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CPS in practice

CPS widely used in functional-language compilation.

Multiple continuations (conditionals, exceptions, etc).

Use a stack to manage them.



Contributions

» Syntactic restriction on multi-continuation CPS
for better reasoning about stack.

» Static analysis for efficient multi-continuation CPS.



Overview

v

Background:
Continuation-passing style (CPS)
Multi-continuation CPS
CPS with a runtime stack
Restricted CPS (RCPS)

Continuation-age analysis

v

v

Evaluation

v



Continuation-passing style (CPS)

Characteristics
» Each function takes a continuation argument,
“returns” by calling it.
» All intermediate computations are named.

» Continuations reified as lambdas.
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Continuation-passing style (CPS)

Characteristics
» Each function takes a continuation argument,
“returns” by calling it.
» All intermediate computations are named.

» Continuations reified as lambdas.

Example
(define (discr a b c k)
(%* b b
. . (A (p1)
(define (discr a b c) CPS
= (%* 4 a c
(- (xbb) (x4ac)) P2
(%= p1l p2
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Partitioned CPS [Steele 78, Rabbit]

(define (discr a b c k)
(%* b b
(A (pD)
(%* 4 a c
(A (p2)
(%= pl p2
(@& d)II)

» Variables, lambdas and calls split into disjoint sets,
“user” and “continuation”.

» Calls classified depending on operator.



Multi-continuation CPS

;; Add all positive numbers in the list
(define (add-pos 1)
(if (null? 1)
0
(let ((fst (car 1))
(rest (cdr 1)))
(if (< 0 fst)
(+ fst (add-pos rest))
(add-pos rest)))))



Multi-continuation CPS: Conditionals

(define (add-pos 1 k)

(%if pos-fst
(A() (add-pos rest
(A(res) (%+ fst res k))))
(A() (add-pos rest k))))



Multi-continuation CPS: Exception handlers

(define (add-pos 1 k-ret k-exn)

(\(fst)

(%number? fst
(A (num-fst)
(%if num-fst
(GO

(A(Q) (k-exn "Not a list of numbers.")))))))



Compile CPS without stack [Steele 78, Rabbit]

Argument evaluation pushes stack, function calls are jumps.
In CPS, every call is a tail call.
All closures in heap.

GC pressure.
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Compile CPS with a stack [Kranz 88, Orbit]

Tail calls from direct style,
continuation argument is a variable.

(define (add-pos 1 k)

(%if pos-fst
(AO (add-pos rest (A(res) (J+ fst res k))))
(A() (add-pos rest k))))
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Escaping continuations

A k) (& (Aa(g k2) (g 42 k))))
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Escaping continuations

A k) (& (Aa(g k2) (g 42 k))))

No capturing of continuation variables by user closures
[Sabry-Felleisen 92], [Danvy-Lawall 92].
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Restricted CPS (RCPS)

» A user lambda doesn’t contain free continuation variables,
» Or it's a-equivalent to (A(f cc) (f (A(x k) (cc x)) cc))

13



Restricted CPS (RCPS)

» A user lambda doesn’t contain free continuation variables,
» Or it's a-equivalent to (A(f cc) (f (A(x k) (cc x)) cc))

For example,

(M (u k1 k2)(w (A (k3) (k3 u))
k1
M3 (v) (k2 v))))
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What does RCPS buy us?

Continuations escape in a controlled way.

Theorem: Continuations in argument position are stackable.
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What does RCPS buy us?

Continuations escape in a controlled way.

Theorem: Continuations in argument position are stackable.
Proof?
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The lifetime of a continuation argument

Doesn't escape:

(A(u k) (k w)
llfooll
clam)
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The lifetime of a continuation argument

Operator, escapes:

(A(u ce) (£ Az k) (cc x)) cc))
Av k) (k& v)

clam)
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The lifetime of a continuation argument

Argument, escapes:

(A& (kB (A(u k2) (u k)))) X

clam)
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Extending the Orbit stack policy

Tail calls with multiple continuations:
(f el e2 k1 k2 k3)

18



Extending the Orbit stack policy

Tail calls with multiple continuations:
(f el e2 k1 k2 k3)

sp :
k2 sp, k2
k3|1 T k3

Kl k1




Extending the Orbit stack policy

Tail calls with multiple continuations:
(f el e2 k1 k2 k3)

Sp .
k2 sp, k2
k3|1 T k3
K1 — k1

In general, can't find youngest continuation statically.
At runtime, compare pointers of k1, k2, k3 to sp.



Continuation-Age (Cage) analysis

Possible solution:
compare ages of continuation closures that flow to call site.

((A(E k)

(f "foo" clam; k)

(f "bar" clamy clams) ...)
M\ (u k1 k2) call)
halt)
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Continuation-Age (Cage) analysis

Possible solution:
compare ages of continuation closures that flow to call site.

(O£ k)
(f "foo" clam; k)
(f "bar" clamy clamz) ...)
M\ (u k1 k2) call)
halt)
clami =< halt v
K1: clamy, clamy clamy < clams v
k2: halt 'clam3 clamy < halt v
clam; < clams X



Cage analysis: take two

(O£ k)

(f "foo" clamyi k)

(f "bar" clamy clams) ...)
(\(u k1 k2) call)
halt)

Better solution (possible by RCPS):
» Reason about continuation variables directly.

» Record total orders of continuation variables
bound by the same user lambda.
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Cage analysis: Ordering continuation variables

((A(E k)

(f "foo" clam k)

(f "bar" clamy clamz) ...)
(A(u k1 k2) call)
halt)

1st call k1 <k2



Cage analysis: Ordering continuation variables

((A(E k)

(f "foo" clam k)

(f "bar" clamy clamz) ...)
(A(u k1 k2) call)
halt)

1st call k1 <k2
2nd call k1 < k2
Overall k1l < k2
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Cage analysis: Flowing age information

(A1 (ul k1 k2 k3)
(ul k1 k3 clamy clams) ...)

On entering A1:

> ({3}, {k1}, {k2})

> ul bound to (A\4(k4 k5 k6 k7)call)
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Cage analysis: Flowing age information

(A1 (ul k1 k2 k3)
(ul k1 k3 clamy clams) ...)

On entering A1:

> ({3}, {k1}, {k2})

> ul bound to (A\4(k4 k5 k6 k7)call)

k2 not used ({k3},{k1})
clamy, clamz new ({clamy, clams}, {k3}, {k1})
actuals to formals ({k6,k7}, {k5}, {k4})
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Also in the paper

» RCPS natural fit for multi-return lambda calculus.

) P
» Multi-return lambda calculus C:§ RCPS

» Implementation in Scheme48.
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Evaluation

LALR parser in RCPS

184 multi-continuation calls (152 two-cont, 32 three-cont)
164 variable only
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Evaluation

LALR parser in RCPS
184 multi-continuation calls (152 two-cont, 32 three-cont)
164 variable only

Cage with k =0

142 resolved completely (87%)
22 resolved partially (ruled out one continuation)

Control is less variant than data.
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Conclusions

» Manage multi-continuation CPS with a stack.
» RCPS enables better reasoning about stack.

» Cage analysis to find youngest continuation statically.
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Conclusions

» Manage multi-continuation CPS with a stack.
» RCPS enables better reasoning about stack.

» Cage analysis to find youngest continuation statically.

Thank you!
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