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Abstract
Hygiene facilitates the implementation of reliable macros but does
not guarantee it. In this note we review the introspective capabilities
of macros, discuss the problems caused by abusing this power, and
suggest a few principles for designing well-behaved macros.

1. Introduction
Hygiene makes it easier to write reliable syntactic abstractions, but
does not guarantee it. The power of macros lies in the ability to
define syntactic abstractions, i.e., derived special forms that extend
Scheme as if they were a part of the language itself. In form and
function, hygienic macros achieve this spectacularly well. But for
reasoning about programs, they still fall short of this goal.

Hygiene is often motivated by reference to variable conventions
and α-equivalence [12, 1, 4], but these concepts are really only
understood as properties of fully-expanded terms, with only the
pre-defined forms of Scheme and no remaining macros. Indeed,
the roles of identifiers as bindings, references, or quoted symbols
are only discovered incrementally during the process of expansion
as macro uses are eliminated. Effectively, α-equivalence has no
meaning in Scheme until after expansion.

Meanwhile, lexical scope is a practical language design prin-
ciple because it allows programmers to understand the local def-
initions of a program by simple inspection. Indeed, as the R6RS
describes, “Scheme is a statically scoped programming language.
Each use of a variable is associated with a lexically apparent bind-
ing of that variable” [16].

Since macros may manipulate programs arbitrarily, it is not
necessarily possible to understand the binding structure of a pro-
gram without first fully expanding its macros. Often, automated
tools such as the expand procedure or graphical IDE tools such as
DrScheme’s “Check Syntax” button [5] fulfill this need. But such
tools either require inspecting fully-expanded code, revealing the
complete implementation details of their macros, or at least pre-
clude simple syntactic inspection of the source program. To achieve
true syntactic abstraction, programmers should be able to use and
understand macros as if they were built-in forms in Scheme. Specif-
ically, users should be able to understand a macro’s scoping disci-
pline without reference to its implementation or expansion.
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A Programming Puzzle
Albert Meyer posed thirteen provocative programming puzzles to
show that, when it comes to reasoning about programs, “intuition
has its limits” [13]. Let us reconsider one of Meyer’s puzzles,
tailored for Scheme:

PUZZLE Exhibit a simple context into which any two Scheme pro-
grams can be substituted, such that if the Scheme programs are
not identical S-expressions, the resulting programs yield different
results.

The answer is simple: (quote �) distinguishes any two Scheme
programs syntactically by reifying their source as runtime values.

Of course, it is also possible for a macro to quote its argument,
so another solution to the puzzle is:

(let-syntax ((q (syntax-rules ()
((q x) (quote x)))))

(q �))

In fact, any Scheme context C[(m �)] involving the application
of a macro m might quote its argument. Given that macros are
Turing-complete, the question of whether m quotes its argument is
undecidable.

But quote is not the only way a Scheme program can in-
spect its own source code. Whereas quote turns source text into
data that a program can consume at runtime, macros written with
syntax-rules can actually make compile-time decisions based
on program source text. In Section 2, we review several known
techniques exploiting this introspective power to demonstrate
pathological hygienic macros: one that distinguishes all syntac-
tic differences between arbitrary Scheme programs, and a classic
syntax-rules macro that behaves like an unhygienic macro.

Such dramatic exploitation of syntactic introspection is proba-
bly rarely needed. And in Section 3, we show that the power of
Scheme macros comes at a price: the application of any macro
may eliminate all Scheme program equivalences in its arguments.
In practice, though, well-behaved macros seem to be usable as
true abstractions, i.e., without exposing their implementations. In
Section 4, we describe a few simple design principles for writing
macros that act as consistent extensions of Scheme, so that clients
can treat them as if they were built-in language forms.

2. The Introspective Power of Macros
In this section, we review the introspective power of syntax-rules
and use several known tricks to demonstrate a solution to Meyer’s
puzzle that distinguishes two programs syntactically at macro-
expansion time.

2.1 A Compile-Time Predicate
Figure 1 gives a definition of a macro sexp=?, which serves as a
compile-time predicate. Because of the non-strict nature of macro
expansion, predicates are written in continuation-passing style,



with two additional arguments for the respective success and fail-
ure continuations. Thus sexp=? takes four arguments: two terms
to compare as S-expressions and two continuation terms.

The definition of sexp=? decomposes its arguments struc-
turally, comparing the contents of pairs and vectors component-
wise. In the final clause, sexp=? uses an auxiliary predicate
ident? to test whether the arguments are identifiers or constants,
as well as comparison predicates ident=? and const=? to com-
pare them.

The predicate ident? is due to Kiselyov [11]. The implementa-
tion defines a derived macro test, which cleverly expands the term
a into the pattern of test. If a is bound to an identifier, then apply-
ing test to an identifier will match its first rule and expand to the
success continuation. Otherwise, applying test to an identifier will
not match the first rule, since a compound pattern never matches an
identifier; in this case the second rule will apply and test will ex-
pand to the failure continuation. Thus by applying test to the iden-
tifier *anident*, ident? serves as a predicate testing whether its
argument a is bound to an identifier.

The predicates ident=? and const=?, due to Petrofsky and
Kiselyov [14, 10], compare two terms which are assumed to both
be identifiers or constants, respectively. Like the macro ident? de-
scribed above, ident=? defines a nested macro test, but inge-
niously also expands its argument a into the literals list of test.
Thus the first rule of the test macro compares the identifier bound
to a as a syntactic keyword rather than an ordinary pattern vari-
able. By applying test to the argument b, the two identifiers are
effectively compared for syntactic equality.1 The implementation
of const=? is similar but does not require the use of the literals list
to match constants.

2.2 Seemingly Unhygienic Macros with syntax-rules

The hygiene conditions [12, 1] for macro expansion are described
informally as properties of variable occurrences:

1. It is impossible to write a macro that introduces a bind-
ing that can capture references other than those intro-
duced by the macro.

2. It is impossible to write a macro that introduces a refer-
ence that can be captured by bindings other than those
introduced by the macro.

A macro that violates the first hygiene condition, for example, must
“introduce” a binding—i.e., an identifier that does not occur in the
macro’s input—that captures a variable reference from its input.

Petrofsky [14] and Kiselyov [10] described a clever technique
for implementing macros with syntax-rules that appear to vio-
late the hygiene conditions. For example, a loop macro that im-
plicitly binds the variable break to a captured continuation for es-
caping the loop might appear to be unhygienic:

(loop (set! x (+ x 1))
(display x)
(if (>= x 100)

(break #f)))

However, even a hygienic macro can search for a reference in its
input and copy that identifier into a binding position. The imple-
mentation of loop appears in Figure 2. The auxiliary macro find
searches for an identifier in a term, inserting the found identifier
into a success continuation term or else expanding into a failure
continuation term. The loop macro uses find to extract the iden-
tifier break from the loop body and bind it as the argument to

1 More precisely, the identifiers are compared as if with the procedure
free-identifier=? [4, 16].

(define-syntax sexp=?
(syntax-rules ()
((sexp=? (a1 . b1) (a2 . b2) yes no)
(sexp=? a1 a2 (sexp=? b1 b2 yes no) no))
((sexp=? (a1 . b1) e2 yes no)
no)
((sexp=? e1 (a2 . b2) yes no)
no)
((sexp=? #(e1 ...) #(e2 ...) yes no)
(sexp=? (e1 ...) (e2 ...) yes no))
((sexp=? #(e1 ...) e2 yes no)
no)
((sexp=? e1 #(e2 ...) yes no)
no)
((sexp=? e1 e2 yes no)
(ident? e1
(ident? e2 (ident=? e1 e2 yes no) no)
(ident? e2 no (const=? e1 e2 yes no))))))

(define-syntax ident?
(syntax-rules ()
((ident? a yes no)
(let-syntax ((test (syntax-rules ()

((test a y n) y)
((test _ y n) n))))

(test *anident* yes no)))))

(define-syntax ident=?
(syntax-rules ()
((ident=? a b yes no)
(let-syntax ((test (syntax-rules (a)

((test a y n) y)
((test x t n) n))))

(test b yes no)))))

(define-syntax const=?
(syntax-rules ()
((const=? a b yes no)
(let-syntax ((test (syntax-rules ()

((test a y n) y)
((test _ y n) n))))

(test a b yes no)))))

Figure 1. A compile-time solution to Meyer’s puzzle.

call/cc, or else introduces a variable dummy if break does not
occur in the body.

The intuition that loop is unhygienic is based on the assumption
that the identifier break does not occur in the input to loop, so its
binding must therefore have been introduced by the macro. But this
assumption is false since loop is able to find references to break
in the body expression. Thus loop does not introduce the binding
for break at all; it merely copies an occurrence into both binding
and reference positions.

3. Hygiene is Not a Cure-All
As the above examples demonstrate, even with the rather simple
hygienic macro system of syntax-rules, it is still possible to
write rather ill-conceived macros. The question then is how to use
hygienic macros effectively, and how better to understand programs
that use them.



(define-syntax find
(syntax-rules ()
((find ident (a . b) sk fk)
(find ident a sk (find ident b sk fk)))
((find ident #(a ...) sk fk)
(find ident (a ...) sk fk))
((find ident a (sk-op . sk-args) fk)
(ident? a
(ident=? ident a (sk-op a . sk-args) fk)
fk))))

(define-syntax loop
(syntax-rules ()
((loop e)
(let-syntax ((k (syntax-rules ()

((_ ident e*)
(call/cc (lambda (ident)

(let f ()
e*
(f))))))))

(find break e (k e) (k dummy e))))
((loop es ...)
(loop (begin es ...)))))

Figure 2. Petrofsky’s loop macro.

3.1 Is the Theory of Macros Trivial?
The old Lisp programming construct of fexprs, i.e., functions that
dynamically receive their arguments as source code, is widely dep-
recated because it allows programs to distinguish essentially all
syntactic differences between programs [15]. In effect, the operator
in any procedure application might turn out to be a fexpr, which
could dynamically distinguish any syntactic transformation within
its arguments. This causes problems for compilers, which cannot
then exploit standard program equivalences to perform optimiza-
tions, as well as programmers, because their programs become sen-
sitive to even the slightest changes.

Wand [17] formalized this idea in a lambda calculus with fexprs
by proving that for any program p, we can construct a context
that distinguishes any p′ 6=α p.2 With the definitions in Figure 1,
we can similarly construct a context for a Scheme program p that
distinguishes all other programs at macro-expansion time:

(sexp=? p � #t #f)

In the extreme, this implies that the use of an untrusted macro in
Scheme can defeat any program equivalences we might expect to
hold for the arguments passed to the macro. Does this mean that
hygienic macros are as problematic and difficult to reason about as
fexprs?

Certainly not! In practice, hygienic macros do not prove to be as
troublesome as fexprs, whether for compilers or for programmers.
For the former, the reason is simple: whereas fexprs can inspect
source code dynamically, macros are restricted to performing this
introspection at compile-time. The compiler only needs to operate
on a program (or module [6]) after expansion, at which point it can
safely perform optimizations. For programmers, however, working
with a fully-expanded program would be impractical. But well-
written macros serve as syntactic abstractions, allowing clients to
use them without inspecting their expansion.

2 In Wand’s simple model, fexprs cannot distinguish α-conversions, al-
though in real implementations even variable names are observable.

3.2 Alpha, the Ultimate Refactoring
A well-written syntactic abstraction should behave like a consistent
extension of Scheme. Unlike sexp=?, which interferes with almost
all program equivalences, a macro should not subvert the usual se-
mantic properties of Scheme. Program equivalences are especially
important because they facilitate program refactoring [7], i.e., im-
proving internal characteristics of a program without changing its
external behavior.

A particularly important program equivalence for Scheme is α-
equivalence. Indeed, hygiene is often motivated by reference to
α-conversion and variable conventions [12, 1, 4]. Now, the only
known notion of α-equivalence for Scheme involves fully expand-
ing programs and comparing the results. Automated tools such as
the α-renaming feature of the DrScheme IDE [5] must internally
expand a program to determine the scoping relationships. But hu-
man readers should certainly not have to inspect the output of ex-
pansion to understand a program.

Consider the standard let form: the Scheme standard allows
for the possibility of let to be implemented as a macro, but pro-
grammers can think of it as a built-in form. Moreover, we can think
of Scheme’s core notion of α-equivalence over the built-in forms
as if it were extended with a rule:

e1 =α e′
1 z fresh e2[z/x] =α e′

2[z/x′]

(let ((x e1)) e2) =α (let ((x′ e′
1)) e′

2)

Because let is well-behaved, programmers understand this rule
intuitively and act as though it is a primitive form, regardless of
whether their Scheme implementation implements let as a macro.

4. Principles of Macro Design
By foregoing some of the introspective power of macros, macro
writers can allow their clients to use macros as if they were built-
in forms in Scheme. In this section, we catalog several design
principles for writing well-behaved macros and demonstrate how
macros like sexp=? and loop violate these principles.

Just as many hygienic macro systems are designed to allow for
the occasional use of intentional variable capture, we acknowledge
that our design rules are not always appropriate and can sometimes
be disregarded to good effect. For this reason we also discuss some
reasonable exceptions to our rules.

4.1 Design with α-equivalence in mind.
For clients of the let macro to intuit the α-equivalence rule de-
scribed in the previous section, let needs to obey a documented
scoping discipline. Section 11.4.6 of the R6RS explains this disci-
pline in prose, which we could summarize in an informal binding
specification:

;; (let ((x:ident expr) ...) expr[x ...]) :: expr

This specification indicates the general shape of the macro [2],
such as the parenthesization of the individual clauses, as well as
the binding structure. The name x is used as a placeholder to refer
to the identifiers bound in the clauses, to show that these variables
are added to the lexical environment of the body expression.

Documenting the scoping discipline of a macro helps impose
structure on its design and conveys the information clients need
in order to know how to α-convert uses of the macro. Despite the
lack of a general α-equivalence relation for Scheme programs with
macros, macros that obey regular scoping disciplines can still be
α-converted in a natural way.

The remaining design principles in this section can be seen as
ways of designing macros with α-equivalence in mind.



4.2 Use identifiers consistently.
The hygiene conditions refer to “bindings” and “references,” which
are only discovered incrementally during the process of macro ex-
pansion; until macros are expanded into primitive Scheme forms
such as lambda, the binding structure of a term is unknown. In
general, an identifier is only known to be a binding or a reference
(or in fact a quoted symbol) by completely expanding the program
and relating the identifier in the unexpanded program to its corre-
sponding identifier in the expanded program.

But such a mapping may not be one-to-one; macros are not
required to use every argument exactly once. It is not hard to
construct macros that copy an input identifier into several different
contexts:

;; (dup x:ident expr[x]) :: expr
(define-syntax dup
(syntax-rules ()
((dup a e)
(begin
(set! a 42)
(lambda (a) e)))))

The same variable a is used both as a free variable to be updated
to 42 and a bound name within the subexpression e. So in an
application such as (dup x x), different choices of names for
x change the meaning of the expression. This does not follow
the usual structure of Scheme binding constructs: since the first
occurrence of x is both free and bound, its inner binding cannot
be α-converted independently from its surrounding binding.

Sometimes it may be a useful shorthand to use a single identifier
both as a bound variable and as a free reference. For example, an
object-oriented library might provide a syntax for inheriting a field
in a subclass with a single identifier simultaneously specifying the
name of the inherited variable and binding the variable locally:

;; (inherit x:ident) :: defn[x]
(inherit foo)

Here foo serves both as a reference and a binding occurrence.
But our design principle also suggests an alternative, more flexible
syntax that allows the two uses of foo to operate independently:

;; (inherit ident as x:ident) :: defn[x]
(inherit foo as bar)

In this revised syntax, the first variable serves as a reference to
the field being inherited, whereas the second variable is the local
binding. This allows for the possibility of α-renaming the local
binding independently from the name of the inherited field. The
former syntax is useful for common cases, but the latter syntax is
more amenable to α-conversion.

4.3 Avoid observing variable names.
In addition to copying an identifier into both free and binding posi-
tions, quoting a bound identifier can be problematic. For example,
we could devise an alternative to lambda that disallows the specific
variable name quux:

;; (lambda* (x:ident ... . rest:ident)
;; expr[x ... rest]) :: expr
(define-syntax lambda*
(syntax-rules ()
((lambda* (x ... . rest) b ...)
(if (memq ’quux ’(x ... rest))

(error ’lambda* "bad name: quux")
(lambda (x ... . rest) b ...)))))

By inspecting the bound variables and disallowing a particular
name, lambda* restricts the usual freedom of the programmer to
α-convert a bound variable to any name.

More subtly, syntax-rules provides another means for ob-
serving names through the literals list [16], which allows a macro
to match against particular identifiers in a pattern. The ident=?
macro of Section 2 uses the literals list for just this purpose. While
the intention of the literals list is to identify certain identifiers as
syntactic keywords, there is nothing preventing its use as a gen-
eral mechanism for comparing identifiers as with ident=?. In
other words, syntax-rules provides enough introspective power
to compare identifiers at compile-time just as quote and eq? can
do at runtime.

Observing variable names can sometimes be useful for intro-
spective facilities like IDE’s and automated documentation tools.
A Scheme with a “docstring” facility like Emacs Lisp’s might pro-
vide a form define/doc for associating a documentation string
with a variable definition:

;; (define/doc x:ident expr expr) :: defn[x]
(define-syntax define/doc
(syntax-rules ()
((define/doc x doc e)
(begin
(define x e)
(set-doc! x (format "~a: ~a" ’x doc))))))

If the library exposes this documentation string, then the pro-
gram could discover the variable name and become sensitive to
α-conversions. In practice, though, programmers adhere to con-
ventions that docstrings are strictly for informative purposes, such
as displaying to a user, and should not be relied on for the internal
logic of programs.

4.4 Treat subterms as atomic.
Ganz et al [8] coined the term analytic macros to describe macros
that inspect the internal structure of their subterms. This often oc-
curs when macro-writers are tempted to optimize their macros for
special cases of their input. For example, a logical or operator usu-
ally needs to bind the result of its first expression to a temporary
variable in order to prevent evaluating the expression twice, but if
the expression is itself already a variable, the additional temporary
variable is superfluous. A macro-writer might be tempted to opti-
mize the or macro by optimizing this special case:

;; (or expr expr) :: expr
(define-syntax or
(syntax-rules ()
((or e1 e2)
(ident? e1
(if e1 e1 e2)
(let ((tmp e1))
(if tmp tmp e2))))))

In the “macro-writer’s bill of rights” [3], Dybvig explains that
these are the kinds of optimizations that a compiler can make per-
fectly well all by itself. Useless variable elimination is an easy
and common compiler optimization. Dybvig argues that compilers
should alleviate the incentive for hand-writing such optimizations
by performing them automatically. The simpler and clearer imple-
mentation of or that the programmer ought to write is:

;; (or expr expr) :: expr
(define-syntax or
(syntax-rules ()
((or e1 e2)
(let ((tmp e1))
(if tmp tmp e2)))))



This simpler version of or is easier to read and maintain since
it treats only the general case and leaves the delicate business of
optimization to the compiler.

Analytic macros can violate information hiding by observing
very fine-grained details about the implementation of an expres-
sion. The sexp=? macro of Section 2 uses this introspective power
to compare terms for syntactic equality. And the loop macro com-
bines the analytic find with duplicating the identifier break into
both binding and reference positions to behave much like an unhy-
gienic macro.

5. Discussion
It is an established fact, though perhaps not widely-enough under-
stood, that even hygienic macros allow for extremely fine-grained
syntactic introspection. Based on this observation, we have pro-
posed some principles for designing macros that at least informally
allow programmers to use α-conversion on unexpanded Scheme
programs as a semantics-preserving transformation.

Herman and Wand [9] have studied hygienic macros in a re-
stricted setting that enforces design principles through a static type
system. The informal binding specifications we use here are de-
scribed formally as types, which allows for a formal definition of
α-equivalence of programs with macros independent of the expan-
sion algorithm. Hygienic expansion is then shown to preserve the
meaning of α-equivalent source programs.

In general, the flexibility of full Scheme seems to preclude the
semantic properties (primarily, the definition and preservation of
α-equivalence) provided in that setting. But more work is needed
to study whether those properties extend to macros written accord-
ing to such a discipline, when implemented in the context of full
Scheme. Until then, we hope the informal principles described in
this note shed some light on the design of reliable macros.
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