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Abstract— We present a new bio-inspired system for automat-
ically finding foot-scale curved surface patches in rough rocky
terrain. These patches are intended to provide a reasonable
set of choices for higher-level footfall selection algorithms,
and are pre-filtered for several attributes—including location,
curvature, and normal—that we observed humans to prefer.
Input is from a 640 × 480 depth camera augmented with
a 9-DoF inertial measurement unit to sense the direction of
gravity. The system is capable of finding approximately 700
patches/second on commodity hardware, though the intention
is not to find as many patches as possible but to reasonably
sample upcoming terrain with quality patches. Sixty recordings
of human subjects traversing rocky trails were analyzed to
give a baseline for target patch properties. While the presented
system is not designed to select a single foothold, it does find
a set of patches for possible footholds which are statistically
similar to the patches humans select.

I. INTRODUCTION

Recent advancements in control and perception have en-
abled bipeds to walk on flat [1] and uneven indoor ter-
rains [2]. Major advances have also been made for outdoor
quadrupeds in rough terrain where the probability of blindly
landing footholds is high [3]. Online footfall selection has
been considered for quadrupeds and hexapods [4]–[8]. Still,
attaining animal-like legged locomotion on rough outdoor
terrain with sparse foothold affordances—arguably a primary
use-case for legs vs other forms of locomotion—still remains
a largely open problem. New advances in both perception
and control will be required; here we attempt to disentangle
these two aspects to a degree and focus on perception.

The foothold selection problem is particularly interesting
for bipeds with non-point feet that make contact with patches
of terrain. In prior work [9], [10] we presented algorithms for
modeling, fitting, and perceptually validating curved surface
patches that can succinctly model terrain at foot scale. Here
we use paraboloids with elliptic, circular, or rectangular
boundaries (Fig. 1). Our new contribution is a real-time bio-
inspired system for automatically finding and fitting salient
patches. We take data from a forward-facing depth camera1

augmented with an inertial measurement unit (IMU) that
measures the gravity direction (Fig. 4).

In this work we manually carry the sensor over the terrain
to enable study of perception algorithms in isolation from
control, though we acknowledge that the two cannot be
completely decoupled. The intention of this system is to
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1We use a Kinect structured light depth camera with 640×480 resolution.
While this device does not work well in full sunlight, it can be used outdoors
in the shade or at twilight. The IMU is a CH Robotics UM6.

condense and sparsify bulk point-cloud data from a depth
camera (here up to 12MB/sec) into a higher-level form, about
700 patches (roughly 23kB) per second. These constitute a
sampling of upcoming terrain from which a footfall selection
algorithm, considering task-specific dynamics and control,
could then make its choice. (Because the patches do not
sample e.g. vertical surfaces, swing leg motion planning
could use a supplemental octree or other representation for
collision avoidance.)

A key aspect of our approach is that we do not just fit
as many patches as possible, but instead attempt to balance
patch quality with sufficient sampling of the appropriate
parts of upcoming terrain. We use four saliency measures
at different stages for this purpose, involving aspects of
patch orientation, curvatures, and location. Our approach is
bio-inspired both in that one of these relates to a known
biomechanical property—humans tend to fixate about two
steps ahead in rough terrain [11]—and also because we
used observations of the patches humans actually select as a
baseline for setting parameters of the measures.

The system is implemented in C++ using the Point Cloud
Library [12], and the source code is available on our web-
site [13]. All datasets are available upon request.

Next we review the research context, followed by a
summary of our patch models and the bio-inspired mea-
sures we use to determine patch saliency. We then present
our real-time algorithm for finding, fitting, and validating
salient patches. Finally we describe our method for observing
patches selected by human subjects and compare statistics of
these with automatically selected patches.

A. Related Work

To date only a few works have used on-line perception for
bipedal foot placement in uneven or rough terrain. In [14]
planar segments were fitted to point cloud data for indoor
scenes with slopes and steps, and in [2] a laser scanning
system is used in a similar context. In [15] KinectFusion [16]
was used in simulation to avoid harsh impacts. A number
of other works (e.g. [17]) introduce perception mainly for
obstacle detection but not 3D foot placement.

On-line perception for foot placement has also been im-
plemented for quadrupeds and hexapods [4]–[8]. In some
cases foot placement has been done without perception by
using a known 3D terrain map and on-line motion capture
(e.g. [18]). It is also common here to use perception for
obstacle avoidance, terrain categorization, or gait selection
without specific 3D foot placement [19], [20]. Quadrupedal
and hexapedal studies are related to the bipedal case but often
use a point-like contact model, whereas many bipeds have
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Fig. 1. Paraboloid patch types and local coordinate frames.

extended feet to support torques for balance and may need
to consider foot-sized terrain patches.

Research on human locomotion shows that visual informa-
tion is crucial when walking on uneven terrain [11], [21]–
[25]), but so far only a few works (e.g. [26]) have specifically
applied this to perception for bipedal robots.

II. PATCH MODELING AND SALIENCY
In [9], [10] we introduced a set of bounded curved surface

patch models and algorithms to fit and validate them to points
sampling environment surfaces. Here we use a subset of
these, the paraboloids (Fig. 1), which balance expressiveness
with compactness of representation.2 Various choices are
possible with regard to the size and shape of the patch
boundary curves, which can be adjusted in applications
depending on the geometry of foot contact surfaces and the
different contact configurations a particular footfall selection
algorithm might consider. Here we use a generic approach
with rectangle bounds for cylindric paraboloids and ellipse
(possibly degenerating to circular) bounds otherwise, and we
fit the bounds to probabilistically contain 95% of the points
in a spherical foot-scaled neighborhood with r = 10cm [9].

Each patch has two intrinsic parameters, the principal
curvatures κx,y , and six extrinsic parameters r ∈ R3, t ∈ R3

giving the spatial pose of a local coordinate frame attached to
the patch. Eq. 1 gives an implicit form for the patch surface
in local frame where pl ∈ R3 is a point on the patch, see [9]
for details.

pl
T diag(κx, κy, 0)pl − 2pl

T [0 0 1]T = 0 (1)

Using 4-byte floats for the parameters requires 32 bytes per
patch,3 highlighting the compression of information from
a dense 640 × 480 depth image (about 0.4MB with the
Kinect’s 11 bit depth resolution) to a corresponding sparse
representation using e.g. 100 patches (about 3kB).

A. Saliency
The term saliency has been used in computer graphics

(e.g. [27], [28]) to describe parts of surfaces that seem
perceptually important to humans. Often these are essentially
locations of curvature extrema. Such a definition may also
be relevant here, as humans do sometimes step on e.g. the
peak of a rock. However, this seems relatively uncommon.
We thus introduce four new measures of saliency that relate
to patches that humans commonly select for stepping.

2Modeling patches using paraboloids and other design choices are de-
scribed in more detail in [9].

3The boundary parameters are fixed here.

Fig. 2. Illustration of the difference-of-normals measure.

Difference of Normals (DoN): The difference of normals
operator was introduced in [29] as the angle between the
normals of fine scale vs coarse scale neighborhoods of a
point (Fig. 2). This value relates to the irregularity of the
surface around the point, and also to the local uniqueness
of the point (following the same idea as the difference of
Gaussians operator in 2D images). We conjectured that points
with low DoN may be salient for the purpose of footfall
selection. The coarse scale neighborhoods we use are of
radius r = 10cm and the fine scale are r/2 (for this and
the next measure square neighborhoods are actually used
to enable fast normal computation with integral images, see
Section III).

Difference of Normal-Gravity (DoNG): The angle be-
tween the r-neighborhood normal vector of each point and
the reverse of the gravity vector −ĝ (from the IMU, ĝ points
down) gives a measure of the slope of that area. For fairly
obvious reasons, points with low DoNG can be considered
more salient for footfall selection.

Distance to Fixation Point (DtFP): Various publications
on vision for human locomotion (e.g. [11]) find that humans
fixate approximately two steps ahead when locomoting in
rough terrain. We thus estimate a spatial fixation point near
the ground approximately two steps ahead of the current
position. We define points with smaller Euclidean distance
from the fixation point to have higher saliency.

Minimum and Maximum Principal Curvature: The smaller
of the two principal curvatures κmin , min(κx, κy) at a
point is the inverse of the radius of the smallest osculating
circle tangent to the surface there; similarly the largest os-
culating circle has radius 1/κmax. The signs of the principal
curvatures also indicate whether the surface is concave (both
positive), convex (both negative), or saddle (opposite signs)
at that point. These values can be used in a few different
ways depending on the shape of the robot foot. For example,
for a flat footed robot (or to a rough approximation, for a
human wearing a hiking boot), concave regions with more
than slightly positive κmax could be considered less salient,
because the foot can’t fully fit there. A robot with spherical
feet might prefer areas that are not too convex (as the foot
would only make contact at a tangent point) but also not too
concave to fit.

We present algorithms for calculating these four measures
next. The first three can be calculated quickly for all points
and so are useful to identify good patch neighborhoods
before fitting. We apply the fourth later when curvatures are
available after patch fitting. (We are not aware of a method



for finding true principal curvatures, short of fitting patches,
that is as fast as we would like.)

III. ALGORITHM

The algorithm proceeds in four stages (Fig. 3): (I) prepro-
cessing; (II) DtFP saliency; (III) DoN and DoNG saliency;
(IV) patch fitting, curvature saliency, and postprocessing.
Stage I: Input and preprocessing.

Step 1: Receive 640×480 image Z from the depth camera
and absolute orientation quaternion q̊ from the IMU.

Step 2: Convert Z to an organized4 point cloud C in
camera frame and q̊ to a unit gravity vector ĝ pointing
down in camera frame.

Step 3: Apply a discontinuity-preserving bilateral filter to
C to reduce noise effects [30].

Step 4: Create a new 320× 240 organized point cloud D
by downsampling C with a 2× 2 median filter kernel.

Stage II: DtFP saliency. Parameters ld = 1m, lf = 1.2m
are the distances down and forward from the camera to
the estimated fixation point (ld is the approximate height
at which we held the camera; lf is an approximation of two
human step lengths [25], minus the approximate distance
from the body to the camera as we held it); parameter
R = 0.7m can be adjusted to capture the ground area to
be sampled for upcoming steps.
Step 5: Estimate the fixation point f in camera frame

f , ldĝ + lf ([1 0 0]T × ĝ)

using the properties that ĝ points down and [1 0 0]T

points right in camera frame.
Step 6: Initialize seed points S as all points in D within

an R-ball region of interest of f .
Stage III: DoN and DoNG saliency. Parameter r = 10cm

is the patch neighborhood radius, which can be adjusted
to match foot contact geometry; f = (525/2)pixels is
the focal length of the depth camera at the downsampled
320×240 resolution; φd = 15◦ and φg = 35◦ are DoN and
DoNG angle thresholds estimated from human-selected
patches (Section IV-B).
Step 7: Compute 320×240 surface normals N,Ns corre-

sponding to D using integral images [31]. The normal
N(i) uses window size 2rf/Z(i) where Z(i) is the z
coordinate (depth) of point i in camera frame, and Ns(i)
uses window size rf/Z(i).

Step 8: Remove from S all points i for which

N(i)TNs(i) < cos(φd).

Step 9: Remove from S all points i for which

−N(i)T ĝ < cos(φg).

The same integral image algorithm used for fast normal
estimation can also produce “surface variation” values [32]
which are often related to local curvature, but this relation
depends on the input and is not guaranteed. We thus defer

4Organized points have a 1:1 correspondence to an M ×N image.

curvature saliency until after patch fitting, which does give
estimates of the true principal curvatures.

Stage IV: Patch fitting, curvature saliency, and postpro-
cessing. Parameter ns = 100 is the maximum number of
seed points and can be adjusted to balance coverage and
patch overlap in relation to patch and region of interest
size; nf = 50 is the maximum neighborhood size for
patch fitting, which can also be adjusted depending on
patch size; κmin = −13.6m−1, κmax = 19.7m−1 are the
min and max principal curvatures estimated from human
selected patches (Section IV-B); dmax = 0.01m is the
maximum RMS Euclidean patch residual.
Step 10: If |S| > ns then discard |S|−ns points randomly

from S. We experimented with a non-maximum sup-
pression algorithm [33] instead of random subsampling,
using a weighted average of the DoN and DoNG angles.
However the results were not clearly preferable.

Step 11: Use an organized search to find a neighborhood
H(i) with at most nf points from C randomly dis-
tributed within an r ball of each seed S(i). In [10]
we studied different neighborhood methods including
breadth-first search on a triangle mesh and K-D tree
spatial search. Here we used the organized point cloud
search method in PCL which is optimized using back-
projections to the image plane.

Step 12: Fit a patch P (i) to each neighborhood H(i).
Our fitting algorithm [9] uses a Levenberg-Marquardt
nonlinear iteration to minimize an algebraic surface
residual. It can accommodate covariance matrices for
input and output uncertainty, but we don’t use that
feature here. The boundary curve is fit probabilistically
(using moments) to include 95% of H(i) projected on
the patch local frame xy plane.

Step 13: Discard patches with min principal curvature
less than κmin or max principal curvature greater than
κmax (curvature saliency). This step could be adjusted
depending on the application.

Step 14: Compute Euclidean patch residual [10], [34] and
discard patches where this is greater than dmax.

Step 15: Our patch coverage algorithm [10] could also be
applied to discard patches with areas not sufficiently
supported by data, but we did not integrate it here yet.

A. Time Complexity and Runtime

Stages I-III are O(|Z|), i.e. linear in the input. The runtime
of stage IV is dominated by O(nsn

2
f ) for step 12; steps 115,

14, and 15 are O(nsnf ). The worst case time complexity
for the whole algorithm is thus O(|Z|+ nsn

2
f ).

In practice on commodity hardware (one 2.50GHz core,
8GB RAM) the bilateral filter and downsampling (stage I)
run in ∼20ms total. Normal computation, DtFP, DoN, and
DoNG saliency in stages II and III take ∼35ms combined,
dominated by ∼30ms for integral image computation (the
main reason for downsampling is that the required integral

5The implementation of step 11 is actually O(nsr2), but could be
improved to O(nsnf ) by switching to breadth-first search on a triangle
mesh.



Fig. 3. Algorithm overview: (I) dense point cloud input; (II) candidate seeds (green) near an estimated fixation point (blue); (III) dense normals are
computed and used for saliency measures along with the IMU-derived gravity direction (purple); (IV) 100 patches are fit to a random subsampling of
salient seeds (red) and are validated for quality of fit and acceptable curvature.

images take ∼150ms at 640 × 480 [31]). Neighborhood
finding in stage IV takes ∼0.03ms per seed, and patch fitting
and Euclidean residual are ∼0.8ms total per neighborhood
with nf = 50. For ns = 100 stage IV thus takes ∼83ms
total, and the full algorithm is ∼ 20 + 35 + 83 = 138ms per
frame.

IV. HUMAN SUBJECT DATA

We measured the patches that humans actually selected
on several sections of rocky trail to establish the baseline
saliency thresholds φd,g and κmin,max. Depth and IMU data
collected from these trails was also used to test the algorithm.

A. Method

The trail sections were located in the the Middlesex Fells
in Melrose, MA and were 9, 4, and 10.5 meters long. All
included rocks and other types of solid surfaces normally
encountered outdoors. We put strips of colored tape on
the ground to mark nominal routes and to help establish
visual correspondence among multiple video and RGB-D6

recordings. The tape strips are intended to give subjects a
rough idea of which route to pick but not the exact spots to
place their feet.

We collected 30Hz 640 × 480 RGB-D recordings of all
trails with spatiotemporally coregistered7 100Hz IMU data
using a handheld Kinect camera with a CH Robotics UM6
9-DoF IMU (3-axis accelerometers, 3-axis gyroscopes, and
3-axis magnetometers) attached, including a Kalman filter to
estimate absolute geo-referenced orientation (Fig. 4).8 The
structured light method used by the Kinect does not work
well in full sunlight so we took this data at twilight. Sunlight
operation could be possible with other types of depth camera
or stereo vision. The camera was held facing ∼ 45◦ forward
and down and ∼ 1m above the ground by a human operator
who walked at normal pace along each trail section. The data
were saved in lossless PCLZF format.

We also took video recordings of the feet of five healthy
human volunteers walking on these trails. For each trail
participants were asked to walk at normal pace twice in
each direction, following the nominal marked route (60

6Depth and coregistered color images; the color data was used only for
visual correspondence.

7Though calibration methods have been developed (e.g. [35]), here spatial
coregistration of IMU and depth data was based on the construction of
the sensor apparatus. Spatial registration of the depth and RGB data used
built-in calibration in the Kinect sensor. Temporal registration of all three
datastreams was approximate.

8Accelerometers alone would not be able to distinguish the acceleration
due to gravity from accelerations due to motion of the camera.

Fig. 4. Our sensing apparatus is a Microsoft Kinect RGB-D camera with a
CH Robotics UM6 9-DoF IMU affixed to it. It can be battery powered and
works outdoors in shade or twilight. Recording software runs on a laptop
while a tablet strapped to the back of the sensor gives a heads-up display.

recordings). We visually matched all footsteps (total 867)
in these recordings to corresponding (pixel, frame) pairs in
the RGB-D+IMU data, and we fit patches (algorithm steps
11 and 12) at these locations (Fig. 5).

B. Results and Threshold Estimation

We took statistics9 of properties of the human selected
patches including the max and min curvatures, the differ-
ence angle between the two-level normals (DoN) and the
difference angle (DoNG) between the full patch normal
and the upward pointing vector −ĝ from the IMU (Fig. 6
top and rows labeled “man” in Table I). Thresholds φd,g
and κmin,max for the saliency algorithm were set to the
corresponding averages from the human selected patches plus
(minus for κmin) 3σ, where is σ is the standard deviation.

We ran the full algorithm on the same data frames as
the human-selected patches and collected statistics on the
same patch properties (Fig. 6 bottom and rows labeled “auto”
in Table I). The results are similar to the human-selected
patches. In a way this is by construction,10 but it does help
establish that the algorithm can work as intended. In total
82052 patches were fit across 832 data frames, meaning
(since ns = 100) that about 1.4% of patches were dropped
due to the curvature or residual checks (algorithm steps
13 and 14). This relatively low number indicates that the
saliency checks performed prior to fitting (DoN, DoNG, and
DtFP) have an additional benefit in that they help reduce
time wasted fitting bad patches. In prior work where patches
were fit purely at random either 3% (for triangle mesh-based

9Min, max, median (med), average (avg), and standard deviation (std).
10All values for “auto” are defined to fall within the corresponding “man”

average plus (minus for κmin) 3σ.



Fig. 5. Human-selected patches, manually identified in video and RGB-D recordings.

Human Selected Patches
867 total patches
832 depth+IMU data frames

Automatically Fit Patches
82052 total patches
832 depth+IMU data frames
(same frames as above)  

Fig. 6. Comparison of histograms of principal curvatures and our DoN and DoNG measures for human-selected and automatically identified patches.

measure min max med avg std
DoN (◦) 0.00 26.94 4.17 4.95 3.45 man

0.00 15.31 2.83 3.65 2.85 auto
DoNG (◦) 0.24 44.85 11.37 12.34 7.54 man

0.00 34.96 11.89 13.40 8.08 auto
kmin (m−1) -19.07 13.04 -1.70 -1.91 3.89 man

-11.97 7.64 -0.87 -1.14 1.75 auto
kmax (m−1) -7.87 28.94 3.78 4.62 5.02 man

-7.81 16.97 1.01 1.32 1.76 auto

TABLE I

neighborhoods) or 10% (for K-D tree neighborhoods) of
patches were dropped due to residual alone [10].

V. CONCLUSIONS AND FUTURE WORKS

In this paper we presented a bio-inspired approach to
perceiving foot-sized contact patches in rough terrain. Our
real-time system takes dense point cloud inputs from a depth
camera augmented with an IMU and outputs a sparse stream
of salient patches that could be used by a task-specific
footfall selection algorithm. We observed the patches that
humans actually select in such terrain and showed that the
patches found by the system are statistically comparable.

A next step is to combine this work with our moving
volume KinectFusion system [36], which integrates multiple
observations from a moving depth camera into a coherent
dense model of local terrain in front of and underneath the
sensor. This will help enable patch tracking where salient

patches are found in upcoming terrain, tracked as locomotion
proceeds, and then dropped when they are left behind.

We are also developing a mini biped with a depth+IMU
camera and feet to negotiate rough terrain. Our long term
goal is to apply these perception algorithms as part of a
real-time foothold selection system on this robot.
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