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Abstract
Passing multiple continuation arguments to a function in CPS form
allows one to encode a wide variety of direct-style control con-
structs, such as conditionals, exceptions, and multi-return function
calls. We show that, with a simple syntactic restriction on the CPS
language, one can prove that these multi-continuation arguments
can be compiled into stack frames in the traditional manner. The
restriction comes with no loss in expressive power, since we can
still encode the same control mechanisms.

In addition, we show that tail calls can be generalized efficiently
for many continuations because the run-time check to determine
which continuation to pop to can be avoided with a simple static
analysis. A prototype implementation in Scheme48 shows that our
analysis is very precise.

Categories and Subject Descriptors F.3.2 [Semantics of Pro-
gramming Languages]: Program Analysis

General Terms Languages, Performance

Keywords flow analysis, continuation-passing style, tail recursion

1. Introduction
Continuation-passing style (CPS) has a long history as a compiler
intermediate representation [1, 5, 7, 11], going back to Steele’s
Rabbit compiler [14]. More recently, Kennedy studied the engi-
neering benefits afforded by CPS-based intermediate representa-
tions [4]. When used in compilers, CPS is usually extended in two
ways from the simple form we see in more foundational develop-
ments [8].

First, every element of a CPS term (lambdas, variable refer-
ences, and calls) is statically marked as either a “user” or a “contin-
uation” term. There is a similar user/continuation partition among
dynamic values, which respects the static partition: continuation
values are produced only from “continuation” λ terms, bound only
to “continuation” variables, and invoked only at “continuation” call
sites; likewise for “user” values. This partition enables the compiler
to produce code that uses a stack to manage procedure calls. Con-
tinuations are simply procedures whose environment record is a
stack frame.

Second, CPS-based compilers often pass many continuations
across function calls:
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• The SML/NJ compiler implements exceptions by passing two
continuations to each function: one for the normal return point
and one for the current exception handler.

• ORBIT [5] encodes conditionals as primitives that take two con-
tinuations. Instead of having special syntax for if/then/else, OR-
BIT employs a primitive procedure, %if, with three arguments,
a boolean and two continuations:

(%if bool contthen contelse)
Control branches to contthen if the boolean argument is true,
and to contelse if it is false. By representing control operators as
functions, the compiler can wring even more utility out of its
general capabilities for reasoning about functions. This tech-
nique has been explored in detail in the literature [5].

• The “multi-return λ calculus” (λMR) [12] can be considered a
generalization of the aforementioned Orbit technique. Where
Orbit uses this technique internally, in λMR the mechanism is
exported to the language level: the direct-style term language is
designed to provide the power of passing multiple return points
to user procedures, yet ensure that these return points can be
stack allocated. The multi-return mechanism was specifically
designed to fit naturally with an IR that uses multiple continua-
tions to represent the multiple return points.

• Finally, multiple-continuation function calls can be used to
implement “stream processing” computations, such as DSP
pipelines [13].

These two extensions are a standard part of the lore of engineer-
ing compilers using CPS. However, they raise issues that have yet
to be addressed. First, compiler writers work on the assumption that
statically partitioned CPS allows continuation closures to be treated
as stack frames. The question arises: why is this a safe assumption?

If we only have single-continuation calls, then it is fairly simple
to show that the continuation environment records can be managed
with a LIFO policy. But what happens when, as is often the case
in practice, we pass multiple continuations across procedure calls?
The compiler assumes that the continuations being passed all lie
on the same stack, and so can all be passed as pointers into that
stack. Is this in fact always true? Does it remain true when one lifts
the idea of multiple return points from a limited, compiler-internal
technique to a general user mechanism, as in λMR?

Further, when a function call is made, tail recursion requires that
the compiler clear the stack back to the caller’s continuation. Even
if it is safe to suppose that all continuation arguments point into the
same stack, the compiler must now pop the stack back to the most
recent of these continuations. At a fixed call site, the continuation
that is the “high-water” one can vary dynamically from call to
call; in these cases, the compiler must emit code to compare the
continuations at run time, in order to correctly adjust the stack.

This paper addresses the issues raised by the demands of stack-
managing procedure calls in a CPS setting that permits multiple
continuations to be passed across function calls.



• First, we describe a reasonable static restriction on CPS that
ensures that multiple continuations can be safely passed across
function calls as pointers into a single stack (sections 2-5).

• Second, we describe a higher-order flow analysis that resolves
the order of various continuations on a common stack, permit-
ting a program to avoid computing the “high water” continua-
tion at run time. This helps to make complex multi-return-point
program structure a more pay-as-you-go feature (section 6).

• Third, we develop λMR as a motivating example: it can be
naturally converted into our Restricted CPS form using multiple
continuations; these continuations can be safely represented
as stack frames; and λMR programs that call procedures with
many return points can be analyzed by our flow analysis.

It’s worth noting that, while Fisher and Shivers developed λMR

with an eye towards representing programs written in it with
multi-continuation CPS, they did not exhibit a CPS conversion
algorithm for their language. The conversion we show is inter-
esting in that it handles the issue of “control polymorphism”
that arises by means of a simple type system; the CPS conver-
sion is thus type-directed (section 7).

• Fourth, we report on experimental results from a prototype im-
plementation of our analysis in Scheme48. Our findings show
that the analysis can find the youngest continuation in most
cases, and it requires little increase in compilation time and im-
plementation effort over k-CFA (section 8).

These results are obtained in a setting that permits continuations
to be captured by operators such as call/cc, which can force the
run-time stack to be copied to, and restored from, the heap. The
net result is to put CPS intermediate representations as they are
employed in practice onto a more solid footing, and to make multi-
continuation function calls more efficient, in a general setting.

2. Restricted CPS
We propose Restricted CPS as a variant of Partitioned CPS [7].
Partitioned CPS splits the variables, lambdas and calls of a CPS
program into disjoint sets, the “user” and the “continuation” set,
so that it is easy to distinguish the two syntactically. Elements of
the direct-style source program end up in the “user” set in CPS.
Continuations and calls added by the CPS transform end up in the
“continuation” set.

We begin with a brief description of Partitioned CPS (Fig. 1).
The partitioning between the user and the continuation world hap-
pens by assigning labels to CPS terms from two disjoint sets; user
elements get labels from ULab and continuation elements get la-
bels from CLab. Hence, UVar , ULam and UCall refer to user
variables, lambdas and calls respectively. Similarly, CVar , CLam
and CCall refer to continuation variables, lambdas and calls.

We assume that all variables in a program have distinct names
and all labels are unique. In such a program, the function VL(v)
returns the label of the lambda that binds the variable v and LV (l)
returns the list of continuation parameters of the ulam labeled l.
The function fcv(h) returns the set of free cvars of the term h.
Concrete syntax enclosed in [[·]] denotes an item of abstract syntax.

We use two notations for tuples, (e1, . . . , en) and 〈e1, . . . , en〉,
to avoid confusion when tuples are deeply nested. We use the latter
for lists as well; ambiguities are resolved by the context. Lists are
also described by a head-tail notation, e.g., 3 :: 〈1, 3,−47〉.

User functions take any number of user arguments and one
or more continuation arguments. Continuation functions take only
user arguments. In CPS, “returning” happens by calling a continu-
ation. Hence, only ulams can be returned, not clams. Thus, a con-
tinuation can only escape when it is bound to a cvar that occurs
free in a ulam .

pr ∈ PR ::= [[(λ(halt)call)]]
v ∈ Var = UVar + CVar

u, uvar ∈ UVar = a set of identifiers
k, cvar ∈ CVar = a set of identifiers

lam ∈ Lam = ULam + CLam
ulam ∈ ULam ::= [[(λl(u

∗ k+)call)]]
clam ∈ CLam ::= [[(λγ(u

∗)call)]]
call ∈ Call = UCall + CCall

UCall ::= [[(f e∗ q+)l]]
CCall ::= [[(q e∗)γ ]]

h ∈ Exp = UExp + CExp
f, e ∈ UExp = UVar + ULam
q ∈ CExp = CVar + CLam
ψ ∈ Lab = ULab + CLab
l ∈ ULab = a set of labels

γ, ζ ∈ CLab = a set of labels

Figure 1. Partitioned CPS

RCPS(x) = true
RCPS([[(λl(u1 . . . un k1 . . . km)call)]]) =
(fcv(call) ⊆ {k1, . . . , km} ∧RCPS(call)) ∨
([[(λl(u

∗ k+)call)]] ≡α [[(λ(f cc)(f (λ(x k)(cc x)) cc))]])
RCPS([[(λγ(u1 . . . un)call)]]) = RCPS(call)
RCPS([[(h1 . . . hn)

ψ]]) = RCPS(h1) ∧ · · · ∧RCPS(hn)
Figure 2. The RCPS predicate defines Restricted-CPS terms

(define (square n cc h)
(number? n (λ1(test)

(%if test
(λ2() (* n n cc))
(λ3() (h "not a number"))))))

Figure 3. Non-local exit

Many applications of multiple continuations use them in a
“downward” fashion: after its creation, a continuation closure is
passed as an argument to a number of ulams and then called – it is
never captured in a user closure.

This led us to observe that we can impose a syntactic con-
straint to Partitioned CPS and still maintain all its benefits; a ulam
can refer only to continuations from its list of formals, it can-
not have free cvars.1 The only ulam that is allowed to have a
free cvar appears in the CPS translation of call/cc, which is
(λ(f cc)(f (λ(x k)(cc x)) cc)). We refer to this variant of
CPS as “Restricted Continuation-Passing Style” (RCPS, Fig. 2).

By placing this restriction we permit more effective reasoning
about the stack behavior of continuations. In section 5 we show that
even in the presence of call/cc the continuation arguments of a
ulam are still on the stack.

The simple function in Fig. 3 takes two continuations. It com-
putes the square of its argument and passes it to the current con-
tinuation, or it calls the handler continuation if it is passed a non-
number. The program is in RCPS since the user functions can only
refer to continuations that are passed to them.2

1 Sabry and Felleisen also proposed this constraint to forbid first-class
control in single-continuation CPS [9].
2 Note that although we use the λ-calculus to develop our theory, we add
constants and primitives in the examples to keep them short and clear.



3. Stack management in RCPS
Might and Shivers [7] generalized ORBIT’s stack policy to handle
multiple continuations. Here, we give an outline of this stack policy.

At run time, continuations are closures whose environments live
on the stack. A continuation is represented as a pair (c, s) where c
is a pointer to its code and s a pointer into the stack. Continuations
access their free variables from a pointer into the stack, never from
the heap. To ensure this in the presence of first-class continuations,
we have to copy the stack when a continuation escapes and restore
it later when it is called.

Before a call to a user function [[(f e1 . . . en q1 . . . qm)]], we
want to retain the frames needed for q1 . . . qm and remove any
redundant frames. There are two possibilities:

• In a tail call, all qjs are variables, so they are bound to closures
already born. The frames pushed after the birth of the youngest
closure are not needed. We pop these frames to restore the
stack to the environment of the youngest closure. This way, all
continuations are retained when we enter f .

• In a non tail call, some qjs are lambdas. These are newly born
continuation closures, closed over the current stack pointer.
Thus, all frames are needed and we leave the stack intact.

After this adjustment, the environment of the youngest continuation
is at the top of the stack. We push a frame for f ’s arguments and
jump to f . Generally, this policy maintains the following invariant:
when a ulam is executing, the second frame is the youngest live
continuation.

In the same spirit, before calling a continuation [[(q e∗)]], its
environment must be on the top of the stack, so we reset the stack
to the stack of its birth.3 We then push a frame for its arguments
and jump to q. The invariant maintained here is that during q’s
execution the second frame points to its environment.

Returning to our example, if we run (square 5 halt err)
the actions on the stack are 〈square| 〈number?| |number?〉 〈1|
〈%if| |%if〉 〈2| |2〉 |1〉 |square〉 〈*| |*〉 〈halt|. The notation 〈ψ|
means pushing a frame for λψ , and |ψ〉 pops it. Initially we push
frames for square and number?. When we evaluate λ1 we pop
a frame to restore the stack of its birth and then push a frame for
its argument. The execution continues along these lines. The only
thing to note is the evaluation of (* n n cc); cc is bound to halt,
so to maintain the stack invariant we have to pop to the stack at the
time of halt’s birth. Thus, we pop three frames before pushing 〈*|.

4. Frame strings
In order to formally express stack properties and prove them, we
must have a way to describe actions on the stack. In languages with-
out tail calls, these push and pop actions correspond to sequences of
calls and returns that nest properly. The call-string mechanism [10]
can be used to describe these sequences. However, in properly tail-
recursive languages calls and returns no longer nest, because iter-
ative functions perform many calls and a single return. First-class
continuations break call-return nesting even more. However, stack
operations (that is, pushes and pops) still nest in these languages,
of course. Might and Shivers adapted the call-string mechanism
to create frame strings [7], an abstraction that works well for lan-
guages with exotic calling behavior.

We already gained some intuition about the use of frame-strings
in the last section; stack actions are pushes/pops and they contain
the label of the procedure being pushed/popped. We also mark
stack actions with timestamps e.g., | γ3

t4
〉 means popping the frame

3 Without call/cc this is just popping, with call/cc it might also include
pushing some frames.

that holds the arguments of a call to λγ3 and was first pushed on
time t4.4 A frame-string is a sequence of stack actions.

p ∈ F ::= ε F 〈ψ
t
| F |ψ

t
〉

Let’s return to our example and see how the stack looks after we
push 〈2|. Since the frames for number? and %if have been
popped, the stack is 〈square|〈1|〈2|. So, by repeatedly cancelling
adjacent push/pop actions for the same frame, we get a picture of
the stack. We call this netting the frame-string:

	p
=
{
	p1 p2
 ∃p1, p2.(p ≡ p1〈ψt ||ψt 〉p2)∨(p ≡ p1|ψt 〉〈ψt |p2)
p otherwise

In our example, if we net the frame string that starts with |2〉 and
ends with 〈halt | we get |2〉|1〉|square〉〈halt |. This gives us the
change to the stack after 〈2|.

The associative operator + concatenates two frame-strings.
Might and Shivers showed that frame-strings modulo netting form
a group with respect to concatenation. So, for every frame-string p
there exists another one p−1 such that 	p+p−1
 = 	p−1+p
 = ε.
Intuitively, the inverse string undoes the actions p did to the stack.
When inverting the concatenation of two frame strings, we know
that (p1 + p2)

−1 = p2
−1 + p1

−1.
To summarize, if the execution of a program is at time t and we

net the frame string from the initial time t0 to t, we will calculate
the stack at time t. Also, if we net the frame string from some past
time tp to t, we will see the stack change since tp. The ability to
use frame strings both for recording all stack actions and for finding
net stack change makes them a particularly helpful mechanism to
reason about the stack.

5. Concrete semantics and stack properties
In this section, we prove that the continuations passed to a user
function live on the stack, even in the presence of first-class control
(cf. item 2 of theorem 2). To do this, we use the concrete semantics
of the ΔCFA analysis [7]. This semantics extends k-CFA with a log
that records frame strings. ΔCFA uses the log only for recording
frame strings, not for variable binding or return-point information;
these are accomplished using environments, like k-CFA. The log
shows the stack actions that would happen at runtime if the program
was compiled using ORBIT’s stack policy. Here, we use the log to
study the stack behavior of continuations in RCPS.

The semantics and the relevant domains are shown in Fig. 4.
At every transition, ς refers to the state on the left of the arrow.
Boldface letters indicate tuples of values. Execution traces alternate
between Eval and Apply states. At an Eval state, we evaluate the
subexpressions of a call site before performing a call. At an Apply
state, we perform the call.

The last component of each state is a unique timestamp, taken
from the set Time . The function succ increments the time at every
transition. By t1 � t2 we mean that t2 is a later time than t1.
Times indicate points in the execution when variables are bound.
The binding environment β is a partial function from variables to
their binding times. The variable environment ve maps variable-
time pairs to values. To find the value of a variable v, we look up
the time v was put in β, and use that to search for the value in ve .

Let’s look at the transitions more closely. At a UEval state,
we evaluate the operator and the arguments using function A (rule
[UEA]). Lambdas evaluate to closures, which contain the binding
environment and also the time of creation. Variables are looked up
in ve using β. Note that in the resulting UApply state, we use d
and c to refer to the user and continuation arguments respectively,

4 First-class continuations allow the same frame to be pushed more than
once.



ς ∈ State = Eval + Apply
Eval = UEval + CEval

UEval = UCall × BEnv × VEnv × Log × Time
CEval = CCall × BEnv × VEnv × Log × Time
Apply = Proc × Proc∗ × VEnv × Log × Time

β ∈ BEnv = Var ⇀ Time
ve ∈ VEnv = Var × Time ⇀ Proc

c, d, proc ∈ Proc = Clo + halt
clo ∈ Clo = Lam × BEnv × Time
δ ∈ Log = Time ⇀ F

t ∈ Time = a countably infinite, totally ordered set

[UEA] ([[(f e∗ q+)]], β, ve, δ, t) −→ (proc, dc, ve, δ′, t′)
t′ = succ(ς)
proc = A(f, β, ve, t)
di = A(ei, β, ve, t)
cj = A(qj , β, ve, t)
pΔ = δ(youngest(cj))

−1

δ′ = (λ(t)(δ(t) + pΔ))[t
′ �→ ε]

[CEA] ([[(q e∗)]], β, ve, δ, t) −→ (proc, d, ve, δ′, t′)
t′ = succ(ς)
proc = A(q, β, ve, t), of the form (clam, βγ , tγ)
di = A(ei, β, ve, t),
pΔ = δ(tγ)

−1

δ′ = (λ(t)(δ(t) + pΔ))[t
′ �→ ε]

[AE] (([[(λψ(v
∗)call)]], β, tψ),d, ve, δ, t) −→ (call , β′, ve ′, δ′, t′)

t′ = succ(ς)
β′ = β[ vi �→ t′ ]
ve ′ = ve[ (vi, t′) �→ di ]
pΔ = 〈ψ

t′ |
δ′ = (λ(t)(δ(t) + pΔ))[t

′ �→ ε]

A(h, β, ve, t) �
{
ve(h, β(h)) h ∈ Var

(h, β, t) h ∈ Lam

Figure 4. Semantics of ΔCFA

although formally there is only one tuple of arguments in Apply
states. This harmless pattern matching helps us distinguish the two
easily. The CEval -to-CApply transition is similar (rule [CEA]).

From an Apply to an Eval state, we bind the formals of a
procedure 〈lam, β, tψ〉 to the arguments and jump to its body. The
new binding environment β′ is an extension of β, with the formals
mapped to the current time. The new variable environment ve ′

maps each (vi, t
′) to the corresponding closure di.

States use a log to keep track of the actions they would perform
on the stack. We write δt for the log of the state with timestamp t
(we omit t when it is clear from the context). Then, δt(t′) returns
a frame string of all the pushes and pops performed from time t′ to
time t. Also, we write δ(t)−1 to mean (δ(t))−1.

At each transition from ς to ς ′, pΔ records the stack change.
To find the stack actions from a time tp in the past to t′, we
concatenate the actions from tp to t with pΔ. Thus, the log δ′ of
ς ′ is (λ(t)(δ(t) + pΔ))[t

′ �→ ε]. Naturally, δ′(t′) is ε because
some time must elapse for stack change to happen.

The stack policy dictates the stack actions pΔ at each transi-
tion. At [UEA], we must undo all actions that happened since the
creation of the youngest continuation argument. We use the func-
tion youngest , which takes a set of closures, compares their cre-
ation times and returns the most recent time. Then, the stack change
should be δ(youngest(cj))

−1. We compute pΔ for the other transi-

tions in a similar way. Before calling a continuation, we must reset
the stack to the stack of its birth (rule [CEA]). Before entering a
function, we push a frame for its arguments (rule [AE]).

We use halt to denote the top-level continuation of a program
pr . The initial state I(pr) is (〈pr , ∅, t0〉, 〈halt〉, ∅, [t0 �→ ε], t0).

With the formal machinery in place, we can now show that in
a UEval state ς , the frames that make up the environments for
the continuation arguments q1 . . . qm are still on the stack. When
a continuation qj is born, its environment is on the top of the stack,
so it suffices to show that the net stack change from qj’s birth to ς is
push-monotonic (written 〈 .

.
|∗, to mean a frame string that contains

just pushes). In this case, the stack adjustment δ(youngest(cj))
−1

in [UEA] transitions consists solely of pops.
By observing the CPS translation of call/cc you can see why

our claim holds even when we allow first-class control: when a
continuation is captured by a ulam , it can only be called later on,
it cannot be passed as an argument to another ulam .

To prove push-monotonicity, we will show that each state satis-
fies a tighter set of constraints (cf. theorem 2). The first constraint is
arguably the most important because it talks about stack properties
of any continuation closure in ve . The stack motion between the
birth of such a closure and the current state can be arbitrary. The
constraint guarantees that when a continuation closure is created, it
captures continuations that are still on the stack.

Let’s look more closely at the creation of continuation-closures.
For every continuation lambda λγ , there is an innermost user
lambda λl that contains it. Because of RCPS, λγ can only refer
to continuation variables bound by λl. To create a closure c over
λγ , we must first call λl. Assume that at the time of the call we
pass continuations c1 . . . cm that are still on the stack. Then, if the
net stack motion p from the call to λl to the creation of c is push-
monotonic, c1 . . . cm will still be on the stack when c is created.
There are two cases for λγ : it can appear directly under λl, e.g.,

(λl(u k1 k2) (u 15 (λγ(res) (+ 4 res k1))))
or after a series of CEvals whose operators are lambdas, e.g.,

(λl(k1)((λγ1(u1)
((λγ2(u2) ((λγ(u)(k1 u)) "hello"))
"foo"))

"bar"))

In both cases, p is push-monotonic.

DEFINITION 1 (Continuation ordering).
Ord({q1, . . . , qn}, β, ve, δ, t) is true iff:

• Let k ∈ ⋃
fcv(qi) and ve(k, β(k)) = (clam, β′, t′).

Then, we have that 	δ(t′) + δ(t)−1
 is 〈 .
.
|∗

• Let k1, k2 ∈ ⋃
fcv(qi) and ve(k1, β(k1)) = (clam1, β1, t1)

and ve(k2, β(k2)) = (clam2, β2, t2) and t1 � t2.
Then, we have that 	δ(t1) + δ(t2)

−1
 is 〈 .
.
|∗

THEOREM 2. Let ς be a state of the form (. . . , ve, δ, t)

• If (clam, β, t′) ∈ range(ve) then Ord({clam}, β, ve, δ, t′)
• If ς ∈ UEval , ([[(f e∗ q1 . . . qm)]], β, ve, δ, t) then
Ord({q1, . . . , qm}, β, ve, δ, t)

• If ς ∈ CEval , ([[(q e∗)]], β, ve, δ, t) and q ∈ clam then
Ord({q}, β, ve, δ, t)

• If ς ∈ UApply , ((ulam, β, t′),d c1 . . . cn, ve, δ, t) and
ci = (clami, βi, ti) then Ord({clami}, βi, ve, δ, ti) and
	δ(ti)
 is 〈 .

.
|∗ and for each ta, tb ∈ {t1, . . . , tn} such that

ta � tb we have that 	δ(ta) + δ(tb)
−1
 is 〈 .

.
|∗

• If ς ∈ CApply , ((clam, β, t′),d, ve, δ, t) then
Ord({clam}, β, ve, δ, t)

Proof . We show that the constraints hold for I(pr) and are main-
tained by transition. �



Note that in a CEval state, if q is a variable we can guarantee
nothing about it; it may be bound to a continuation that has escaped.
Therefore, q’s environment may be popped.

However, in a program without call/cc we can guarantee that
continuation environments are never popped because CEval states
satisfy Ord({q}, β, ve, δ, t) even if q is a variable.

6. Continuation-Age analysis
We now know that continuation environments are still on the stack
in UEval states. This means that we never need to push frames to
restore environments in UEval . Also, it means that the environ-
ments are totally ordered on the stack at run time. Put formally, if
t1 and t2 are the birthdays of two continuations then either 	δ(t1)

is a suffix of 	δ(t2)
 or vice versa. So, if ty is the birthday of the
youngest continuation then 	δ(ty)
 is a suffix of 	δ(tc)
 where tc
is the birthday of any other continuation.

So far there has not been an analysis that finds the youngest
continuation, and one would have to resort to dynamic checks. We
present Continuation-Age analysis (abbrev. Cage analysis) that can
find the youngest continuation statically in most cases. We first
show the workings of the analysis by example and then proceed to
develop a formal semantics for it. Consider the following snippet
of some RCPS program pr :

(λ(u1 . . . u5 k1 k2 k3)
... (u2 k1 k3 (λγ(u6)call) (λζ(u7)call

′))l...)

Assume that we let pr run and execution reaches the call site l.
We know that k1, k2 and k3 are bound to closures whose envi-
ronments are totally ordered, e.g., with k3 being the youngest and
k2 the oldest. Also, assume that u2 is bound to a closure over
[[(λl2(k4 k5 k6 k7)call

′′)]]. To find the ordering of the environ-
ments at l we first observe that k2 is not used at the call site, so we
do not take it into account. Also, λγ and λζ will evaluate to newly
born closures, so the ordering after control enters l2 will be “k6 and
k7 followed by k5 followed by k4”. Because of RCPS, this is the
only information we need to keep to decide the order of continu-
ations inside call ′′; remember that fcv(call ′′) ⊆ {k4, k5, k6, k7}.
For this reason, our analysis can simply record total orders of cvars
bound by the same ulam .5 It can forget which closures these cvars
are bound to.

6.1 Concrete semantics

The concrete semantics of Cage and some auxiliary definitions are
shown in Fig. 5. To remove elements from lists we use the set-
difference operator, with its meaning adapted in the obvious way.
We use map(f, lst) to apply a function f to all elements of lst .
The function ind(elm, lst) finds the 1-based index of elm in lst
and get(i, lst) returns the element at index i in lst . We also lift get
and ind to sets of elements/indices respectively.

The semantic domains are the same as k-CFA with the addition
of two domains to record the ordering of continuations.

ages, tor ∈ Tor = (Pow(CVar))∗

ce ∈ CEnv = ULab × Time ⇀ Tor

We represent a total order as a list of sets of cvars, rather than just
a list of cvars, because we want to make explicit the case when two
closures are born at the same time. In our example, the order will
be 〈{k6, k7}, {k5}, {k4}〉. The continuation environment ce maps
pairs of user-labels and times to total orders. We write k �tor k

′ to
mean that the index of k is smaller than or equal to the index of k′

5 Even though the CPS translation of call/cc contains the term
[[(λ(x k)(cc x))]] with a free cvar , this is not a problem since this
ulam does not contain a user call site. Thus, we do not need to find the age
of continuations while in [[(λ(x k)(cc x))]].

[UEA] ([[(f e∗ q1 . . . qm)]], β,ve,ce,t)−→(d0,dc,ve,ce,ages,t′)
t′ = succ(ς)
d0 = A(f, β, ve, t), of the form ([[(λl(v

+)call)]], . . . )
di = A(ei, β, ve, t)
cj = A(qj , β, ve, t)

tor =

{
ce(VL(qj), β(qj)) ∃ 1 � j � m. qj ∈Var

〈〉 ∀ 1 � j � m. qj ∈Lam

rename(S) = Get(Ind(S, 〈q1 . . . qm〉),LV (l))
ages = (rename(CLam) :: map(rename, tor)) \ {∅}

[UAE] (d0,d, ve, ce, ages, t) −→ (call , β′, ve ′, ce ′, t′)
d0 ≡ ([[(λl(v

+)call)]], β, tl)
t′ = succ(ς)
β′ = β[ v �→ t′ ]
ve ′ = ve[ (v, t′) �→ di ]
ce ′ = ce[(l, t′) �→ ages]

[CEA] ([[(q e1 . . . en)]], β, ve, ce, t) −→ (proc,d, ve, ce, t′)
t′ = succ(ς)
proc = A(q, β, ve, t)
di = A(ei, β, ve, t)

[CAE] (([[(λ(u∗)call)]], β, tγ),d, ve, ce, t)−→(call , β′, ve ′, ce, t′)
t′ = succ(ς)
β′ = β[ui �→ t′ ]
ve ′ = ve[ (ui, t′) �→ di ]

ind(elm, lst) =

{
i lst = 〈e1, . . . , em〉, elm = ei
⊥ otherwise

Ind(S, lst) = { ind(s, lst) | s ∈ S} \ {⊥}

get(i, lst) =

{
ei lst = 〈e1, . . . , em〉, 1 � i � m

⊥ otherwise

Get(I, lst) = { get(i, lst) | i ∈ I} \ {⊥}
Figure 5. Concrete semantics of Cage Analysis

in tor , i.e., k is younger than k′.

k�tor k
′ = ∃S, S′. k∈S ∧ k′∈S′ ∧ ind(S, tor) � ind(S′, tor)

In UEval , we gather order information about the ulam we are
in, and use it to compute order information about the ulam we are
about to enter. Since the new bindings in ce take place in UApply ,
ages serves as the carrier of that information between states.

Let’s see how to find the order for the next ulam using the order
of the current ulam . If there are any lambdas among q1 . . . qm,
the variables they will be bound to will be the youngest. So
rename(CLam) gathers the indices of lambdas among q1 . . . qm,
and uses them to index in the list of formals of λl. If every qj is
a variable, rename(CLam) returns the empty set. If there are
variables among q1 . . . qm, they are bound by the same ulam ,
and ce(VL(qj), β(qj)) gathers the order information for that
ulam . Then, we filter out variables that are not among q1 . . . qm
and index the rest in the list of formals of λl. In our example,
ce(VL(k3), β(k3)) returns 〈{k3}, {k1}, {k2}〉 and map(rename,
〈{k3}, {k1}, {k2}〉) returns 〈{k5}, {k4}, ∅〉. We remove possible
empty sets from our list and we have the new ages .

Since only user states can influence the ordering, the semantics
for CEval and CApply are the same as k-CFA. Note that we can
compute continuation ages without using information about the
stack actions, thus we do not need a log in the Cage semantics.



[ÛEA] ([[(f e∗ q1 . . . qm)]], β̂, v̂e, ĉe, t̂)�(d̂0, d̂ ĉ, v̂e, ĉe, âges, t̂′)
t̂′ = ŝucc(ς̂)

d̂0 ∈ Â(f, β̂, v̂e, t̂), of the form ([[(λl(v
+)call)]], . . . )

d̂i = Â(ei, β̂, v̂e, t̂)

ĉj = Â(qj , β̂, v̂e, t̂)

tors=

{
ĉe(VL(qj), β̂l(qj)) ∃ 1 � j � m. qj ∈ Var

〈〉 ∀ 1 � j � m. qj ∈ Lam

ren(S) = Get(Ind(S, 〈q1 . . . qm〉),LV (l))
âges={ (ren(CLam) :: map(ren, tor))\{∅} | tor ∈ tors}

[ÛAE] (d̂0, d̂, v̂e, ĉe, âges, t̂) � (call , β̂′, v̂e ′, ĉe ′, t̂′)
d̂0 ≡ ([[(λl(v

+)call)]], β̂, t̂l)
t̂′ = ŝucc(ς̂)

β̂′ = β̂[ v �→ t̂′ ]

v̂e ′ = v̂e � [ (v, t̂′) �→ d̂i ]
ĉe ′ = ĉe � [(l, t̂′) �→ âges]

[ĈEA] ([[(q e1 . . . en)]], β̂, v̂e, ĉe, t̂) � (p̂roc, d̂, v̂e, ĉe, t̂′)
t̂′ = ŝucc(ς̂)

p̂roc ∈ Â(q, β̂, v̂e, t̂)

di = Â(ei, β̂, v̂e, t̂)

[ĈAE] (([[(λ(u∗)call)]], β̂, t̂γ), d̂, v̂e, ĉe, t̂)�(call , β̂′, v̂e ′, ĉe, t̂′)
t̂′ = ŝucc(ς̂)

β̂′ = β̂[ui �→ t̂′ ]

v̂e ′ = v̂e � [ (ui, t̂′) �→ d̂i ]

Figure 6. Abstract semantics for Cage Analysis

6.2 Abstract semantics

Abstracting the semantics of Cage raises no difficulty. Like k-CFA,
making the set T̂ime finite ensures computability of the abstract
state-space. The abstract counterparts of Tor and CEnv are

âges, tors ∈ T̂or = Pow(Tor)

ĉe ∈ ĈEnv = ULab × T̂ime ⇀ T̂or

Since one abstract state corresponds to many concrete states, we
have to fold many total orders to one element of T̂or . Thus, the
elements of T̂or are sets of total orders, with set-union being the
join operation. For a cvar to be the youngest in tors , it has to be
the youngest in every total order contained in tors . This happens
because different elements of tors correspond to different flows of
control in the abstract semantics. Some of these flows may have
occurred due to imprecision introduced by the static analysis, but
most of them will have a concrete counterpart, so we make sure that
all concrete flows agree on the age of cvars. We also define maps
from the concrete to the abstract domains.

|tor | = {tor}
|ce| = (λ(l t̂)

⊔
|t|=t̂ |ce(l, t)| )

The abstract semantics is shown in Fig. 6. Contrary to the
concrete semantics, it is non-deterministic. Also, when we add new
elements to v̂e and ĉe we join them instead of doing a destructive
update. The two semantics are otherwise similar.

6.3 Soundness

There are two results we need to establish for our analysis to be
sound. We first show that a total order of cvars “agrees” with the
birthdays of the closures to which these variables are bound.

�2 (λ(x)x+1) (λ(x)x+2)� −→ ((λ(x)x+1) 2) −→ 3

��2 #2� (λ(x)x+1) (λ(x)x)� −→ �2 (λ(x)x)� −→ 2

((λ(f) if test
�(f 2) (λ(x)x+ 1) (λ(x)x− 1)�
�(f 3) #1�)

(λ(y) y ∗ y))

Figure 7. Examples of λMR

THEOREM 3. Let ς be any state of the form (. . . , ve, ce, . . . ) and
ce(l, t) = tor . If ki �tor kj and ve(ki, t) = (clam, βγ , tγ)
and ve(kj , t) = (clam ′, βζ , tζ) then tζ � tγ i.e., ve(ki, t) was
born later than ve(kj , t).

Secondly, we show that the abstract semantics simulates the con-
crete semantics, which means that our approximation is safe.

THEOREM 4 (Soundness of Cage analysis). If |ς| � ς̂ and ς −→
ς ′ then there exists ς̂ ′ such that ς̂ � ς̂ ′ and |ς ′| � |ς̂ ′|.

Regarding the time complexity of Cage: since n elements can
be totally ordered in n! ways, and the range of ĈEnv records sets
of total orders, the analysis is exponential in max-lenl∈ULab LV (l).
This is not a problem in practice, since the number of continuation
arguments is usually small. A factor that can influence the speed of
Cage more dramatically is the choice of T̂ime , since for k greater
than zero k-CFA is exponential in the size of the program [15].

Alternatively, there is a less precise lattice we can use for
ĈEnv . ĈEnv can record partial orders of cvars and the join
would be set-intersection. Then, ki would be younger than kj
in ĉe1 � ĉe2 iff (ki, kj) ∈ ĉe1 and (ki, kj) ∈ ĉe2. However,
join introduces more approximation than we would like. For
example, consider ĉe1 = {(k1, k2), (k1, k3), (k2, k3)} and
ĉe2 = {(k3, k2), (k3, k1), (k2, k1)}.6 Then, ĉe1 � ĉe2 is ∅ even
though we know that k2 is never the youngest. In other words, this
representation cannot express properties like “either k1 or k3 is
younger than k2.”

6.4 Cage vs ΔCFA for age analysis

Theoretically, we could use ΔCFA to find the youngest continu-
ation. Since ΔCFA tracks stack change, we would check if the
change between the birthdays of two closures is push monotonic.
In practice, this does not work well for the following reasons.

First, variables in the abstract are bound to sets of closures. So,
if we want to compare the age of two cvars at a call site, we must
check that every closure in one set is younger than every closure
in the other set. But then we would end up comparing closures
from different flows, which causes imprecision. Cage decouples
variables from their bindings and remembers distinct flows as dis-
tinct total orders, thus avoiding these problems.

Second, the stack information ΔCFA computes in the abstract
can be imprecise in the presence of recursion. It does roughly the
following: it can remember exactly one push or one pop action for
some λψ , but if we push two (or more) frames for λψ , ΔCFA will
record this as 〈ψ|∗. Therefore, if we enter a recursive procedure and
later return, ΔCFA will not net the pushes and pops. Cage does
not suffer from this problem because it does not use the stack to
compute continuation age.



7. From λMR to RCPS
The multi-return λ-calculus [12] is a variant of the λ-calculus in
which functions may have many return points. Return points are
not first-class continuations, hence they give the programmer the
ability to express a wide variety of algorithms without paying the
cost of general-purpose, heap-allocated continuations. Search algo-
rithms that take a success and a failure continuation, functional tree
transformations and LR-parsers are typical examples of programs
that are naturally and efficiently expressed with this mechanism.

The multi-return form �e r1 . . . rm� is how we get contexts
with many return points. The expression e is evaluated with m
return points in scope. If e does not use the multi-return form
internally, it will always return to the first one, as in the first
example of Fig. 7. However, if e is of the form �e′ #i� then the
result of e′ will be passed to ri, as in the second example. A return
point #i passes its input to the ith return point of its own context.

Restricted CPS, with the restrictions it places on continuations,
would seem like a natural target for λMR. However, a subtlety of
λMR is that functions are polymorphic in the number of return
points that they expect, they do not specify it explicitly in their
syntax. The last snippet of Fig. 7 is one such example. Depending
on the result of the test, the square function will be evaluated in a
context with one or two return points, even though it always returns
to the first. Since in RCPS a ulam has to specify the number of
continuations it expects, we cannot translate this code to RCPS.

A control-monomorphic variant however has a simple transform
to RCPS. We require that a function take a specific number of return
points, which we pass when we apply the function. We change the
syntax and semantics of λMR slightly to reflect this (section 7.1).
We provide a type system that rejects control-polymorphic λMR

programs and prove it sound (section 7.2). Then, we give a type-
directed transform from λMR to RCPS (section 7.3).

7.1 Syntax and semantics

Expressions in control-monomorphic λMR include variables, num-
bers, functions, applications with a specified number of return
points and multi-return forms. Numbers and functions are values:

lam ∈ Lam ::= (λ(x) e)

e∈Exp ::= x n lam �(e1 e2) r1 . . . rm � � e r1 . . . rm�

r ∈ RP ::= lam #i

The semantics is call-by-value (Fig. 8). To evaluate �e r1 . . . rm�,
we first evaluate e in a context with m return points (multi-prog).
If it reduces to a value v and there is a single return point which is
a function, we apply it to v (fst-lam). If the single return point is
#1 we return v to the context (fst-sharp). When there are multiple
return points, v is returned to the first one (multi-drop). If e evalu-
ates to �v #i� in a context with i or more return points then we
pass v to ri (multi-select).

In an application we start with the operator (rator), then the
operand (rand) and then the body of the function (app). These rules
highlight the difference from control-polymorphic λMR. Unlike
the last example of Fig. 7, we have to mention the return points
when applying a function. Our type system checks that a function
is always applied in contexts with the same number of return points.

A note about the stack behavior of λMR deserves a mention.
When a return point is a function, it requires a frame to be pushed,
while a #i return point just points to an older frame. Thus, when
all return points of �e r1 . . . rm� are not functions, the stack does
not grow, and it might even shrink. This is essentially the tail call
mechanism applied to λMR.7

6 For readability, we omitted the reflexive pairs from the relations.
7 For details, see [12] where semi-tail calls and super-tail calls are explained.

7.2 Types for control-monomorphism

We modify the original type system of λMR to annotate function
types with the number of return points that a function expects.

Each expression e is assigned a type vector 〈τ1, . . . , τn〉 mean-
ing that if e returns a value v to its ith return point, v has type τi.
Placing ⊥ instead of a type at index i means that e never returns
to that return point. For example, �11 #2� has type 〈⊥, int〉. But
�11 #2� never returns to any return point ri for i > 2. Hence
it can also have type 〈⊥, int,⊥〉, 〈⊥, int,⊥,⊥〉, etc. Moreover,
〈int, int〉 is also a possible type since the requirement “if �11 #2�
returns to its first return point it gives back an integer” is vacuously
true. To model these, our type system has a notion of subtyping.

Types include integers and functions, and type vectors �τ are
finite maps from natural numbers to types. Then, �τ [i] =⊥ means
that i /∈ dom(�τ).

τ ∈ T ::= int (τ, n) → �τ

�τ ∈ �T = N
fin→ T

Function types include a natural number n, meaning that n return
points must be provided when a function f is applied. Obviously,
we run into trouble if f tries to return to ri for i > n. Therefore,
we require that |�τ | � n where |�τ | is min{ i | ∀ j > i. �τ [j] =⊥}.
The subtyping rules for types and vectors are

int � int
τb � τa �τa ���τb

(τa, n) → �τa � (τb, n) → �τb

∀ i ∈ dom(�τa). i ∈ dom(�τb) ∧ �τa[i] � �τb[i]

�τa �� �τb

The type system is shown in Fig. 9. It assigns type vectors to
expressions under an environment Γ which is a partial map from
variables to types.

The rules for numbers and variables are standard (num, var).
To typecheck a function (λ(x) e), we typecheck its body in an
environment extended with x. The side condition states that if the
function uses |�τ | return points then it must request at least as many
in its type.

For an application �(e1 e2) r1 . . . rm� we require that e1
have a function type with exactly m return points (appl). The
type of the argument must be a subtype of what the function
expects (side condition 1). If the jth return point is a lam with
type 〈 (τj , mj) → �τj 〉, then anything that e1 returns to it must
be a subtype of τj . Additionally, anything that rj returns to the
context must be consistent with what the whole expression returns.
For this, we require �τj ���τapp (side condition 2). On the other hand,
if the return point is of the form #i then whatever e1 returns to its
jth return point will be sent to the context’s ith return point, which
is why we require �τ [j] � �τapp[i] (side condition 3).

For a �e r1 . . . rm� expression (multi) the typing constraints
required from return points are the same as in the application case
(side conditions 2, 3). We also require that e only try to return to
r1 . . . rm (side condition 1).

We can now see why the type system rejects control-polymorphic
λMR programs. The operator of our last example is

(λ(f) if test
�(f 2) (λ(x)x+ 1) (λ(x)x− 1)�
�(f 3) #1�)

The true-branch requires f to have a type of the form 〈 (int, 2) →
�τa 〉 and the false-branch requires f to have a type of the form
〈 (int, 1) → �τb 〉. Since none of these types is a subtype of the
other, the body cannot be typechecked with a unique type for f .



[multi− prog]
e→ e′

�e r1 . . . rm�→ �e′ r1 . . . rm�
[fst− lam]

�v (λ(x) e)�→ [v/x]e

[fst− sharp]
�v #1�→ v

[multi− drop]
�v r1 . . . rm�→ �v r1�

[multi− select]
1 < i � m

� � v #i � r1 . . . rm�→ �v ri�
[rator]

e1 → e′1
�(e1 e2) r1 . . . rm�→ �(e′1 e2) r1 . . . rm�

[rand]
e2 → e′2

�((λ(x) e) e2) r1 . . . rm�→ �((λ(x) e) e′2) r1 . . . rm�
[app]

�((λ(x) e) v) r1 . . . rm�→ �[v/x]e r1 . . . rm�

Figure 8. Operational Semantics of λMR

[num] Γ � n : 〈 int 〉 [var]
Γ � x : 〈Γ(x) 〉 x ∈ dom(Γ) [abs]

Γ[x �→ τ ] � e : �τ

Γ � (λ(x) e) : 〈 (τ, n) → �τ 〉 n � |�τ |

[appl]

Γ � e1 : 〈 (τ, m) → �τ 〉 Γ � e2 : �τ2

Γ � rj : 〈 (τj , mj) → �τj 〉 (∀ rj ∈ Lam)

Γ � �(e1 e2) r1 . . . rm� : �τapp

(1) �τ2 ��〈 τ 〉
(2) ∀ rj ∈ Lam. (�τ [j] =⊥ ∨ �τ [j] � τj) ∧ �τj ���τapp
(3) ∀ rj = #i. �τ [j] =⊥ ∨ �τ [j] � �τapp[i]

[multi]

Γ � e : �τe

Γ � rj : 〈 (τj , mj) → �τj 〉 (∀ rj ∈ Lam)

Γ � �e r1 . . . rm� : �τ

(1) |�τe| � m

(2) ∀ rj ∈ Lam. (�τe[j] =⊥ ∨ �τe[j] � τj) ∧ �τj ���τ
(3) ∀ rj = #i. �τe[j] =⊥ ∨ �τe[j] � �τ [i]

Figure 9. Types

Trivial Term:
T [[x]] = x

T [[n]] = n

T [[(λ(x) e)]] = (λ(x k1 . . . km)S [[e]] k1 . . . km) where (λ(x) e) has type 〈 (τ, m) → �τ 〉
Return Point:

R[[#i]] k1 . . . kl = ki
R[[(λ(x) e)]] k1 . . . kl = (λ(x)S [[e]] k1 . . . kl)

Serious Term:
S [[t0]] k1 . . . kl = (k1 T [[t0]])

If every ki is a variable,
S [[�(t0 t1) r1 . . . rm�]] k1 . . . kl = (T [[t0]] T [[t1]] (R[[r1]]k1 . . . kl) . . . (R[[rm]]k1 . . . kl))

S [[�(t0 s1) r1 . . . rm�]] k1 . . . kl = S [[s1]] (λ(x)(T [[t0]] x (R[[r1]]k1 . . . kl) . . . (R[[rm]]k1 . . . kl)))

S [[�(s0 t1) r1 . . . rm�]] k1 . . . kl = S [[s0]] (λ(x)(x T [[t1]] (R[[r1]]k1 . . . kl) . . . (R[[rm]]k1 . . . kl)))

S [[�(s0 s1) r1 . . . rm�]] k1 . . . kl = S [[s0]] (λ(f)S [[s1]] (λ(x)(f x (R[[r1]]k1 . . . kl) . . . (R[[rm]]k1 . . . kl))))

If there exists a lam among k1 . . . kl ,
S [[�(e0 e1) r1 . . . rm�]] k1 . . . kl = ((λ(k1 . . . kl)S [[�(e0 e1) r1 . . . rm�]] k1 . . . kl) k1 . . . kl)

If every ki is a variable,
S [[�e r1 . . . rm�]] k1 . . . kl = S [[e]] (R[[r1]]k1 . . . kl) . . . (R[[rm]]k1 . . . kl)

If there exists a lam among k1 . . . kl,
S [[�e r1 . . . rm�]] k1 . . . kl = ((λ(k1 . . . kl)S [[e]] (R[[r1]]k1 . . . kl) . . . (R[[rm]]k1 . . . kl)) k1 . . . kl)

Figure 10. Transformation of λMR to Restricted CPS



We split the type-soundness proof in the progress and preserva-
tion theorems.

THEOREM 5 (Progress).
If Γ � e : �τ and e is closed then either e is a value, or e is of the
form �v #i� where i > 1, or e→ e′.

THEOREM 6 (Preservation).
If Γ � e : �τ and e→ e′ then Γ � e′ : �τ ′ where �τ ′ ���τ .

Both proofs proceed by structural induction on e. In the progress
theorem, note that a well-typed expression does not always reduce
to a value. It might evaluate to a multi-return form that cannot take
any steps. The proofs require the following lemmas.

LEMMA 7 (Weakening).
If Γ[x �→ τ ] � e : �τ and x /∈ FV (e) then Γ � e : �τ .

LEMMA 8 (Substitution).
If Γ[x �→ τ ] � e : �τ1 , e′ is closed and has type � e′ : �τ ′, and
�τ ′ ��〈τ〉 then Γ � [e′/x]e : �τ2 such that �τ2 ���τ1.

7.3 Transformation of λMR to RCPS

In this section, we describe a CPS transformation from λMR to
RCPS (Fig. 10). Fisher and Shivers have shown that multi-return
functions are cheap to implement and do not require novel compila-
tion techniques. By translating λMR to RCPS, it becomes amenable
to Cage Analysis which can further improve performance.

The transform relies on information provided by the type system
to add the correct number of continuation parameters to ulams. We
use standard techniques [3] to make the transform compositional
and first-order. Last, some effort is spent on making sure that the
transform does not duplicate code.

The transform uses three mutually recursive functions, for triv-
ial terms, serious terms and return points. Variables and values are
trivial terms and the rest are serious. The metavariables t and s
range over trivial and serious terms respectively. Underlined lamb-
das λ generate fresh identifiers to avoid variable capture. We apply
the transform to a λMR program e by calling S [[e]]halt .

The translation of variables and numbers is straightforward.
When translating a ulam , we look at its type to find out how many
continuations it takes in CPS.

A #i return point becomes a reference to the ith continuation of
its context. A (λ(x) e) return point becomes a clam in CPS. Here,
there is possible code duplication that we want to avoid. Assume
that one of k1 . . . kl is a clam . Then, if e refers to the corresponding
return point more than once, this clam will be duplicated. For this
reason, the rest of the rules call R with cvar arguments only.

If S is applied to a trivial term then we return the term to the
first continuation.

Application is split in four cases depending on the operator and
the operand. Note how the continuations k1 . . . kl are passed to all
return points, which is why we require that they all be cvars to
prevent duplication. If there is a clam among k1 . . . kl we create a
new ulam and transform the application using the new cvars.8

For �e r1 . . . rm�, we have to translate e in a context with m
continuations. Here again we split in two cases to avoid duplication.

It is simple to see why our transformation generates RCPS
code. The only place where a ulam is generated is the rule
T [[(λ(x) e)]], and we pass only the newly-created cvars to e.

The duplication of code is best seen in an example. Assume
that we omit the rules that take care of clams in k1 . . . kl. Then,

8 This rule may appear to break compositionality at first glance, because the
right hand side does not call S on a proper subexpression of the left hand
side. However, it can be expanded to four rules as in the all-variable case,
which is compositional. We use one rule only for readability.

all continuation arguments are treated the way variables are now
treated. In the following transform, the return point (λ(y) e′) will
be duplicated in the RCPS output:

S [[� � ((λ(x) e) 42) #1 #1 � (λ(y) e′)�]] halt
= S [[�((λ(x) e) 42) #1 #1�]] (λ(y)S [[e′]] halt)
= ((λ(x k1 k2)S [[e]] k1 k2) 42

(λ(y)S [[e′]] halt)
(λ(y)S [[e′]] halt)

On the other hand, our transformation yields the more compact:

((λ(k) ((λ(x k1 k2)S [[e]]k1k2) 42 k k))
(λ(y)S [[e′]]halt))

8. Evaluation of Cage
We implemented Cage in Scheme48. Our compiler takes a multi-
return Scheme program to RCPS, on which it runs Cage. It does
not go all the way down to machine code. We measured the preci-
sion by counting the multiple-continuation call sites for which the
analysis can find the youngest continuation statically. The results
are encouraging, since the analysis is very precise, with little addi-
tional cost in running time and implementation effort over k-CFA.

Our analysis handles a purely functional subset of Scheme with
numbers, booleans, lists, explicit recursion, and multi-return func-
tions. We changed the front end of Scheme48 to accept a multi-
return construct. After the front end takes care of parsing and
macro-expansion, every call in the AST is represented as a multi-
return call, e.g., (+ 1 2) becomes �(+ 1 2) #1�. This makes the
conversion to RCPS more uniform. The compiler then runs Cage,
followed by a final linear pass that computes the results per call site
(since ages in ĉe are grouped by ulam labels). For instance, assume
that, for the lambda expression (λl(f k1 k2) (f ’(1 2 3) k2
k1)γ), Cage finds that k1 is younger than k2 in every total or-
der contained in

⊔
t̂∈̂Time

ĉe(l, t̂ ). Then, the final pass will deduce
that k1 is always younger than k2 at γ. Our current implementation
spots the opportunity for optimization and stops. However, this in-
formation could be passed to a code-generation phase, which would
avoid emitting code to check the ages of continuations at γ.

Fisher and Shivers suggested that LR-parsers can be compiled to
λMR, with considerable speed gains [12]. Each state of the parser’s
automaton is represented as a function; a shift is a function call.
Reductions do not return to a state function’s immediate caller;
but to points higher in the stack. This is handled with multiple
return points to point to the necessary frames; a simple analysis
determines how these return points represent the target reduction
states. Such parsers contain an abundance of multi-continuation
calls, which makes them attractive benchmarks for Cage.

We ran Cage (with k = 0) on a parser for a medium-sized,
Pascal-like language. Out of the 973 calls to ulams, 152 pass two
continuations and 32 pass three. If there is a clam argument, it
is trivially the youngest continuation. This happens in 20 calls.
The remaining 164 pass only cvars. Cage found the youngest
continuation in 142, and in 22 calls it narrowed the youngest down
to two choices instead of three. There was no call site for which the
analysis failed to gain at least partial information. Cage amounts to
19.8% of the total running time of the abstract interpretation (the
rest is spent on flow analysis), and 32.2% of the code size.

The effectiveness of the analysis is also illustrated by tail-
recursive programs that can throw exceptions. The RCPS program
of Fig. 11 sums all numbers in a list l and returns to cc, or throws
an exception by calling h if it finds a non-number in l. It could
have been written originally in any language with exceptions, or
in a multi-return language. Placed in some code that computes the
sum of a list of lists of numbers, this essentially becomes the inner



(define (suml l acc cc h)
...
(number? fst)
(λ(test2)
(%if test2
(λ()
(cdr l
(λ(rest)
(+ acc fst

(λ(sum) (suml rest sum cc h))))))
(λ() (h "not a number")))))

Figure 11. Tail recursion with exceptions

loop, so optimizing it is crucial. Cage statically figures out that the
continuations in the recursive call have the same age.

In the following program, Cage fails to figure out the youngest
continuation passed to λl1 when k is 0. That is because in l2 the first
continuation is the youngest, and in l3 the second. Similar examples
can be written for any k:

((λ(f k) (%if some-test
(λ() (f (λ(x) (k x)) k)l2)
(λ() (f k (λ(y) (k y)))l3)))

(λ(k1 k2) ...)l1

halt)

Overall, we are satisfied with the precision of Cage. It remains
to be seen how useful it is in practice. More experience with multi-
return code and multi-continuation CPS is needed to see if cvar -
only call sites show up as often as in the programs presented here.

9. Related work
CPS was first formalized by Plotkin [8] and was used as an IR
in Rabbit [14] and ORBIT [5], which were early and influential
compilers for Scheme. Shivers used CPS to solve the control-flow
problem in higher-order functional languages [11].

The starting point for the present work has been ΔCFA [6, 7].
ΔCFA is a static analysis that can reason about stack change in
functional languages with first-class control. To date, ΔCFA has
been primarily used to show environment equivalence and related
optimizations, but it enables, in principle, many stack-related trans-
formations. We use several elements of ΔCFA in this paper. First,
we base our Restricted CPS on Partitioned CPS. More importantly,
we use frame strings and the concrete semantics of ΔCFA to prove
that continuation arguments of ulams are still on the stack.

Kennedy [4] proposed a variant of CPS which, like ORBIT, pro-
vides a variety of choices for procedures. He argues that CPS is
preferable over ANF and monadic languages because function in-
lining does not require renormalization steps or the use of commut-
ing conversions. Also, he advocates CPS as a suitable IR even in
the absence of first-class control in the source language. Kennedy’s
CPS satisfies some syntactic restrictions similar to Restricted CPS.
The main differences are that his CPS does not deal with first-class
control and that user lambdas can take up to two continuation ar-
guments, the current continuation and a handler continuation. If a
ulam can throw many exceptions, the handler must be polymor-
phic; in RCPS we can pass as many continuations as needed.

There has been significant work done on efficient run-time im-
plementations of first-class continuations, that is, continuations that
outlive their dynamic extent and so require the stack to be saved in
the heap [2]. Our work here, however, focusses on demonstrating
the circumstances under which we may safely assume that continu-
ations need not be copied, and on reasoning about the relationships
between different continuations that are known to live on the stack.

10. Conclusions
In this paper, we show how a simple syntactic constraint on a CPS
intermediate representation enables efficient use of the stack in the
presence of multiple continuations. We prove that when we pass
many continuations to a user function their environments are still
on the stack. The generalization of the tail-call mechanism dictates
that we pop to the most recent of these frames before control enters
a user function.

We proceed to develop Cage, an analysis that finds the youngest
frame at compile time in most cases. The main idea behind Cage
is that inside a function [[(λ(u1 . . . um k1 . . . kn)call)]] we only
need to remember age information about k1 . . . kn, we can forget
which closures these variables are bound to. This decoupling be-
tween variables and bindings is possible because of Restricted CPS.

A prototype implementation of Cage in Scheme48 shows that
it is a precise analysis with little extra overhead in compilation
time over k-CFA. Therefore, control constructs that require passing
many continuations, like exceptions and multi-return functions, can
be compiled to fast native code.
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