
CTY Robotics and Applied Computing
Northeastern University College of Computer and

Information Science

With Funding from the National Science Foundation

Dimitrios Kanoulas (dkanou@ccs.neu.edu)
Marsette Vona (vona@ccs.neu.edu)

Contents

1 Introduction 2
1.1 OHMM: The Open Hardware Mobile Manipulator 3
1.2 Today’s Activities . 5
1.3 Safety . 5
1.4 Graphical User Interface . 6

2 Motor Control and Differential Drive 7
2.1 Motor Control . 7
2.2 Position of the Robot using Coordinate Frames 9
2.3 Forward and Inverse Kinematics . 9
2.4 Differential Drive and Odometry . 10

3 Arm Kinematics and Grasping 13
3.1 Keeping Gripper (Wrist) Horizontal . 13
3.2 Forward Kinematics & the Jacobian . 14
3.3 Inverse Kinematics: the Inverse Jacobian Method 17

4 Visual Servoing: Find the Ball, Drive to it, and Pick it Up! 19
4.1 Attaching the Camera . 19
4.2 Visual Servoing . 20
4.3 Object Detection: where is the pink ball? . 20

1

1 Introduction

Time to spend in this section: 20 min

Figure 1: First row: COG torso with head and arms [MIT], Robo biped, and Big-
Dog quadruped [Boston Dynamics]; Second row: snakebot [CMU], and flying quadrotor
[Upenn]; Third row: Roomba wheeled robot [iRobot], automated car [MIT]; Fourth row:
PR2 mobile manipulator [Willow Garage], and Mars Rover [NASA]

A ROBOT is a device which perceives information about the world
through sensors (cameras, lasers, GPS, etc.) and which applies con-
trolled forces with actuators (motors) to achieve physical goals.

2

1.1 OHMM: The Open Hardware Mobile Manipulator

The robot we will be using today is an open platform (http://www.ohmmbot.org) developed
at Northeastern University for teaching robotics software. It is called the Open Hardware
Mobile Manipulator (OHMM) because it can both move about in the world (mobility) and
it can pick up objects (manipulation).

Laptop
Laptop's

AC Power

Mouse

ohmmbot

stand

handout

world framepaper

white board
&

graph paper

camera

color ball
meas. tape

pen
pencil

pen holder

charger

Robot's

AC Power

white and black

USB cables

Figure 2: The Experimental Setup

OHMM is a robot with four vertical layers (see Figure 3):

• Level 1: Two wheels are controlled by separate motors. A battery (see also Fig-
ure 4, right), and an omni wheel (not controlled by motor) are mounted in the rear.

The motors on OHMM have sensors called encoders that tell us how
far the motor has turned. Carefully set your robot vertically (follow
the demonstration) so you can see the encoders. In these encoders, a
rotating magnet passes sensors which register the rotation. Many other
encoders are optical (light operated) instead of magnetic.

• Level 2: This level includes the arm with three joints, the gripper, the arm’s four
motors (one for the gripper) (Figure 4), two bump switches in the front, and an IR
sensor for distance detection on the right. We will not use the bump switches or the
IR sensor today.

• Level 3 & 4: These levels contain a high-level processor called a Pandaboard (from
Texas Instruments) and a low-level processor called an Orangutan (from a company

3

Layer 1

Layer 2

Layer 3

Layer 4

Figure 3: The OHMM Robot, a mobile manipulator for teaching robotics software.

Figure 4: Motor (left) and battery (right)

called Pololu). These are small computers: the first one is powerful and it is used
for tasks like image processing, and the second one is simple but reliable for motor
control. We will not use the Pandaboard today. Instead we will use a netbook
for image processing and high-level control. It will talk to the Oranguatan low-level
processor with a USB link.

We will also use:

• a USB camera that we will mount on the robot later in Section 4.

• a netbook to give commands, control the robot, and display information from it (such
as camera images). If you have never used Linux before, this is a day to remember!
It is a good system for working with robots.

4

OHMM can:

• Move around using its wheels.

• Perceive objects, using the camera.

• Manipulate objects using its arm and gripper.

1.2 Today’s Activities

First we will learn how to control the wheels and drive the robot around. Then we will
learn how to control the arm and place it in any position we want. Finally, we will use the
camera to detect a pink ball, drive the robot to it, grasp it with the arm, and return “home”
with it.

• Section 2: Motor Control and Differential Drive (60 min): How do the wheel
motors work? How do we study their motion? Let’s drive the robot!

• Section 3: Arm Kinematics and Grasping (60 min): How can we move the arm’s
joints and the gripper both by setting particular angles to each one of them (forward
kinematics) or by setting a particular position and let the robot decide the joint angles
(inverse kinematics)? Let’s move the arm to any position we want!

• Section 4: Visual Servoing (40 min): How do we use the camera to detect a brightly
colored object? How do we use the differential drive and then the arm kinematics and
grasping to automatically pick up the object and move it to a different place?

1.3 Safety

It is possible that things may go wrong

• When in doubt, ask for help!

• keep your fingers away from the moving parts of the robot when it’s turned on.

• Don’t let hair or dangling jewelry get tangled in robot’s parts (please tie long hair
back).

• When on the table, the robot should be on the stand at all times. We don’t want
the robot to fall from the table by mistake.

• If there is a strange noise, an unexpected action of the robot, or any other emergency,
push the RED emergency stop button on the top of the robot.

5

• The robot has a number of wires. Watch carefully that these do not get
caught as it moves.

1.4 Graphical User Interface

We have created a Graphical User Interface (GUI) to help you give commands to the robot.
Specific instructions for using it are provided in the sections below.

Be careful: Please follow the instructions when using the GUI to avoid
damage to the robot.

6

2 Motor Control and Differential Drive

Time to spend in this section: 60 min

The first thing to try with a wheeled robot is to drive it around.

1. First we will see how to control the speed of the wheels.

2. Second we will see how we can represent the position and the orientation (i.e., the
pose) of our robot on the ground.

3. Finally we will learn about the motion of the wheels using the robot’s kinematics:
for example how I can drive the robot 10 cm ahead and turn it 90 degrees right.

Don’t worry if you do not understand some parts of the kinematics. We are going to learn
more in the next section when we will deal with the arm.

2.1 Motor Control

We will need the motors that drive the wheels to rotate at a desired speed. Since the wheel
motors are symmetric we will experiment with the left motor (the right one is similar).

What is Control and why is it needed? Many engineered systems (like motors) have
an input which affects the value of some output. The feedback these motors give us is how
much rotation has occurred. If we want to move the wheel with a desired speed vd = 0.5
m/s but its current speed is vc = 0.3 m/s, then a control action (change in motor power)
should be applied to reduce the error

e = (vd − vc) = (0.5 − 0.3) = 0.2m/s

.
How to reduce the error e?. The most simple controller is the Proportional Con-

troller (or “P Controller”) which works in two stages:

1. We apply motor power proportional to the error e: Kpe, where Kp is a proportional
gain constant that we can tune.

2. We should then clamp the output, so that we don’t make too big of a change at once.
The control action will be repeated very frequently by the low-level processor (hundreds
of times per second).

Challenges with finding a good value for Kp:

• Large values often lead to oscillations. This can make the system go unstable; the
oscillations can get larger and larger until something breaks!

• Some systems require nonzero action even when the error is zero. This includes our
motor under velocity control. Observe that if we just used a proportional controller,
then e = 0 and the control action (motor power) would be zero whenever the setpoint
is reached. This would make the motor turn off!

7

• As long as Kp is not large enough to cause oscillation, the system will reach a steady
state but it may have a nonzero error.

Experiment with OHMMMotorUI

For our experiments we will use a P Controller for the left wheel. We have already
implemented most of the control program, but we leave it to you to tune Kp.

• The robot should be on its stand on the table (see Safety Section above).

• Press the “OHMMMotUI” tab on the top part of the GUI.

• In the first row you can set the Desired Velocity of the left wheel, by typing a new
value in the text box and hitting the “Run” button. The velocity is in revolutions
per second. You can always stop the wheel by hitting the Stop button.

• In the second row you can get the current velocity of the wheel (read from the encoder)
by hitting the “Get Current Velocity” button.

• In the third row you can set the proportional gain Kp by typing in the text field and
hitting the “Set” button.

• The “Start PID Mode” in the last row will enable a more advanced kind of controller
called Proportional-Integral-Derivative (PID) control, that uses additional tech-
niques beyond proportional control so that the velocity error can be brought near zero.

Let’s try it:

1. Write a value in the desired velocity text box. A value around 0.5 rev/sec is a good
start.

2. Hit the Run button.

3. Is the wheel moving? You can check it physically, but you can also press the “Get
Current Velocity” to get wheel’s real velocity. Write down the desired and the
current velocities in the box below. Hit “Get Current Velocity” multiple times to
check if the velocity seems stable.

4. Press the “Stop” button.

5. Keep the desired velocity fixed and start increasing the proportional gain by 0.2. Each
time press the “Stop” button, type in the new gain, press the “Set” button, then
press the “Run” button, and use “Get Current Velocity” update the velocity from
the encoder. Write down the new current velocity.

6. Press the “Stop” button when the gain is 1.4.

8

Exp1 Exp2 Exp3 Exp4 Exp5 Exp6 Exp7 Exp8
P Gain 0.0
Desired
Veloc.

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Current
Veloc.
Stable?

We can notice two things: 1) the error between the desired and the current velocity
decreases when the gain increases, and 2) if the gain is too big then the motion is unstable.

The P controller is simple, but not always the best. Although you could use one of the
stable solutions you found (for example 0.8 gain might be a good option), to really reduce
the error we are going to use a more advanced Proportional-Integral-Derivative (PID)
Controller. Press the “Start PID Mode” and then the “Run” button. Check the
current velocity now. Is it better?

2.2 Position of the Robot using Coordinate Frames

Now that we have some experience controlling the speed of the wheels, we can start to drive
the robot around. First, we need to explain how we represent the pose of the robot on the
ground. (Don’t put your robot on the ground just yet.)

• We will call the starting pose of the robot world reference frame (see Figure 5,
upper left part).

• Then we need just 3 numbers to describe the pose of the robot: 2 for its (x,y) position
on the ground (in meters) , and 1 for its orientation θ (in degrees).

Some examples are given in Figure 5.

2.3 Forward and Inverse Kinematics

Kinematics is the study of the geometry of motion without considering
its causes (physical forces).

We can rotate the wheels at speeds φ̇l and φ̇r respectively. But how fast does this make
the robot move? This is a question of forward velocity kinematics: we know the motions
of the actuators; we want to predict the motion of the robot. We can also ask the opposite
question. We know the motion of the robot, what is the motion of the motors? This is an
inverse velocity kinematics question.

Somewhat more useful here is the forward position kinematics: given a starting pose
of the robot and the wheel rotation for a specific amount of time, what is the final position
of the robot? We are not going to go into details but there are formulas to keep track of the
robot pose in small time intervals until it arrives in the final pose. The opposite question
is what we often really want to know when driving a robot: how can we move the wheels
(i.e. what kind of rotational velocities should be applied) to move the robot from one pose
to another?

9

Figure 5: Upper Left: the world reference frame, Upper Right: robot on the starting
position (x,y)=(0,0) and θ = 0, Lower Left: at position (x,y) = (10cm,0) and orientation
θ = 0 degrees, Lower Mid: at position (10cm,0) and orientation θ = 45 degrees, and Lower
Right: at position (0,10cm) and orientation θ = 0 degrees.

This inverse position kinematics question has a lot of answers, because there are
many ways to move a robot from one pose to another. We are going to use a very simple
one, which has only two steps:

1. turn in place to face the goal location

2. drive to the goal location

2.4 Differential Drive and Odometry

Odometry: if we assume the wheels do not slip on the ground, we
can keep track of the robot pose just by monitoring the wheel rotations.
This process, which gives us an estimate of the robot’s position at any
time, is called odometry.

Now we have a good PID Controller for our robot. It seems that when the wheel is on
the air the desired speed is reached in a stable way. Let’s try to give a set of commands to
drive your robot in a equilateral triangle of side size 0.5m.

Experiment with OHMMDriveUI

10

• We will use the measurement tape for this experiment.

• Place carefully the robot on the ground on its starting pose (see upper right
part of Figure 5)

• Press the “OHMMDriveUI” tab on the top part of the GUI.

• The Commands Part (Upper Left) of the GUI has 5 starting command lines. Each
line has: a pulldown that says noCmd (No Command) and a text box (0.0). Click
on noCmd—you can select between:

– noCmd: No Command

– df : drive either forward if number is positive, or backwards otherwise (in meters).

– dt: turn left if number is positive, or right otherwise (in degrees).

The text box for noCmd is not considered, for df it should be the distance in meters,
and for dt it should be the degrees of turning.

• The upper right part shows the (x,y) position in meters and the orientation in degrees,
using odometry, after pressing the “Get odometry” button (see below). This pose
is where the robot thinks it is.

• The bottom part are the running buttons:

– Add New Command: adds a new command line if needed.

– Run Commands: Run the commands in order.

– Stop: stop the robot and reset odometry.

– Get odometry: updates the odometry from the robot.

Let’s try to drive in a equilateral triangle of side length 0.5m:

1. Press the “Reset Robot” button and then “Get Odometry”. Repeat until you get
zeros for the odometry.

2. The robot is on the first vertex of the triangle: position (x, y) = (0, 0) and orientation
θ = 0. Let’s drive to the second vertex. Pick the correct commands to drive to the
second point, and hit the button “Run Commands”.

3. What is the desired (x, y) position of the second vertex? Where does the robot think
it is now thatit should be there (use the odometry button)? Use the measurement
tape to estimate the (x, y) position that the robot actually is. Write these values to
the boxes below.

4. Replace the commands to turn and drive to the third vertex and write the new values
to the box below.

5. Replace the commands to turn, drive, and turn back to the starting vertex in the
orientation the robot started. Again write the values to the box below.

11

6. Now write a single sequence of commands that drives around the whole triangle and
returns to the starting pose.

If by mistake you pick the wrong commands, hit the “Reset Robot” button, until you
get zero odometry and start over.

Pose Vertex 1 Vertex 2 Vertex 3
Goal
Odometry
Measure

We can see that even after setting a good controller for the motors, the goal pose, the
pose that the robot thinks it is at, and the pose that the robot really is at are all different
(even slightly). This can be due to a variety of effects: friction with the ground, wrong motor
sensor measurement, sloppy control, etc. This is a difficult problem to resolve.

12

3 Arm Kinematics and Grasping

Time to spend in this section: 75 min

The position of the arm can be described with 3 values: angles θ0, θ1, θ2 (see Figure 6;
noted as t0, t1, t2 below and in the GUI, in degrees), that control the shoulder, elbow, and
wrist of the robot correspondingly. In this section we will learn how to move the arm of the
robot and the gripper, using forward and inverse kinematics:

• Forward Kinematics: How does the gripper move when we change the t0, t1, t2 values
(the joint angles)?

• Inverse Kinematics: What should be the values of t0, t1, t2 if we want to move the
gripper to a specific position?

Figure 6: Arm angles and robot reference frame

3.1 Keeping Gripper (Wrist) Horizontal

Our arm can move only up-and-down, since the axes of the shoulder, elbow, and wrist
joints are all horizontal. We can think of their combined effect on the gripper pose in three
components: (1) the height h of the gripper along the world-frame z axis (which aims up
from the ground right between the wheels), (2) the radial distance r out from the z axis
to the gripper, and (3) the pitch angle ρ of the gripper about the y axis of the robot frame.

Let’s move the arm:

1. Make sure you have selected the “OHMMArmUI” tab in the GUI at the top of the
window.

2. Hit the “Home” button in the GUI to place the arm to the home position.

13

3. Now type in a value in the t0 box in degrees, for example t0 = −20 and hit Move.

4. Then return the joint to its home position by restoring the original angle (the home
angles are t0 = −45, t1 = 90, and t2 = −45).

Do the same for each of the other joints, but only move one at a time (and then return it to
the home angle) so that you can see the effect of each joint separately.

As a simplifying design choice, we are going to control the arm in such a way
that ρ is always zero, keeping the wrist horizontal and the gripper flat and parallel
to the ground. One way to do this is to continuously have the computer calculate a value
for t2, given the current values of t0 and t1, that keeps ρ zero. What is the formula that
the computer should calculate? Look carefully at the definition of the joint angles in
Figure 6 and write the formula in the box below. Your formula can and should include the
variables t0 and t1. Use a pencil in case you want to change your answer.

t2 =
Now you’ll use the GUI to have the computer do this calculation automatically. Home the

arm, and then type your formula into the box for t2. You can type the formula directly—the
GUI will understand symbols like +, -, *, and /, as well as variable references like t0 and
t1; for example t2: 2 ∗ t1. Now type in some new angles for t0 and t1 and hit “move”. Does
the wrist remain (essentially) horizontal? If not, check your formula. In emergency either
hit the “Stop Arm” button, or the red button on the robot.

3.2 Forward Kinematics & the Jacobian

With ρ fixed at zero, and t2 slaved to t0 and t1, we can think of the arm as a mathematical
function, or mapping, that takes two inputs—the joint angles t0 and t1—and produces two
outputs: the gripper height h and the radial distance r. This is called the forward kinematic
mapping, or just the forward kinematics, of the arm.

It is possible to derive mathematical formulas which compute h and r given t0 and t1.
They involve the link lengths l0, l1 (see Figure 6) and trigonometric functions (sine and
cosine) of the joint angles. Here, we will use an alternate method that does not require such
a derivation. For both joint angles t1 and t2 in turn, we will

• make a small “tweak” to a joint angle

• measure the effect of that tweak on each of the two output variables h (the height
of the gripper above the ground) and r (the extension of the gripper away from the
robot).

• divede each “effect” by the “tweak” to estimate a derivative1.

1If you have never learned about derivatives, which are taught in calculus, don’t worry. In this handout
you can substitute the word “sensitivity” for “derivative”, as in “dh/dt0 is the sensitivity (or derivative) of
the gripper height with respect to change in angle of t0: dh/dt1 is the ratio of change in h to change in t1.”

14

By tweaking each of the two joints t1 and t2 and measuring the effect of each tweak on
both h and r, we calculate four derivatives. For example, dh/dt1 is the derivative of the
gripper height with respect to motion of the elbow, and dr/dt0 is the derivative of the radial
distance with respect to motion of the shoulder. Note: the numeric value of these deriva-
tives generally depends on the initial pose of the arm, but they can be estimated for any pose.

Let’s try it. Let’s measure a few of the derivatives manually using the arm. We are
going to work with t1, t2, h, and r. That gives us four derivatives to measure, and you’re
going to arrange them in a 2x2 matrix2:

J =

[
dr/dt1 dr/dt2
dh/dt1 dh/dt2

]
.

This is called a Jacobian matrix after the nineteenth-century mathematician Carl Gustav
Jacob Jacobi (no kidding).

1. “Home” the arm and retype the equation for t2 you found above.

2. Get the pen (don’t take the cap off yet) and put it in the gripper as shown in Figure 7.
Follow the instructions below the figure to grab the pen.

3. Once the pen is correctly gripped, take off the cap.

4. Now, being careful not to let the pen touch the paper yet, slowly move the
graph paper board so that the plastic base is parallel to the robot’s side.

5. Place the robot is such a position so that the pen is almost, but not quite, touching
the paper.

6. Give the paper a slight and gentle push from the back so that it briefly comes
in contact with the pen. The longer you hold it, the larger the mark the pen will make.
Just make a small mark, because later you’ll be measuring it’s position and you want
to be able to easily find the center.

7. You should have one mark on the paper at this point. Use your pencil to label it “o”
for “origin”.

8. You’ll now move t0 and t1 small amounts, relative to their current (home) positions,
and make two additional marks.

(a) First move t0: leaving t1 at its current settings, type in a new value for t0 that
moves it by a small angle, say +10 degrees, relative to its current position. The
current value for t0 should be -45. So type in the box “-35”.

(b) Hit “Move Arm” and then gently push the paper again to make a mark.

2Never studied matrices? Don’t panic. All you really need to know is that a matrix is a table of
numbers. All the other mathematics will be given to you, and it only involves basic addition, subtraction,
multiplication, and division.

15

Figure 7: Pen Holder steps. Step 1: Arm is in Home position and t2 angle has the correct
equation to keep it horizontal. Step 2: Hit the “Open Gripper” button. Step 3: place
the pen in the pen holder if it is not placed already (keep the cap of the pen on for now).
Step 4: place the pen holder as shown in the upper right image. Hint: the grippable part
of the holder is wedge-shaped; put the wider part on the outside of the gripper. Step 5-6:
Hit the “Close Gripper” button and carefully adjust the holder so that it is as shown in
lower right image.

(c) Label the new mark “1” with your pencil.

(d) Now return t0 to its original setting of -45, and hit “Move Arm” again.

(e) Finally, do the same procedure for t1 (from 90 to 100 degrees), labeling the third
mark “2”

9. Carefully move the paper away from the pen without making any new marks.

10. Put the cap back on the pen, and lay the board flat on the table with the paper
face up (don’t pull it off the board; just let the base hang off the side of the table).

11. Use the ruler to measure (in centimeters) the horizontal and vertical coordinates of
marks labeled “1” and “2” relative to the mark labeled “o”. That is, consider “o” to
be the origin of a coordinate system with h upp and r horizontal (positive going out
from the robot) and label the coordinates of the other two points.

12. Divide these coordinates by the delta joint angle (10 degrees) to fill in the Jacobian
matrix below. The vertical coordinates are changes in the gripper height h relative
to the start pose, and the horizontal coordinates are changes in the gripper radial
position r relative to the start pose. So if your points have coordinates (r1, h1) and
(r2, h2) relative to the origin at point “o” you will fill in the matrix with the values
of four divisions (remember it’s easy to divide by 10, just move the decimal place one
position to the left):

16

J =

[
dr/dt0 dr/dt1
dh/dt0 dh/dt1

]
=

[
r1/10 r2/10
h1/10 h2/10

]
=

[]
.

13. The Jacobian can be used to predict the expected gripper motion that would occur
due to a small motion of the joint angles relative to the current pose. The inputs in
this case are two numbers et0 and et1 giving the relative joint motion, and the outputs
are two numbers er and eh giving the relative gripper motion. The computation works
like this: [

er
eh

]
= J

[
ej1
ej2

]
=

[
dr/dt0 dr/dt1
dh/dt0 dh/dt1

] [
et0
et1

]
er = (dr/dt0)et0 + (dr/dt1)et1
eh = (dh/dt0)et0 + (dh/dt1)et1

You won’t use this formula directly today, but it leads us to a more interesting formula
which computes the reverse: et0 and et1 given er and eh—a change in joint angles that
will realize a desired change in gripper position.

3.3 Inverse Kinematics: the Inverse Jacobian Method

As you may have already learned, it is generally possible to invert a matrix3. For a 2x2
matrix

A =

[
a b
c d

]
the formula for computing the inverse matrix A−1 (also 2x2) is

A−1 =

[
d/(ad− bc) −b/(ad− bc)
−c/(ad− bc) a/(ad− bc)

]
.

The inverse of the Jacobian is exactly what we need in order to solve for et0
and et1 given a desired er and eh:[

et0
et1

]
= J−1

[
er
eh

]
Above, you computed the four entries of the Jacobian J for this arm at its home position.

Now use the 2x2 matrix inversion formula to compute the entries of the corresponding inverse
Jacobian (hint: apply the four formulas given above for a general 2x2 matrix inverse A−1):

3Actually, not all matrices can be inverted directly. To be invertible, the matrix must be square (same
number of rows as columns) and must also satisfy a second more subtle property that depends on its numeric
values. It is possible for a Jacobian matrix to fail one or both of these conditions, in which case the robot is
said to be at a singular configuration. This is interesting, but we don’t have time to go into the details here.

17

J−1 =

[]
.

Let’s pick a small relative gripper motion, say er = 2cm and eh = −1cm,
compute the corresponding relative joint motion, and use the result to actually
move the arm.

[
et0
et1

]
= J−1

[
2

−1

]
=

 ∗ 2 + ∗ (−1)

∗ 2 + ∗ (−1)

 =


 .

1. Take the cap back off the pen and return the paper back so that the pen is aligned
over the origin point you marked previously.

2. Type in expressions that move t0 and t1 relative to their current position by adding
your computed et0 and et1 (for example, if the current value of t0 in the GUI is -45 and
you computed 10.2 for et0, you could type in “-34.8”), hit the “Move Arm” button,
and make a final (fourth total) mark.

3. Carefully move the paper away again, put the cap back on the pen, take the pen
out of the gripper, and measure the coordinates of your new mark.

Remember, the goal was to move the gripper 2cm out radially and 1cm down from the origin
at point “o”. How did you do?

Though it’s laborious to manually invert Jacobians, the computer can do it easily. This
is one way to convert a desired motion of the gripper to the required motions at the joints.

18

4 Visual Servoing: Find the Ball, Drive to it, and Pick

it Up!

Time to spend in this section: 25 min

Now we are going to put together the work we did in the previous sections and make the
robot detect a pink ball, drive to it, pick it up, and drive it back home. This is an example
of visual servoing, where we use measurements from a video image to continuously drive a
robot to satisfy some goal. We have implemented the most of the code, but you can try to
tune the ball detection using the GUI.

4.1 Attaching the Camera

It is time to use the camera! We need to connect the camera to the robot. Follow the steps
as shown in Figure 8:

Step 1 Step 2 Step 3

Step 4 Step 5 Result

Figure 8: Attaching the Camera

1. Insert the mast into the mast bracket above the rear wheel. Make sure that the round
hole on the mast is at robot’s right side. (Step 1 and Step 2)

19

2. Push the mast down gently. (Step 3)

3. Connect camera’s USB cable to the white USB cable, which will be connected to
the laptop. (Step 4 and Step 5)

Now you should be able to see the camera image in a separate window by clicking on the
OHMMCameraUI tab and then “Init”. You will also see the arm moving to a starting
position. Let us know if you cannot see the image!

4.2 Visual Servoing

1. Place the robot on the ground.

2. Press the “Reset” button.

3. Calibration: Place the ball object in the gripper. Then click on the video in the
middle of the ball to set the nominal color for the color filtering (you can keep clicking
until it looks ok), and also to say to the robot where the ball should appear in the
camera when it can grab it.

4. Place the ball in another place (but it should still appear in the video) and press the
“Run” button. See if the robot goes and grab the ball.

When you click Run, the robot makes small turning and driving motions to try to get
the ball back to the place in the image where it was when you clicked on it. Once it gets
there, it knows that it can reach out in the same way to grab it again. This is called Visual
Servoing.

4.3 Object Detection: where is the pink ball?

The ball is detected based on its color. However, other colors in the image could be similar
(like your hand). The control software uses a threshold on the hue (the essential color) of
the ball, but setting this threshold can be tricky.

Let’s try changing it:

• Type in the hue threshold text box a value between 0-255 and press “Set” to adjust the
threshold. Start with small values and start increasing until you get a good detection.
If you increase it a lot further (100 or more) then you will start to see a lot of “false
positives” where the system thinks it sees the ball color.

20

Hope You Had Fun!

21

