Ordering Multiple Continuations on the Stack

Dimitrios Vardoulakis Olin Shivers

Northeastern University

CPS in practice

CPS widely used in functional-language compilation.

Multiple continuations (conditionals, exceptions, etc).

Use a stack to manage them.

Contributions

» Syntactic restriction on multi-continuation CPS
for better reasoning about stack.

» Static analysis for efficient multi-continuation CPS.

Overview

v

Background:
Continuation-passing style (CPS)
Multi-continuation CPS
CPS with a runtime stack
Restricted CPS (RCPS)

Continuation-age analysis

v

v

Evaluation

v

Continuation-passing style (CPS)

Characteristics
» Each function takes a continuation argument,
“returns” by calling it.
» All intermediate computations are named.

» Continuations reified as lambdas.

Continuation-passing style (CPS)

Characteristics

» Each function takes a continuation argument,
“returns” by calling it.
» All intermediate computations are named.

» Continuations reified as lambdas.

Example

(define (discr a b c)
(- (xbb) (x4ac))

Continuation-passing style (CPS)

Characteristics
» Each function takes a continuation argument,
“returns” by calling it.
» All intermediate computations are named.

» Continuations reified as lambdas.

Example
(define (discr a b c k)
(%* b b
. . (A (p1)
(define (discr a b c) CPS
= (%* 4 a c
(- (xbb) (x4ac)) P2
(%= p1l p2

@& NN

Partitioned CPS [Steele 78, Rabbit]

(define (discr a b c k)
(%* b b
(A (pD)
(%* 4 a c
(A (p2)
(%= pl p2
(@& d)II)

» Variables, lambdas and calls split into disjoint sets,
“user” and “continuation”.

» Calls classified depending on operator.

Multi-continuation CPS

;; Add all positive numbers in the list
(define (add-pos 1)
(if (null? 1)
0
(let ((fst (car 1))
(rest (cdr 1)))
(if (< 0 fst)
(+ fst (add-pos rest))
(add-pos rest)))))

Multi-continuation CPS: Conditionals

(define (add-pos 1 k)

(%if pos-fst
(A() (add-pos rest
(A(res) (%+ fst res k))))
(A() (add-pos rest k))))

Multi-continuation CPS: Exception handlers

(define (add-pos 1 k-ret k-exn)

(\(fst)

(%number? fst
(A (num-fst)
(%if num-fst
(GO

(A(Q) (k-exn "Not a list of numbers.")))))))

Compile CPS without stack [Steele 78, Rabbit]

Argument evaluation pushes stack, function calls are jumps.
In CPS, every call is a tail call.
All closures in heap.

GC pressure.

10

Compile CPS with a stack [Kranz 88, Orbit]

Tail calls from direct style,
continuation argument is a variable.

(define (add-pos 1 k)

(%if pos-fst
(AO (add-pos rest (A(res) (J+ fst res k))))
(A() (add-pos rest k))))

11

Escaping continuations

A k) (& (Aa(g k2) (g 42 k))))

12

Escaping continuations

A k) (& (Aa(g k2) (g 42 k))))

No capturing of continuation variables by user closures
[Sabry-Felleisen 92], [Danvy-Lawall 92].

12

Restricted CPS (RCPS)

» A user lambda doesn’t contain free continuation variables,
» Or it's a-equivalent to (A(f cc) (f (A(x k) (cc x)) cc))

13

Restricted CPS (RCPS)

» A user lambda doesn’t contain free continuation variables,
» Or it's a-equivalent to (A(f cc) (f (A(x k) (cc x)) cc))

For example,

(M (u k1 k2)(w (A (k3) (k3 u))
k1
M3 (v) (k2 v))))

13

What does RCPS buy us?

Continuations escape in a controlled way.

Theorem: Continuations in argument position are stackable.

14

What does RCPS buy us?

Continuations escape in a controlled way.

Theorem: Continuations in argument position are stackable.
Proof?

14

The lifetime of a continuation argument

Doesn't escape:

(A(u k) (k w)
llfooll
clam)

15

The lifetime of a continuation argument

Operator, escapes:

(A(u ce) (£ Az k) (cc x)) cc))
Av k) (k& v)

clam)

16

The lifetime of a continuation argument

Argument, escapes:

(A& (kB (A(u k2) (u k)))) X

clam)

17

Extending the Orbit stack policy

Tail calls with multiple continuations:
(f el e2 k1 k2 k3)

18

Extending the Orbit stack policy

Tail calls with multiple continuations:
(f el e2 k1 k2 k3)

sp :
k2 sp, k2
k3|1 T k3

Kl k1

Extending the Orbit stack policy

Tail calls with multiple continuations:
(f el e2 k1 k2 k3)

Sp .
k2 sp, k2
k3|1 T k3
K1 — k1

In general, can't find youngest continuation statically.
At runtime, compare pointers of k1, k2, k3 to sp.

Continuation-Age (Cage) analysis

Possible solution:
compare ages of continuation closures that flow to call site.

((A(E k)

(f "foo" clam; k)

(f "bar" clamy clams) ...)
M\ (u k1 k2) call)
halt)

19

Continuation-Age (Cage) analysis

Possible solution:
compare ages of continuation closures that flow to call site.

((A(E k)

(f "foo" clam; k)

(f "bar" clamy clams) ...)
M\ (u k1 k2) call)
halt)

k1: clamq, clam;
k2: halt, clams

Continuation-Age (Cage) analysis

Possible solution:

compare ages of continuation closures that flow to call site.

(O£ k)
(f "foo" clam; k)
(f "bar" clamy clams) ...)
A\ (u k1 k2) call)
halt)
clamy < halt v
clamy < clams v

k1: clamq, clam;
k2: halt, clams

19

Continuation-Age (Cage) analysis

Possible solution:
compare ages of continuation closures that flow to call site.

(O£ k)
(f "foo" clam; k)
(f "bar" clamy clamz) ...)
M\ (u k1 k2) call)
halt)
clami =< halt v
K1: clamy, clamy clamy < clams v
k2: halt 'clam3 clamy < halt v
clam; < clams X

Cage analysis: take two

(O£ k)

(f "foo" clamyi k)

(f "bar" clamy clams) ...)
(\(u k1 k2) call)
halt)

Better solution (possible by RCPS):
» Reason about continuation variables directly.

» Record total orders of continuation variables
bound by the same user lambda.

20

Cage analysis: Ordering continuation variables

((A(E k)

(f "foo" clam k)

(f "bar" clamy clamz) ...)
(A(u k1 k2) call)
halt)

1st call k1 <k2

Cage analysis: Ordering continuation variables

((A(E k)

(f "foo" clam k)

(f "bar" clamy clamz) ...)
(A(u k1 k2) call)
halt)

1st call k1 <k2
2nd call k1 < k2
Overall k1l < k2

21

Cage analysis: Flowing age information

(A1 (ul k1 k2 k3)
(ul k1 k3 clamy clams) ...)

On entering A1:

> ({3}, {k1}, {k2})

> ul bound to (A\4(k4 k5 k6 k7)call)

22

Cage analysis: Flowing age information

(A1 (ul k1 k2 k3)
. (ul k1 k3 clamy clams) ...)

On entering A1:

> ({3}, {k1}, {k2})

> ul bound to (A\4(k4 k5 k6 k7)call)

k2 not used ({k3},{k1})

22

Cage analysis: Flowing age information

(A1 (ul k1 k2 k3)
(ul k1 k3 clamy clams) ...)

On entering A1:

> ({3}, {k1}, {k2})

> ul bound to (A\4(k4 k5 k6 k7)call)

k2 not used ({k3},{k1})
clamy, clamz new ({clamy, clams}, {k3}, {k1})

22

Cage analysis: Flowing age information

(A1 (ul k1 k2 k3)
(ul k1 k3 clamy clams) ...)

On entering A1:

> ({3}, {k1}, {k2})

> ul bound to (A\4(k4 k5 k6 k7)call)

k2 not used ({k3},{k1})
clamy, clamz new ({clamy, clams}, {k3}, {k1})
actuals to formals ({k6,k7}, {k5}, {k4})

22

Also in the paper

» RCPS natural fit for multi-return lambda calculus.

) P
» Multi-return lambda calculus C:§ RCPS

» Implementation in Scheme48.

23

Evaluation

LALR parser in RCPS

184 multi-continuation calls (152 two-cont, 32 three-cont)
164 variable only

24

Evaluation

LALR parser in RCPS
184 multi-continuation calls (152 two-cont, 32 three-cont)
164 variable only

Cage with k =0

142 resolved completely (87%)
22 resolved partially (ruled out one continuation)

24

Evaluation

LALR parser in RCPS
184 multi-continuation calls (152 two-cont, 32 three-cont)
164 variable only

Cage with k =0

142 resolved completely (87%)
22 resolved partially (ruled out one continuation)

Control is less variant than data.

24

Conclusions

» Manage multi-continuation CPS with a stack.
» RCPS enables better reasoning about stack.

» Cage analysis to find youngest continuation statically.

25

Conclusions

» Manage multi-continuation CPS with a stack.
» RCPS enables better reasoning about stack.

» Cage analysis to find youngest continuation statically.

Thank you!

25

