 that h must

have the effect Hλ of one or more concrete functions λzx.e as lower bounds.

Furthermore, since � λzx.e � = λzx.push; (λx.pop; x)� e �, the lower bounds induced by

the transformation � λzx.e � will be equivalent to push;Hλ; pop (this is approximate;

the described effect transformation is also carried recursively through Hλ, as the

expression transformation is carried recursively through the function body). In

short, if (hextract C H) contains a subeffect µh.Hλ, then f(hextract (H ′, C ′)) will have

the same shape as (hextract C H), and will contain µh.push;Hλ; pop in the position

corresponding to µh.Hλ in (hextract C H). Otherwise, observe that f(hextract (H ′, C ′))

is homomorphic to (hextract C H), establishing (2). Since (hextract C H) contains

no occurrences of push or pop, therefore f(hextract (H ′, C ′)) contains none aside

from those at the limits of µ-scope, and is therefore stackifiable, establishing (1),

while (3) follows by definition of stackify and stackify ′. �

Finally, we can demonstrate correctness of stackify , by demonstrating a trace

approximation result for λStrace via on the strength of the preceding results and trace

approximation in λtrace.

Theorem 8.1 (Trace Approximation stackify)

If �, H �β̄ e : τ/C is satisfiable and also nil, e →� S, e′, then Ŝ ∈ �stackify

(hextract C H)�.

Proof

First note that e must be top-level; otherwise, it would not be typable as in

the premise. Thus by Lemma 8.8, we have ε, � e � →� ς, � e′ � with sctx(ς) = Ŝ.

By Lemma 8.12 there exists a satisfiable judgement �, H ′ �β̄′ � e � : τ/C ′, with

ς̂ ∈ �hextract (H ′, C ′)� by Corollary 6.3. Therefore, by Lemma 8.9 and Lemma 8.11

and the equality sctx(ς) = Ŝ, we may assert Ŝ ∈ �stackify ′(hextract(H ′, C ′))�, so the

result follows by Lemma 8.12. �

9 Verification of trace effects

We have described the syntax and semantics of λtrace, which include a trace

component in configurations. We have also described two type and effect systems

that conservatively approximate run-time traces, and shown that type and effects

can be automatically inferred. However, we have been abstract so far with respect

to the definition of checks and effect verification, basing safety of computation and

validity of typing on a yet-to-be-defined notion of check and effect validity. To fill

in these details, we define in this Section:

• A logic for run-time checks, including a syntax for expressing checks as

predicates in the logic, along with a notion of validity for these checks that

can be automatically verified in the run-time system.
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• A means of verifying validity of trace effects, as defined in Definition 3.4, where

check events that are predicted by the trace effect analysis are automatically

shown to either succeed or fail in the relevant context.

The latter point is necessary to address because, even though validity of trace effects

has been defined, the notion is logical but not algorithmic; in particular, �H� may

be an infinite set. We accomplish automated verification using a temporal logic and

model-checking techniques, allowing us to reuse existing algorithms and results for

trace effect verification. We use a linear-time logic because the run-time validity of

a predicate is based on one linear trace η only.

9.1 Trace effects are BPAs

We interpret trace effects as labelled transition systems (Definition 3.3), with a form

that is appropriate for our application. This form is close to that of Basic Process

Algebra (BPA) terms; in fact, the latter can faithfully represent trace types. Such a

representation allows us to apply known model-checking algorithms to our analysis,

since several exist for verifying properties of BPAs Steffen & Burkart (1992).

Definition 9.1

BPA expressions are defined as follows:

p ::= a | ε | p · p | p+ p | X BPA expressions

Intuitively, each a denotes a transition action, ε is the empty process, · denotes

sequencing, and + denotes nondeterministic choice. Each X in a BPA process is

defined via a set of declarations ∆ of the form X � p. We let P range over sets

of BPA expressions. The definition of BPA processes is completed via the following

operational semantics, where ε · p is considered equivalent to p:

p
a−→ p′

p+ q
a−→ p′

q
a−→ q′

p+ q
a−→ q′

p
a−→ p′

p · q a−→ p′ · q
p

a−→ p′ X � p ∈ ∆

X
a−→ p′ a

a−→ ε

Now, we define a straightforward transformation from trace effects to BPA

processes. We define actions a in the BPA encoding to be events ev (c). Note

that since BPA declarations may include only guarded expressions, the translation

is meaningful just in case the transformation of a µ-bound trace effect yields a

guarded declaration; we therefore assume a trivial pre-processing of traces to ensure

this property, that, e.g., could insert ε before every trace effect variable h:

Definition 9.2

The translation from closed, ε-free trace effects H to BPA expression, declaration

pairs p,∆ is inductively defined as follows. The translation is parameterized by an en-

vironment Ψ that maps trace effect variables h to their BPA variable representations
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X in the encoding:

BPA(ε,Ψ) = ε,�

BPA(ev (c),Ψ) = ev (c),�

BPA(H1;H2,Ψ) = let p1,∆1 = BPA(H1,Ψ) in

let p2,∆2 = BPA(H2,Ψ) in

p1 · p2,∆1 ∪ ∆2

BPA(H1|H2,Ψ) = let p1,∆1 = BPA(H1,Ψ) in

let p2,∆2 = BPA(H2,Ψ) in

p1 + p2,∆1 ∪ ∆2

BPA(µh.H,Ψ) = let p,∆ = BPA(H, (Ψ; h : X)) in

X,∆ ∪ {X � p} X fresh

BPA(h,Ψ) = Ψ(h),�

For brevity, we write BPA(H) for BPA(H,�)

The correctness of the translation falls out as a simple corollary:

Corollary 9.1

�H� = �BPA(H)�.

9.2 Verified checks in the linear µ-calculus

While a variety of model-checking logics are available, we use the µ-calculus Kozen

(1983) because it is powerful and is syntactically close to trace effects H . Furthermore,

efficient techniques for the automated verification of µ-calculus formulas on BPA

processes have been developed (Esparza 1994; Burkart et al. 2001). We use the linear

variant of the µ-calculus Esparza (1994) because at run-time only one linear trace

of events is known, and so trace effects H and run-time traces η can be compared

only in a linear-time logic.

Definition 9.3

The syntax of the linear µ-calculus is

φ ::= x | true | false | (a)φ | µx.φ | νx.φ | ¬φ | φ ∨ φ | φ ∧ φ

Here, a ranges over arbitrary transition labels; in particular, we can let a range over

events ev (c). The semantics of the linear µ-calculus is defined in Figure 18. This

semantics is defined over potentially infinite traces θ∞ ∈ Θ∞ that, unlike sets of

traces θ, may not be prefix-closed. V denotes a mapping from µ-calculus variables

to sets of infinite traces, � denotes the empty mapping, and �φ� is shorthand for

�φ��. Several formulae are not given in this figure because they can be defined in

terms of the others:

φ1 ∨ φ2 ⇐⇒ ¬(¬φ1 ∧ ¬φ2) false ⇐⇒ ¬true µx.φ ⇐⇒ ¬(νx.¬φ)

Since our trace effect semantics is prefix-closed, we will explicitly prefix-close �φ�

so the two sets are compatible.



236 C. Skalka et al.

�true�V = Θ∞

�x�V = V (x)

�¬φ�V = Θ∞ − �φ�V
�φ1 ∧ φ2�V = �φ1�V ∩ �φ2�V

�(a)φ�V = {θ∞ ∈ Θ∞ | θ∞ = a; θ∞
1 and θ∞

1 ∈ �φ�V }
�νx.φ�V =

⋃
{W ⊆ Θ∞ | W ⊆ �φ�V [x �→W ]}

Fig. 18. Semantics of the linear-time µ-calculus.

Definition 9.4

The prefix closure Θ∞↓ of a set of infinite traces Θ∞ is:

{θ | θ is a prefix of some θ∞ ∈ Θ∞}
∪

{θ↓ | θ is finite and θ ∈ Θ∞}

Validity of a formulae with respect to a trace effect is defined via set containment

of the trace interpretations of each:

Definition 9.5

The formula φ is valid for H , written H � φ, iff �H� ⊆ �φ� ↓.

This relation is decidable by known model-checking results and the above equival-

ence of BPA processes and trace effects:

Lemma 9.1

The relation is H � φ is decidable.

Proof

Model-checking linear µ-calculus formulae over BPAs are shown decidable in

Esparza (1994). The key in this construction is that the valid traces of each

linear µ-calculus formula φ can be characterized by a finite automaton and Büchi

automaton that accept the finite and infinite traces of ¬φ, respectively. Histories can

be translated to equivalent BPAs by Corollary 9.1. �

9.3 Relating trace effect and trace runtime properties

We now instantiate the logic of trace checks in λtrace with linear µ-calculus formulae

φ. In Lemma 9.1, the relation H � φ was shown to be decidable, so this will make

a natural foundation for trace effect verification.

One important requirement of this logic is that formulae must have truth values

for a given trace effect H , and for a trace runtime η. The meaning of a formula φ

under a run-time trace η is taken by verifying η̂ ∈ �φ� ↓. We will define the trace

check interpretation function Π of Figure 2 in terms of this relation (Definition 9.6).

In Corollary 4.1, trace effects were shown to approximate dynamic histories—in

particular, if ε, e →� η, e′ and H,Γ � e : τ is derivable, then η̂ ∈ �H�. The key result

linking the static and dynamic histories is the following:

Lemma 9.2

If η̂ ∈ �H� and H � φ, then η̂ ∈ �φ� ↓.
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Proof

Immediate from Definitions 9.5 and 3.3. �

Corollary 4.1 ensures that by the above Lemma, verifying a trace effect entails

verifying all trace checks that may occur at run-time, meaning a combination of

type inference and automated verification yields a sound static analysis for λtrace, as

we state formally in Theorem 9.1.

9.4 Soundness of verification

We have almost completed the definition of our logical framework for trace checks

and trace effect verification. However, a few small points remain.

First, in λtrace, we are able to parameterize checks with constants with the syntax

φ(c). To implement this, we specify a distinguished variable χ that may occur free

in trace checks, which is assumed to be instantiated with a trace check parameter

during verification.

Second, checks φ should express expected trace patterns that may occur up to

the point of the check. This is the same as requiring that if an event evφ(c) occurs

in a trace (resp. is predicted statically), the subtrace η that immediately precedes it

(resp. any trace that may precede it as predicted by typing) must exhibit the pattern

specified by φ. However, there is an infinite regress lurking here: a property φ that

mentions an event evφ(c) suggests circularity in the syntax of φ. Thus, we introduce

a distinguished label Now, that in any formula φ represents the relevant checkpoint

of φ. This label is interpreted appropriately during verification.

The mechanics of χ and Now are fully specified in Definition 9.6 below.

We now stand ready to instantiate our logic and verification framework. In the

dynamic system, this is accomplished by defining the language of trace checks, and

by defining the implementation of Π, our previously abstract representation of trace

check verification:

Definition 9.6 (Definition of Π)

The framework of Section 2 is instantiated to let φ range over linear µ-calculus

formulae, where labels a in φ are events ev (c). Furthermore, we distinguish one

event Now to represent checkpoints within the check specification (hence avoiding

circularity), and letting χ ∈ Vs be a distinguished variable for parameterising

constants c in φ, we define Π as follows:

Π(φ(c), θ) ⇐⇒ θ ∈ �φ[c/χ][evφ(c)/Now]� ↓

Now, we specify what it means for a trace effect to be verified; intuitively, it

means that if a trace effect H predicts the occurrence of a check event evφ(c), then

H semantically entails φ instantiated with c. Formally:

Definition 9.7 (Trace Effect Verification)

A trace effect H is verifiable iff for all subterms evφ(c) of H it is the case that

H � φ[c/χ][evφ(c)/Now]

Here is a simple example that demonstrates the system in action:
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Example 9.1

Assume we want to define a policy whereby if a particular check φ(c) is encountered

at run-time, the only allowable previous events are ev 1(c) or ev 2(c), and ev 2(c) must

be the most recent event prior to the check. For brevity, let

(ev 1|2(χ))φ � (ev 1(χ))φ ∨ (ev 2(χ))φ

(ev 1|2(χ)∗)φ � µx.(ev 1|2(χ))x ∨ φ

The above policy can then be expressed in our scheme with the following µ-calculus

formula φ:

φ � (ev 1|2(χ)∗)(ev 2(χ))(Now)true

Now, assuming �, ε � e′ : bool, let

e � if e′ then ev 1(c); ev 2(c) else ev 2(c)

Thus, depending on the valuation of e′, either:

ε, e;φ(c) →� ev 1(c); ev 2(c), φ(c)

or

ε, e;φ(c) →� ev 2(c), φ(c)

and we see that the check in the program (e;φ(c)) will always succeed at run-time,

since these relations hold:

ev 2(c)evφ(c) ∈ �φ[c/χ][evφ(c)/Now]� ↓
ev 1(c)ev 2(c)evφ(c) ∈ �φ[c/χ][evφ(c)/Now]� ↓

We also have that the following judgement is derivable:

�, (ev 2(c)|ev 1(c); ev 2(c)); evφ(c) � e;φ(c) : unit

and this entailment holds:

(ev 2(c)|(ev 1(c); ev 2(c))); evφ(c) � φ[c/χ][evφ(c)/Now]

Therefore, the judgement is valid, predicting the run-time safety of the program

(e;φ(c)).

The preceding construction completes the definition of the framework. Lemma 9.2

and definition of Π together yield the desired formal property for trace effect

verification as a Corollary:

Corollary 9.2 (Verification Soundness)

If H is verified, then H is valid.

Proof

Immediate by Definition 3.4, Definition 9.6, Definition 9.7, and Lemma 9.2. �

This result can then be composed with Lemma 7.22 and Theorem 6.2 to yield a type

safety property for the complete automated analysis.

Theorem 9.1

Suppose �, H �β̄ e : τ/C is derivable, close(C) is consistent, and hextract C H is

verifiable. Then e does not go wrong.
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9.5 Incompleteness of verification

Completeness of verification is a matter different from soundness, and the reader

may notice that our verification technique is approximate. In particular, verification

of a trace effect H (Definition 9.7) with respect to a predicate φ always ensures

that θ ∈ �H� implies θ ∈ �φ�, regardless of whether φ occurs in θ, whereas validity

(Definition 3.4) only requires that (roughly speaking) θevφ ∈ �H� implies θevφ ∈ �φ�,

i.e., validity with respect to a given φ is concerned only with traces that end in evφ.

Example 9.2

With φ defined as in Example 9.1, the effect (ev 1(c);φ(c)) is both valid and verifiable,

as is the effect ev 3(c) since it contains no checks. However, the join of the two is

not verifiable, since ev 3(c) does not satisfy φ(c), even though it is valid since ev 3(c)

precedes no checks and hence is irrelevant to validity:

ev 3(c)|(ev 1(c);φ(c)) is valid but not verifiable

While this is sound, more precise and complete verification can be obtained with

some modifications. We now show how to enhance verification with a technique that

will remove from consideration those traces containing no occurrence of a given

formula.

We begin by defining a convenient µ-calculus formula abbreviation, using familiar

notation. This abbreviation will be reused in Section 10:

Definition 9.8

Since verification of predicates φ is always with respect to a particular trace effect

H , and any event ev (c) occurring in �H� must occur in H for the class of trace effects

we consider for verification (see Section 9.1), we can easily obtain the set of possible

events in a trace set �H� as the set of events in H . Letting ev 1(c1), . . . , ev n(cn) be the

events for given H , we define the following abbreviations:

(.)φ � (ev 1(c1))φ ∨ · · · ∨ (ev n(cn))φ

(.∗)φ � µx.(.)x ∨ φ

A refined, more complete verification can then be defined as follows.

Definition 9.9 (Refined Verification)

Let the occurs predicate be defined as follows: a trace θ is in the interpretation of

occurs(ev (c)) just in case ev (c) occurs in θ:

occurs(ev (c)) � (.∗)(ev (c))(.∗)true

A trace effect H is then verified iff for all subterms evφ(c) of H , letting

φ′ = φ[c/χ][evφ(c)/Now]

it is the case that

H � φ′ ∨ ¬occurs(φ′)

The soundness results in the previous section can then be replayed in the presence

of this refined verification.
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10 Applications to language-based security

In this section we show that our program logic is sufficiently expressive to be useful

in practice applications including security. In particular, we show how both stack

inspection and history-based security paradigms can be statically enforced in our

system. Singleton types allow a precise typing of resource parameters in the model.

In our examples we will be interested in unparameterized events and checks; in

such cases we will write ev and φ for ev (cdummy) and evφ(cdummy) respectively, where

cdummy is a distinguished dummy constant. Also, we will abbreviate events ev i by

their subscripts i, and the notation:

(∨ {ev 1(c1), . . . , ev n(cn)})φ � ev 1(c1)φ ∨ · · · ∨ ev n(cn)φ

will be convenient.

10.1 Stack inspection with parameterized privileges

Java stack inspection Wallach & Felten (1998); Skalka & Smith (2000); Pottier

et al. (2001) is a language-based security mechanism that uses an underlying security

model of principals and resources—all code is annotated with a principal identifier

p, and a local ACL policy A mapping principals p to resources r(c) for which

they are authorized is taken as given. An event ev p is issued whenever a codebase

annotated with p is entered. One additional feature of Java is that any principal

may also explicitly enable a resource for which it is authorized. When a function is

activated, its associated principal identifier is pushed on the stack, along with any

resource enablings that occur in its body. Stack inspection for a particular resource

r(c) then checks the stack for an enabling of r(c), searching frames from most to

least recent, and failing if a principal unauthorized for r(c) is encountered before an

enabling of r(c), or if no such enabling is encountered.

Stack inspection can be modeled in the stack-based variant of our programming

logic defined in Section 8. Rather than defining the general encoding, we develop

one particular example that illustrates all issues. Consider the following function

checkit:

checkit � λx.p:system;φinspect,r:filew(x)

Every function upon execution first issues an owner (principal) event, in this case

p:system indicating “system” is the principal p that owns checkit. The function

takes a parameter x (a file name) and inspects the stack for the “filew” resource

with parameter x, via embedded µ-calculus assertion φinspect,r:filew(x). This assertion

is defined below; it enforces the fact that all functions on the call stack back to

the nearest enable must be owned by principals p that according to ACL A are

authorized for the r:filew(x) resource.

To model resource enabling, we use a check event φenable,r(x); the use of a check

event allows to simultaneously mark a temporary enabling, and to check that

enabling is performed by an authorized principal. We illustrate the use of explicit

enabling via an example “wrapper” function enableit, owned by the “accountant”
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(p¬r(c))φ � (∨ {p|r(c) 	∈ A(p)})φ
(p̄)φ � (∨({ev 1(c1), . . . , ev n(cn)} \dom(A)))φ

(¬ev (c))φ � (∨({ev 1(c1), . . . , ev n(cn)} \ {ev (c)}))φ
(a∗)φ � µx.(a)x ∨ φ for a ∈ {p̄,¬ev (c)}

φenable,r(c) � ¬((.∗)(p¬r(c))(p̄∗)(Now)true)

φamplify,r(c) � φenable,r(c)

φinspect,r(c) � ¬((¬φenable,r(c)∗)(Now)true) ∧
¬((.∗)(p¬r(c))(¬φenable,r(c)∗)(Now)true)

φdemand1,r(c) � ¬((.∗)(p¬r(c))(.∗)(Now)true)

φdemand2,r(c) � ¬((¬φamplify,r(c)∗)(Now)true) ∧
¬((.∗)(p¬r(c))(¬φamplify,r(c)∗)(Now)true)

Fig. 19. Definitions of φdemand,r and φinspect,r .

principal p:acct, that takes a function f and a constant x, and enables r:filew(x) for

the application of f to x:

enableit � λf.p:acct; (λx.p:acct;φenable,r:filew(x); let y = f(x) in y)

The definition of φinspect,r(c), for fixed r(c), is generalized over parameterized

resources r(c). For trace effect H containing only the events ev 1(c1), . . . , ev n(cn), and

parameterized resource r(c), Figure 19 gives the definition of φinspect,r(c). The check

ensures that it is neither the case that the check occurs without previous enablings

of r(c), nor that a principal unauthorized for the privilege is interposed between the

check and the most recent enabling; this is logically equivalent to stack inspection.

Returning to our previous example expressions checkit and enableit, the following

most general types are inferred in our system:

checkit : ∀α.{α}
p:system;φinspect,r:filew(α)

−−−−−−−−−−−−→ unit

enableit : ∀αht.({α} h−→ t)
p:acct

−−−→ {α}
p:acct;φenable,r:filew(α);h

−−−−−−−−−−−−→ t

The stackification of the hextracted effect of the application:

enableit checkit (/accts/ledger.txt)

will yield the effect p:acct|H , where

H = p:acct;φenable,r:filew(/accts/ledger.txt); p:system;φinspect,r:filew(/accts/ledger.txt)

This reflects that the call and return of the application (enableit checkit) is

assigned the effect p:acct while the subsequent application to /accts/ledger.txt is

assigned effect H . Assuming that both p:system and p:acct are authorized for

r:filew(/accts/ledger.txt) in A, verification will clearly succeed on this expression.

On the other hand, stackification of the application checkit(/accts/ledger.txt) will

generate the following trace effect:

p:system;φinspect,r:filew(/accts/ledger.txt)
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for which verification will fail: there is no required φenable,r:filew(/accts/ledger.txt) on

the stack.

10.2 History-based access control

History-based access control is a generalization of Java’s notion of stack inspection

that takes into account all past events, not just those on the stack Abadi & Fournet

(2003). Our language is well suited to the static typechecking of such security policies.

In the basic history model of Abadi and Fournet (2003), some initial current rights

are given, and with every new activation the static rights of that activation are

automatically intersected with the current rights to generate the new current rights.

Unlike stack inspection, removal of the activation does not return the current rights

to its state prior to the activation.

We assume the same underlying model of principals as above. A demand of a

resource r with parameter c, denoted φdemand1,r(c), requires that all invoked functions

possess the right for that resource. This general check may be expressed in our

logic as in Figure 19, where we assume given for verification some trace effect H

containing events ev 1(c1), . . . , ev n(cn). For example, validity of the following type

judgement requires r(c) ∈ A(p1) ∩ A(p2):

Γ, p1; p2;φdemand1,r(c) � p1; (λx.p2;φdemand1,r(x)) c : unit

The model in Abadi and Fournet (2003) also allows for a combination of stack-

and history-based properties, by allowing the amplification of a right on the stack.

When a right is amplified, it remains active after function return regardless of the

current rights generated by the invocation, provided that amplification is performed

by an authorized principal. Such assertions can be expressed in our framework using

a combination of stack- and history-based assertions.

Taking the same strategy as for enabling in the stack inspection model, we can

define amplification as a check event φamplify,r; in fact, this can be defined equivalent

to φenable,r , and enforced by stackifying effects before verifying. In other words,

the semantics of amplification are identical to the semantics of enabling. Then,

making the simplifying assumption that by convention all resources are initially

amplified, the demand predicate can be redefined in the presence of amplification

as φdemand2,r in Figure 19. Observe that this predicate is syntactically identical to

φinspect,r , except that effects should not be stackified before verifying φdemand2,r . The

check φdemand2,r(c) ensures that an amplification of r(c) occurs prior to it, without

any interposed principal that is unauthorised for r(c).

Given that history-based access control requires an interplay of stack- and history-

based checks, we argue that a contribution of our model is its ability to deal with

these variations in a uniform manner, within one rigorous formal framework.

10.3 Discussion

The examples applications of our system developed in this section illustrate its

flexibility and power. The distinction of traces and predicates on traces allows

a general class of security properties to be defined. Trace effects themselves are
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amenable to interpretation as abstractions of either history traces or stack traces.

The examples, stack inspection and history-based access control, show particular

applications in stack trace and history trace settings respectively, but any property

expressible in a temporal logic could be used to specify desired history or stack

trace behavior. This follows the JDK security model Gong et al. (1997) in which

stack inspection is the default predicate on stack traces, but other predicates can be

programmed and used instead. In practice this offers a great deal of flexibility in the

kinds of security properties that can be enforced and the ability to build security

“libraries” for various domains, such as the Java sandboxing model for mobile code.

Again, we should emphasize our system places stack- and history-based mechanisms

on a single unified foundation.

A limitation of our system is that event and check parameters must be syntactic

constants. In Java, for example, privilege parameters can be dynamically generated;

e.g., “file read” privileges may be paramaterized by a new filehandle. Other research-

ers have addressed this issue in the similat static program verification contexts, in

particular Igarishi and Kobayashi (2002), and Hamlen et al. (2006) who consider

reference monitors in the .NET security model. In Higuchi and Ohori (2007) the

authors deal specifically with stack inspection and define privilege parameters to be

either “may” sets of literal values, or a distinguished “unknown” value. Rather than

generate privilege constraints that must all be statically satisfied, run time checks

are inserted into the program at checks that may fail. A similar soft-typing approach

is not precluded by our system, and extending it to treat dynamically generated

constants in this manner is an interesting direction for future work.

11 Conclusion

In this section, we conclude with a discussion of related work and a summary of the

paper.

11.1 Related work

Previous work relevant to the application of trace-based security models has been

noted in Section 1. Here we discuss related theories and systems designed to enforce

trace-based properties of program execution.

11.1.1 Compile-time versus run-time verification

Perhaps the principal division between previous approaches to the enforcement of

trace-based program properties is between those systems that detect errors at run-

time (Nierstrasz 1993; Edjlali et al. 1998; Rossie 1998; Schneider 2000; Bauer et al.

2002a, 2002b; Abadi & Fournet 2003) versus those that detect errors at compile-

time (Schmidt 1998; Ball & Rajamani 2000; Besson et al. 2001; Chen & Wagner

2002). Run-time approaches are more accurate since a compile-time analysis must

conservatively approximate what events could occur; the compile-time analysis will

also reject some safe programs, due to the need to be conservative. On the other
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hand, liveness properties (“all SSL sockets are eventually closed”) can be verified at

compile-time but not at run-time.

11.1.2 Run-time verification

Some early work in the area was carried out by Nierstrasz and other object-oriented

language designers (Nierstrasz 1993; Rossie 1998). Their goal was to specify only

the legal patterns of messages that could be passed to a particular object. The SSL

example in Section 1 could be cast in that view by taking the events to be messages

to some SSL control object. Regular expressions and finite automata were used

for the specification logic in this work. Security automata (Schneider 2000; Bauer

et al. 2002a, 2002b) also use finite automata for specification. Security automata are

targeted at specification and verification of security policies. All of these run-time

approaches assume that there is a run-time monitoring process that will either abort

or raise an exception if a bad trace is realized. Some automata transitions can be

optimized away using simple static program analyses Erlingsson & Schneider (2000),

but the analysis is still mostly dynamic: errors will not be realized until run-time.

Several groups (Edjlali et al. 1998; Abadi & Fournet 2003) have proposed

using event traces for access control. A given access is permitted only under a

restricted set of previous circumstances, recorded in the history. These projects

propose no particular specification language—the policies are directly coded. The

stack inspection algorithm used in the .Net CLR and Java Security Architecture is

another specific access control policy based on execution history (Gong et al. 1997).

11.1.3 Compile-time verification

The MOPS system (Chen & Wagner 2002) compiles C programs to Push-Down

Automata (PDA) reflecting the program control flow, where transitions are program

transitions and the automaton stack abstracts the program call stack. Similarly,

the ESP system (Das et al. 2002) checks temporal properties of programs (encoded

as finite state machines) by simulating an approximation of property transistions

that will occur at run-time. Jensen et al. (1999) and Besson et al. (2001) assume

that some (undefined) algorithm has already converted a program to a control flow

graph, expressed as a form of PDA. The Vault system (DeLine & Fähndrich 2001)

enforces resource usage constraints with type guards, temporal specifications of when

an operator may be applied—similar in spirit to the trace checks presented here—

and verification is performed via type checking that ensures well-typed programs

satisfy their guard specifications.

These aforementioned abstractions work well for procedural programs, but are not

powerful enough to fully address advanced language features such as higher order

functions. Our approach, based on type and effect theory (Talpin & Jouvelot 1992;

Amtoft et al. 1999), does allow abstract interpretation of higher order programs.

Trace effects yielded by the analysis provide a conservative approximation of trace

behavior via a Labelled Transition System (LTS) interpretation. Program assertions

can be expressed as temporal logical formulae that can be automatically verified by

model-checking (Steffen & Burkart 1992).
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Systems have also been developed for statically verifying correctness of security

automata using dependent types (Walker 2000), and in a more general form as

refinement types Mandelbaum et al. (2003). These systems do not extract any abstract

interpretations, and so are in a somewhat different category than the others. They

also lack type inference and do not use a logic that can be automatically verified,

so user intervention is needed.

11.1.4 Trace specification logics and model checking

Some of the aforecited systems also automatically verify assertions at compile-time

via model-checking, including (Ball & Rajamani 2000; Besson et al. 2001; Chen &

Wagner 2002), although none of these define a rigorous process for extracting an LTS

from higher-order programs. In these works, the specifications are temporal logics,

regular languages, or finite automata, and the abstract control flow is extracted as an

LTS in the form of a finite automaton, grammar, or PDA. These particular formats

are chosen because these combinations of logics and abstract interpretations can be

automatically model-checked.

Perhaps the most closely related work is K. Marriott & Sulzmann (2003), which

proposes a similar type and effect system and type inference algorithm, but their

“resource usage” abstraction is of a markedly different character, based on grammars

rather than LTSs. Their system lacks parametric and subtyping polymorphism,

restricting expressiveness in practice, and verifies global, rather than local, assertions.

Furthermore, their system analyses only history-based properties, not stack-based

properties as in our system. The system of Igarishi and Kobayashi (2002) is based

on linear types, not effect types. Their usages U are similar to our trace effects H ,

but the usages have a much more complex grammar and appear to have no real

gain in expressiveness. Their specification logic is left abstract; thus, they provide

no automated mechanism for expressing or deciding assertions.

The systems in the literature (Jensen et al. 1999; Colcombet & Fradet 2000; Besson

et al. 2001, 2002) use LTSs extracted from control-flow graph abstractions to model-

check program security properties expressed in temporal logic. Their approach is

close in several respects, but we are primarily focused on the programming language

as opposed to the model-checking side of the problem. Their analyses assume

the preexistence of a control-flow graph abstraction, which is in the format for

a first-order program analysis only. Our type-based approach is defined directly

at the language level, and type inference provides an explicit, scalable mechanism

for extracting an abstract program interpretation, which is applicable to higher

order functions and other features. Furthermore, polymorphic effects are inferable

in our system and events may be parameterized by constants so partial dataflow

information can be included. We believe that our results are critical to bringing this

general approach to practical fruition for production programming languages such

as ML and Java (Skalka 2005; Skalka et al. 2005).

11.1.5 Local and global reasoning

Logical assertions can be local, concerning a particular program point, or global,

defining the whole behavior required. However, access control systems (Edjlali et al.
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1998; Wallach & Felten 1998; Abadi & Fournet 2003) use local checks. Since we are

interested in the static enforcement of access control mechanisms (see Section 10),

the focus in this paper is on local, compile-time checkable assertions, although in

principle the verification of global properties is also possible in our system. Related

work has also modified our basic approach to enforce “policy framings” that support

so-called local liveness properties (Bartoletti et al. 2005b).

11.2 Summary

This paper establishes a foundation for the enforcement of local well-formedness

properties on program event traces. Our language model λtrace extends a functional

core with constructs to label program points, aka events, and with local assertions

over program event traces up to the point of the assertion during evaluation. The

language model is parameterized by a logic of event trace assertions and has been

instantiated here with the linear µ-calculus.

We have developed a static type and effect theory for λtrace programs, whereby

computational traces arising at run-time can be conservatively approximated by trace

effects, components of the type language that are interpreted as model-checkable

LTSs. We have presented two variations on the system: the first uses a unified

term syntax, while the second uses constraint subtyping. Both include parametric

let-polymorphism over types and effects. The unified representation allows for

weakening of trace effects through trace containment, whereas the constraint form

allows for more expressive type subsumption. The constraint system is shown to be a

conservative extension of both the unified term system and the underlying effect-free

ML-style type system. Since trace effects can be model-checked, verification of trace

effect approximations obtained by typing guarantees that all trace assertions will hold

during execution of a given program. Thus, our type safety result guarantees that

statically well-typed programs do not contain assertions that will fail dynamically.

Type reconstruction algorithms have been defined for both type systems. Type

inference for constraint subtyping has been shown to be sound and complete, the

latter result entailing a principal types property. Inference is decidable, despite the

general undecidability of trace effect equality and containment, due to a restricted

form of constraints generated by inference. Term forms of trace effects are extractable

from effect constraints via the hextract algorithm, obtaining a compliant form for

existing model checking techniques.

We have shown that trace effects can be transformed to reflect a stack discipline

for function calls and returns via the stackify algorithm, allowing the expression of

stack-based policies such as stack inspection and rights amplification for history-

based access control. We have also shown how these policies can be defined in our

system, as particular applications of a general framework for enforcing trace-based

properties expressible in temporal logics. A primary strength of our approach is

that the analysis is fully automated—no program abstraction or type annotations

are presupposed—and each component of this automation has been rigorously

justified. Our static analysis and verification techniques for trace-based properties in

higher order languages provide well-founded, flexible, and general tools for enforcing

program safety and security.
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