
A compositional trace semantics for Orc

Dimitrios Vardoulakis and Mitchell Wand

Northeastern University
dimvar@ccs.neu.edu wand@ccs.neu.edu

Abstract. Orc [6] is a language for task orchestration. It has a small
set of primitives, but it is sufficient to express many useful programs
succinctly. We show that the operational and denotational semantics
given in Kitchin et. al [6] do not agree, by giving a counterexample to
their Theorem 3. We remedy this situation by providing new operational
and denotational semantics with a better treatment of variable binding,
and proving an adequacy theorem to relate them.

1 Introduction

Orc [6] is a small concurrent programming language, designed with web services
in mind. It has few primitives, but they suffice to express many popular concur-
rent programming patterns (see [6], [7]). Orc uses autonomous computing units
called sites to perform sequential computation and other basic services. It then
provides operators to orchestrate the execution of sites and build larger pro-
cesses. Kitchin et.al[6] have developed operational and trace-based semantics for
Orc.

In this paper, we address some shortcomings of the existing Orc semantics.

– We show that the trace-based semantics of Orc is flawed, and develop a
denotational semantics which we prove sound and adequate with respect to
the operational semantics.

– In [6], the authors impose a unique naming constraint, namely that “free
and bound variables of an expression have different names”. Our semantics
do not require this limitation.

Due to space limitations, we decided to present our semantics first, and then
introduce only the necessary machinery from [6] to show the error.

2 Overview of Orc

We now give an informal description of the language before we present its for-
mal syntax and semantics in the next section. The simplest Orc program is a
site call. For example, Factorize(N) will compute and send back the prime fac-
tors of its argument. RedditFeed(today) will respond with today’s tech news. In
Orc terminology, we use the word publication to refer to the result of a site call.
Site calls are strict : the process M (x) has no transitions. A site may respond to

a call at most once and it can also ignore the request. Note that the same site
call at different times may publish different values.

In symmetric composition (f | g) the two processes are evaluated in paral-
lel and there is no interaction between them. The composite process publishes
all the values published by f and g. For instance, the process (Factorize(N) |
RedditFeed(today)) can publish at most two values.

The sequencing operator (f > x > g) is used to spawn threads. It first
evaluates f , and whenever f publishes some value v, it binds v to x in g
and launches a new instance of g in parallel. For example, ((Factorize(N) |
RedditFeed(today)) >x> Print(x)) may print twice, if both Factorize(N) and
RedditFeed(today) publish. If f does not publish, g is not run.

Last, we can use the where operator to terminate a process after it publishes.
The expression (f where x :∈ g) starts evaluating f and g in parallel. However,
the parts of f that depend on x block until x acquires a value. If g publishes, the
value published is bound to x in f and g is terminated. Therefore, the expression
(Print(x) where x :∈ (Factorize(N) | RedditFeed(today))) will either print the
prime factors of N or today’s tech–news, maybe none, but not both. Recall
that site calls are strict, thus Print(x) has no transitions. However, placed in a
context that can provide a value for x (as in this example), Print(x) is no longer
inert.1

The operators we saw until now do not allow us to write recursive processes.
To do that, we can define expressions like the following:

DOS(x) , Ping(x) | DOS(x)
This is the implementation of a simple denial-of-service attack; the process
DOS(ip) pings ip an unbounded number of times.

At this point, we have explained the features of Orc informally and we can
proceed to discuss its formal syntax and operational semantics.

3 Syntax – Operational Semantics

3.1 Syntax

The syntax of Orc is shown in Fig. 1. An Orc program consists of a finite set of
mutually recursive declarations and an expression (i.e. process) which is eval-
uated with these declarations in scope. To avoid dynamic binding of variables,
we require that a declaration Ei(x) , e satisfy f.v.(e) ⊆ {x}. The process 0 is
the inert process, a site which never responds. The actual parameter of a site
call or a call to a defined expression is either a variable or a value. We will not
assign types to our values, all values belong to some generic set Val . Orc is not
higher-order, a process is not a value.

1 It is this behaviour that requires the existence of an environment Γ in the operational
semantics (Section 3).

2

Program P ::= D1, . . . , Dk in e
Expression e ::= 0 M (p) let(p) Ei(p) e1 | e2 e1 >x> e2 e1 where x :∈ e2

Parameter p ::= x v

Declaration D ::= Ei(x) , e

Fig. 1. Syntax of Orc

3.2 Operational Semantics

Our version of the operational semantics of Orc (Fig. 2) uses labeled transitions.
The metavariables f, g range over processes. Every transition is of the form:

∆, Γ ⊢ f
a
→ f ′

In this transition, process f takes a step to f ′ with event a, when the set of
declarations is ∆ and the environment for variables is Γ . Note that ∆ and Γ
remain unchanged during the evaluation of an expression. The events that occur
during transitions are listed below:

Event ::= !v publication
| τ internal
| Mk (v) site call
| k?v site response
| [v/x] receive

Let’s take a closer look at the rules. Process M (v) calls site M with value v,
a site call event occurs and a fresh handle k is allocated to identify the call (rule
SITEC). The resulting process ?k is just an idle thread waiting for an answer
to the call with handle k. It is a necessary addition to the syntax to represent
intermediate state.

If the site replies with some value w, ?k performs a site response event k?w
and becomes let(w), as shown in rule SITERET. Let is a process that responds
with the same value it was called. By rule LET, let(w) publishes w and becomes
0, which has no further transitions.

None of the above steps is guaranteed to happen; M (v) may delay the site call
to M indefinitely, if the call happens M may never respond, and if it responds
the value may not be published.

Site calls are strict, thus M (x) will block until x acquires a value. In an
environment that can supply value v to x, M (x) performs a receive event and
becomes M (v). This is reflected by the rule SITEC-VAR. If x is not in Γ , M (x)
behaves like 0. Rule SITEC-VAR (and similarly LET-VAR and DEF-VAR) re-
flects the potential transition of a process in a suitable environment. It is the
environment that makes us able to distinguish between M (x) and 0.

When we call a defined expression Ei(v), v is substituted for x in the body
of Ei, which is an internal event (rule DEF). The process continues as [v/x]fi.

The two rules for symmetric composition are self explanatory; process f | g
takes a step if either f or g takes a step. The steps of the sub-processes can be
interleaved arbitrarily.

3

(SITEC)
∆, Γ ⊢ M (v)

Mk (v)
→ ?k

k fresh

(SITEC-VAR)
∆, Γ ⊢ M (x)

[v/x]
→ M (v)

Γ (x) = v

(SITERET)
∆, Γ ⊢ ?k

k?v
→ let(v)

(LET)
∆, Γ ⊢ let(v)

!v
→ 0

(LET-VAR)
∆, Γ ⊢ let(x)

[v/x]
→ let(v)

Γ (x) = v

(DEF)
∆, Γ ⊢ Ei(v)

τ
→ [v/x]fi

(Ei(x) , fi) ∈ ∆

(DEF-VAR)
∆, Γ ⊢ Ei(x)

[v/x]
→ Ei(v)

(Ei(x),fi)∈∆,
Γ (x)=v

(SYM-L)
∆, Γ ⊢ f

a
→ f ′

∆, Γ ⊢ f | g
a
→ f ′ | g

(SYM-R)
∆, Γ ⊢ g

a
→ g′

∆, Γ ⊢ f | g
a
→ f | g′

(ASYM-L)
∆, Γ ⊢ f

a
→ f ′

∆, Γ ⊢ f where x :∈ g
a
→ f ′ where x :∈ g

a 6= [v/x]

(ASYM-R)
∆, Γ ⊢ g

a
→ g′

∆, Γ ⊢ f where x :∈ g
a
→ f where x :∈ g′

a 6=!v

(ASYM-P)
∆, Γ ⊢ g

!v
→ g′

∆, Γ ⊢ f where x :∈ g
τ
→ [v/x]f

(SEQ)
∆, Γ ⊢ f

a
→ f ′

∆, Γ ⊢ f >x> g
a
→ f ′ >x> g

a 6=!v

(SEQ-P)
∆, Γ ⊢ f

!v
→ f ′

∆, Γ ⊢ f >x> g
τ
→ (f ′ >x> g) | [v/x]g

Fig. 2. Operational Semantics

Asymmetric composition resembles symmetric composition. In f where x :∈
g, f and g execute in parallel unless g publishes. Then, g is terminated and the
published value v is communicated via x to f (rule ASYM-P). You can think of x
as an implicit communication channel. Rule ASYM-R shows the non-publication
steps of g, and ASYM-L shows the steps of f . Free occurences of x in f refer
to the binding for x in f where x :∈ g. Thus, no matter if x is in Γ , f cannot
proceed with a receive event for x (receives for other variables are allowed). Its
parts that depend on x will block waiting for a publication from g.

Process f >x> g takes a step if f takes a step (rule SEQ). If f publishes v the
process performs an internal event and launches a new instance of g in parallel
(rule SEQ-P). As in the asymmetric case, we can think of x as a communication
channel between f and g. Thinking of variables as channels also justifies the

4

∆, Γ ⊢ let(x)
[2/x]
→ let(2)

SEQ
=⇒ ∆, Γ ⊢ let(x) >x> M (x)

[2/x]
→ let(2) >x> M (x)

LET
SEQ-P
=⇒ ∆, Γ ⊢ let(2) >x> M (x)

τ
→ (0 >x> M (x)) | M (2)

SITEC
SYM-R=⇒ ∆, Γ ⊢ (0 >x> M (x)) | M (2)

Mk(2)
→ (0 >x> M (x)) |?k

SITERET
SYM-R=⇒ ∆, Γ ⊢ (0 >x> M (x)) |?k

k?11
→ (0 >x> M (x)) | let(11)

LET
SYM-R=⇒ ∆, Γ ⊢ (0 >x> M (x)) | let(11)

!11
→ (0 >x> M (x)) | 0

Fig. 3. Possible evaluation of let(x) >x> M (x) when Γ = {(x, 2)}

name receive event for [v/x]. The example in Fig. 3 illustrates the use of some
of the rules.

4 Denotational Semantics

We now present the denotational semantics of Orc, which is the main contri-
bution of this paper. It is based on complete partial orders. The meaning of a
process is its set of traces in the presence of environments for the declarations
Fenv and variables Env :

[[f]] : [Fenv → [Env → P]]

Trace sets are closed under prefix. Also, we are concerned with traces of finite
length only; an infinite trace is represented by the set of all its finite prefixes.

Traces : Event ∗, a discrete CPO.
P : the set of all non-empty prefix-closed sets of finite traces,

a CPO under inclusion.
Val : the set of all values, a discrete CPO.
Var : the set of all variable names, a discrete CPO

We use two different kinds of bindings for variables in Env . That is because
we want to differentiate between a variable x bound in f where x :∈ g versus
f >x> g or Ei(x) , fi. In asymmetric composition, the evaluation of f may
start before f has a value for x. Then, the parts of f that depend on x will
block. For a trace t of f , we want to know which part of it depends on x. For
this reason, we “mark” the usage of x with a receive event, e.g. t ≡ t1[v/x]t2
where juxtaposition means trace concatenation. Now, we can deduce that the
events in t1 happen independently of x. There is no need for that in f >x> g
or Ei(x) , fi because x always has a value when g or fi is evaluated.

GetVal = { ♮v | v ∈ Val}
GotVal = { ♭v | v ∈ Val}
Env = [Var → (GetVal ∪ GotVal ∪ {⊥})]
NoRecv= {S | S ∈ P ∧ ∀t∈S. no receives in t}
Fenv = ([Val → NoRecv])k

5

The definitions of the meaning functions can be found in Fig.4. The inert
process has no transitions, thus it has no traces but the empty trace ε.

The denotation of let(v) is straightforward. The prefixing operator is defined,
among others, in Fig. 5. The traces of let(x) depend on the environment. If x is
not in the environment (signified by ρ(x) =⊥) then let(x) behaves like 0. If the
value for x was received “now”, i.e. ρ(x) = ♮v, then a receive event precedes the
publication. If the value for x was received “earlier”, the trace does not contain
a receive event.

The meaning functions for site calls are quite similar. Note the many possible
responses to the same call. We invite you to check that, for simple processes like
M (4) and let(x), the traces coincide with what we get from the operational
semantics. We will prove that true for all Orc processes.

The traces of Ei(v) are independent of the environment (remember that x
only can be free in the body of Ei(x)). They are the traces of the ith declaration,
preceded by τ .

In symmetric composition, we get the traces by interleaving (or else merging)
the traces of the constituent processes.

The denotation of h >x> g can be demystified by observing the operational
behaviour of this process. Every trace s of h that does not publish is also a trace
of h >x> g. Moreover, if s contains a publication, an instance of g is launched
in parallel and the remaining transitions of h may spawn more instances of g.

Last, we need to look at the denotation of h where x :∈ g. Let t1 be a
trace of h and t2 a trace of g. If t1 does not contain receive events for x it is
independent of x. Thus, if t2 contains no publication, we just merge the two
traces. If t2 contains a publication !v we know that the part that follows !v will
be discarded because g is terminated. That is why we only merge t1 with the

[[0]] = λϕ.λρ.{ε}
[[let(v)]] = λϕ.λρ.{!v}p

[[let(x)]] = λϕ.λρ.case ρ(x) of ⊥ . {ε}
♭v . {!v}p

♮v . {[v/x] !v}p

[[M (v)]] = λϕ.λρ.{Mk (v) k?w !w | k fresh , w ∈ Val}p

[[M (x)]] = λϕ.λρ.case ρ(x) of ⊥ . {ε}
♭v . {Mk(v) k?w !w | k fresh , w ∈ Val}p

♮v . { [v/x] Mk (v) k?w !w | k fresh , w ∈ Val}p

[[?k]] = λϕ.λρ.{ k?w !w | w ∈ Val}p

[[Ei(v)]] = λϕ.λρ.{ τ t | t ∈ ϕi(v)}p

[[Ei(x)]] = λϕ.λρ.case ρ(x) of ⊥ . {ε}
♭v . { τ t | t ∈ ϕi(v)}p

♮v . { [v/x] τ t | t ∈ ϕi(v)}p

[[h | g]] = λϕ.λρ. [[h]]ϕρ ‖ [[g]]ϕρ
[[h >x> g]] = λϕ.λρ.

S

s∈[[h]]ϕρ s ≫ λv.[[g]]ϕρ[x = ♭v]

[[h where x :∈ g]] = λϕ.λρ. (
S

v∈Val
[[h]]ϕρ[x = ♮v]) <x [[g]]ϕρ

Fig. 4. Trace Semantics of Orc

6

Concatenate a trace and a trace-set:

s T , { s t | t ∈ T}

Remove event ‘a’ from a trace:

t\a ,

8

>

<

>

:

ε t = ε

t′\a t = at′

a′ t′\a t = a′t′ and a 6= a′

Remove event from a trace-set:

T\a , { t\a | t ∈ T}

Merge:

t1 ‖ t2 ,

8

>

<

>

:

{t1} t2 = ε

{t2} t1 = ε

a(t′1 ‖ t2) ∪ b(t1 ‖ t′2) t1 = at′1 and t2 = bt′2

Merge trace-sets:

T1 ‖T2 ,
S

t1∈T1,t2∈T2
t1 ‖ t2

Prefixing:

tp ,

(

{ε} t = ε

{ε, a} ∪ a t′p t = at′

Prefixing for trace-sets:

Sp ,
S

s∈S sp

Sequencing combinator:

s ≫ F =

(

{s} no publ. in s

s1 τ ((s2 ≫ F) ‖F (v)) s ≡ s1!vs2 , nopubl. in s1

Asymmetric combinator:

t1 <x t2 =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

t1 ‖ t2 no recv. for x in t1 , nopubl. in t2

t1 ‖ t21τ no recv. for x in t1 , t2 ≡ t21!v t22 , no publ. in t21

(t11 ‖ t21τ)(t12\[v/x]) t1 ≡ t11[v/x]t12 , no recv. for x in t11 ,

t2 ≡ t21!v t22 , no publ. in t21

{ε} otherwise

Asymmetric combinator for trace-sets:
T1 <x T2 =

S

t1∈T1,t2∈T2
t1 <x t2

Note: ρ0 is an environment such that ∀x.ρ0(x) =⊥

Fig. 5. Various Definitions

7

part of t2 prior to !v. If t1 contains a receive event for x, the part after this event
depends on x. Consequently, if t2 contains a matching publication, the traces
are merged prior to the publication and concatenated with the rest of t1. The
fourth branch of the definition stops us from creating nonsensical traces, as when
combining a t1 that receives x with a t2 that does not publish.

We can now establish the following properties of the meaning functions:

Theorem 1 (Prefix Closure of Trace Sets). For all f, ϕ, ρ, [[f]]ϕρ ∈ P

Theorem 2 (Continuity of Denotations). For all f , [[f]] is continuous.

The proofs of these and all subsequent theorems can be found in the Appendix.
Finally, we only need talk about the denotation of the declarations. Consider
Ei(x) , fi. We can find its traces if we know the traces of fi in a suitable Fenv :

∆̂ = λϕ.(λv.[[f1]]ϕρ0[x = ♭v] × · · · × λv.[[fk]]ϕρ0[x = ♭v])

∆̂ is an Fenv transformer, since it consumes an Fenv and produces another Fenv .
Additionally, it is a continuous function because it is composed of continuous
functions. Fenv is a CPO with bottom element (λv.{ε})k. Therefore, ∆̂ has a
least fixed point which we take to be the denotation of the declarations:

[[∆]] = fix(∆̂)

To prove the correctness of our semantics we need to show that the transitions
of a process match its traces.

Theorem 3 (Soundness). If Γ = {(x1, v1), . . . , (xm, vm)},
σ = [w1/y1] . . . [wn/yn], ρ = ρ0[x1 = ♮v1] . . . [xm = ♮vm][y1 = ♭w1] . . . [yn = ♭wn],
x’s and y’s are all distinct, then

∆, Γ ⊢ σf
t
→∗ f ′ implies t ∈ [[f]][[∆]]ρ

Theorem 4 (Adequacy). If Γ = {(x1, v1), . . . , (xm, vm)},
σ = [w1/y1] . . . [wn/yn], ρ = ρ0[x1 = ♮v1] . . . [xm = ♮vm][y1 = ♭w1] . . . [yn = ♭wn],
x’s and y’s are all distinct, then

t ∈ [[f]][[∆]]ρ implies ∆, Γ ⊢ σf
t
→∗ f ′

The relation →∗ is the reflexive and transitive closure of →.

5 Flaws of the previous trace semantics

The operational semantics of Section 3 differs slightly from the previously pro-
posed operational semantics.2 The main difference is our use of an environment
Γ for the variables. The previous semantics treats free variables more permis-
sively, a fact which makes the denotational treatment in [6] wrong. Here, we only

8

(LET)

let(v)
!v
→ 0

(ASYM1N) f
a
→ f ′

f where x :∈ g
a
→ f ′ where x :∈ g

(ASYM1V) g
!v
→ g′

f where x :∈ g
τ
→ [v/x]f

(ASYM2) g
a
→ g′ a 6=!v

f where x :∈ g
a
→ f where x :∈ g′

(SUBST)

f
[v/x]
→ [v/x]f

Fig. 6. Operational Semantics of Orc1

present a subset of the semantics which suffices to show the error. Thus, we are
not concerned with recursive definitions.

All but the last rule in Fig. 6 are self explanatory. The last rule says that a
process can spontaneously decide to substitute a value v for a variable x. Any
process f can perform any substitution step, even for variables not free in f
(of course then [v/x]f = f). The constraint is that the SUBST rule cannot be
applied to parts of an expression, in other words the event ‘a’ in the other rules
cannot be a receive event for any variable.

The traces of an Orc1 process are defined operationally. If f
s
→∗ f ′ then they

obtain a trace of f by removing the τ events from s. Let 〈f〉 denote f ’s set of
traces. The objective is to prove compositionality, i.e. that 〈f where x :∈ g〉
can be defined in terms of 〈f〉 and 〈g〉.

t1 where x :∈ t2 =



















t1 | t2 nopubl. in t2

(t11 | t21)t12 t1 ≡ t11[v/x]t12 , no recv. forx in t11 ,

t2 ≡ t21!v t22 , no publ. in t21

∅ otherwise
Constraint: No receive event for x in t2

T1 where x :∈ T2 =
⋃

t1∈T1,t2∈T2
t1 where x :∈ t2

The where operator is defined for traces and lifted for trace sets. The | operator
is similar to our merge operator. Its precise definition is not needed, we only
need to know that t | ε = {t}. The theorem to prove now is:

Theorem 5. 〈f where x :∈ g〉 = 〈f〉 where x :∈ 〈g〉

The following counterexample refutes this theorem:
Let h = let(x) where x :∈ 0
By SUBST and LET, t = ([2/x]!2) ∈ 〈let(x)〉 and also ε ∈ 〈0〉
Then, ([2/x]!2) where x :∈ ε = ([2/x]!2) | ε = {[2/x]!2}
which yields ([2/x]!2) ∈ (〈let(x)〉 where x :∈ 〈0〉)
However, the only operational rule that applies to h is SUBST, thus t /∈ 〈h〉
Therefore, 〈f where x :∈ g〉 6= 〈f〉 where x :∈ 〈g〉

2 For disambiguation, in this section we will refer to Orc as presented in [6] as Orc1.

9

We saw that the trace set of an Orc1 process is not defined correctly in terms
of the traces of its sub-processes. Our intuition is that the error stems from the
non-restrictive usage of substitutions (rule SUBST).

6 Conclusions

Task orchestration is related to various industrial standards for business trans-
actions (e.g.WSBPEL [1], WSCDL [5]). Academics have also looked at other
aspects of business transactions, such as compensations (see [3], [2]). A formal
specification for a subset of WSBPEL has been proposed as well [8].

In this paper we presented a denotational trace-based semantics for Orc, a
language for task orchestration. We pointed out the deficiencies of the previously
proposed trace semantics [6] and proved the correctness of ours. Other semantic
treatments for Orc can be found in [7], [4].

In a forthcoming paper, we use strong bisimulation to show various equiva-
lences between Orc processes and we present a trace-based semantics insensitive
to internal events. In the future we want to investigate the properties of processes
in the presence of timeouts and propose a timed semantics for Orc.

References

1. Alexandre Alves, Assaf Arkin, et al. Web services business process execution lan-
guage version 2.0. Technical report, April 2007.

2. Roberto Bruni, Hernán C. Melgratti, and Ugo Montanari. Theoretical foundations
for compensations in flow composition languages. In Jens Palsberg and Mart́ın
Abadi, editors, POPL, pages 209–220. ACM, 2005.

3. Michael J. Butler, C. A. R. Hoare, and Carla Ferreira. A trace semantics for long-
running transactions. In Ali E. Abdallah, Cliff B. Jones, and Jeff W. Sanders,
editors, 25 Years Communicating Sequential Processes, volume 3525 of Lecture Notes

in Computer Science, pages 133–150. Springer, 2004.
4. Tony Hoare, Galen Menzel, and Jayadev Misra. A tree semantics for an orchestration

language, August 2004. Lecture Notes for NATO summer school.
5. Nickolas Kavantzas, David Burdett, et al. Web services choreography description

language version 1.0. Technical report, November 2005.
6. David Kitchin, William R. Cook, and Jayadev Misra. A language for task orches-

tration and its semantic properties. In Christel Baier and Holger Hermanns, edi-
tors, CONCUR, volume 4137 of Lecture Notes in Computer Science, pages 477–491.
Springer, 2006.

7. Jayadev Misra and William R. Cook. Computation orchestration: A basis for wide-
area computing. Software and Systems Modeling, 6(1):83–110, 2007.

8. Mirko Viroli. Towards a formal foundation to orchestration languages. Electr. Notes

Theor. Comput. Sci., 105:51–71, 2004.

10

A Various Definitions

Definition 1. Concatenate a trace and a trace-set
s T , { s t | t ∈ T }

Definition 2. Concatenate trace-sets
T1 T2 , { t1t2 | t1 ∈ T1, t2 ∈ T2}

Definition 3. Remove event ‘a’ from a trace

t\a ,











ε t = ε

t′\a t = at′

a′ t′\a t = a′t′ and a 6= a′

Definition 4. Remove event from a trace-set
T \a , { t\a | t ∈ T }

Definition 5. Merge for traces

t1 ‖ t2 ,











{t1} t2 = ε

{t2} t1 = ε

a(t′1 ‖ t2) ∪ b(t1 ‖ t′2) t1 = at′1 and t2 = bt′2

Definition 6. Merge for trace-sets
T1 ‖T2 ,

⋃

t1∈T1,t2∈T2
t1 ‖ t2

Definition 7. Prefixing

tp ,

{

{ε} t = ε

{ε, a} ∪ a t′p t = at′

Definition 8. Prefixing for trace-sets
Sp ,

⋃

s∈S sp

Definition 9. Extend-env: Env × (Val × (GetVal ∪GotVal)) → Env
ρ[x = u] , (ρ − {(x, w)}) ∪ {(x, u)} ,where ρ(x) = w

Definition 10. Alternate merge

t1 ‖̆ t2 ,











{t1} t2 = ε

{t2} t1 = ε

(t′1 ‖̆ t2)a ∪ (t1 ‖̆ t′2)b t1 = t′1a and t2 = t′2b

Definition 11. Alternate merge for trace-sets

T1 ‖̆T2 ,
⋃

t1∈T1,t2∈T2
t1 ‖̆ t2

Definition 12. ρ−x(y) =

{

⊥ y = x

ρ(y) y 6= x

Note 1 ρ0 is an environment such that ∀x.ρ0(x) =⊥

Note 2 a∈̂ t means that trace t contains event a. a 6∈̂ t means that trace t does
not contain event a.

Definition 13. Ordering of pairs of integers
(i, j) ⊏ (k, l) when (i < k) ∨ (i = k ∧ j < l)

11

B Continuity Proofs

Lemma 3. The union of prefix-closed sets is prefix-closed ⊓⊔

Lemma 4. P is a CPO under inclusion

Proof. Let X ⊆ P be directed and B =
⋃

S∈X S. Then, B is prefix-closed by
Lemma 3 and is an ub of X . Let B′ be an ub of X
=⇒ ∀S ∈ X.S ⊆ B′

=⇒
⋃

S∈X S ⊆ B′

=⇒
⊔

X = B ⊓⊔

Lemma 5. Merge : Pow(Traces)×Pow (Traces) → Pow (Traces) is continuous

Proof. It suffices to show that it is continuous in each argument separately. Let
X ⊆ Pow (Traces) be directed, T ∈ Pow (Traces)
(
⊔

X) ‖T = (
⋃

S∈X S) ‖T

,
⋃

s∈(
S

S∈X S)

⋃

t∈T s ‖ t

=
⋃

S∈X

⋃

s∈S

⋃

t∈T s ‖ t

,
⋃

S∈X(S ‖T)
=

⊔

S∈X(S ‖T)
The proof is similar for the right argument ⊓⊔

Lemma 6. Extend-env is continuous ⊓⊔

Note 7 [Val → NoRecv] is a CPO and if X ⊆ [Val → NoRecv] is directed, then
⊔

X = λv.
⊔

f∈X f(v) = λv.
⋃

f∈X f(v)

Note 8 Fenv is a CPO and if X ⊆ Fenv is directed, then
⊔

X = (λv.
⋃

ϕ∈X ϕ1(v)) × · · · × (λv.
⋃

ϕ∈X ϕk(v))

Note 9 Similar results to Note 7 hold for [Val → P], [Val → Pow (Traces)]

Lemma 10. ≫: Traces × [Val → Pow (Traces)] → Pow (Traces) is continuous

Proof. Show continuity in each argument separately. Over the left argument it
is trivial, since Traces is a discrete CPO.
Over the right argument:
Let X ⊆ [Val → Pow(Traces)] be directed and s ∈ Traces
Proceed by induction on the number of publications in s
If no publications in s,
=⇒ s ≫

⊔

X = {s} =
⊔

F∈X(s ≫ F)
If s ≡ s1!vs2 and no publications in s1,
s ≫

⊔

X = s1τ ((s2 ≫
⊔

X) ‖
⋃

F∈X F (v)) by Note 9
= s1τ ((

⋃

F∈X s2 ≫ F) ‖
⋃

F∈X F (v)) by IH
= s1τ

⋃

F∈X((s2 ≫ F) ‖F (v)) by Lemma 5
=

⋃

F∈X s1τ ((s2 ≫ F) ‖F (v))
=

⊔

F∈X s ≫ F ⊓⊔

12

Corollary 1. Let S ∈ Pow(Traces) and F ∈ [Val → Pow (Traces)]. Then,
⋃

s∈S s ≫ F is continuous ⊓⊔

Lemma 11. Prefixing : Pow (Traces) → P is continuous ⊓⊔

Note 12 <x: Traces × Traces → Pow(Traces) is continuous ⊓⊔

Corollary 2. <x: Pow (Traces) × Pow (Traces) → Pow (Traces)
is continuous ⊓⊔

Note 13 All the functions proved to be continuous are also monotonic

Theorem 6. For all f , [[f]] is continuous

Proof. We know that [[f]] ∈ [Fenv → [Env → P]]. We will show the continuity
of [(Fenv × Env) → P] and this is enough because currying is a continuous
operation.
By structural induction on f .
Let Xϕ, Xρ be directed subsets of Fenv and Env respectively.

a) let(v)
=⇒ [[f]](

⊔

Xϕ)(
⊔

Xρ) = {!v}p =
⊔

ϕ∈Xϕ

⊔

ρ∈Xρ
[[let(v)]]ϕρ

b) 0 or M(v) or ?k
as above

c) let(x)
[[let(x)]](

⊔

Xϕ)(
⊔

Xρ) =
⊔

ϕ∈Xϕ
[[let(x)]]ϕ(

⊔

Xρ) (c1)
Cases on Xρ:
– If ∃ρ∈Xρ. ρ(x) =⊥ then ∀ρ∈Xρ. ρ(x) =⊥ because Xρ is directed.

(c1) ⇒
⊔

ϕ∈Xϕ
{ε} =

⊔

ϕ∈Xϕ

⊔

ρ∈Xρ
[[let(x)]]ϕρ

– If ∃ρ∈Xρ. ρ(x) = ♭v then ∀ρ∈Xρ. ρ(x) = ♭v because Xρ is directed.
(c1) ⇒

⊔

ϕ∈Xϕ
{!v}p =

⊔

ϕ∈Xϕ

⊔

ρ∈Xρ
[[let(x)]]ϕρ

– If ∃ρ∈Xρ. ρ(x) = ♮v similarly
d) M(x)

as above
e) Ei(v)

[[Ei(v)]](
⊔

Xϕ)(
⊔

Xρ) =
=

⊔

ρ∈Xρ
[[Ei(v)]](

⊔

Xϕ)ρ

=
⊔

ρ∈Xρ
{ τ t | t ∈ (

⊔

Xϕ)i(v)}
p

=
⊔

ρ∈Xρ
{ τ t | t ∈

⋃

ϕ∈Xϕ
ϕi(v)}

p
by Note 9

=
⊔

ρ∈Xρ

⋃

ϕ∈Xϕ
{ τ t | t ∈ ϕi(v)}p by Lemma 11

=
⊔

ϕ∈Xϕ

⊔

ρ∈Xρ
[[Ei(v)]]ϕρ

f) Ei(x)
Cases on

⊔

Xρ and similar to the previous case
g) h | g

[[h | g]](
⊔

Xϕ)(
⊔

Xρ) = [[h]](
⊔

Xϕ)(
⊔

Xρ) ‖ [[g]](
⊔

Xϕ)(
⊔

Xρ)
(
⊔

ϕ∈Xϕ

⊔

ρ∈Xρ
[[h]]ϕρ) ‖ (

⊔

ϕ∈Xϕ

⊔

ρ∈Xρ
[[g]]ϕρ) by IH

=
⊔

ϕ∈Xϕ

⊔

ρ∈Xρ
([[h]]ϕρ ‖ [[g]]ϕρ) by Lemma 5

=
⊔

ϕ∈Xϕ

⊔

ρ∈Xρ
[[h | g]]ϕρ

13

h) h >x> g
[[g]](

⊔

Xϕ)(
⊔

Xρ)[x = ♭v] =
= [[g]](

⊔

Xϕ)(
⊔

ρ∈Xρ
ρ[x = ♭v]) by Lemma 6

=
⊔

ϕ∈Xϕ

⊔

ρ∈Xρ
[[g]]ϕρ[x = ♭v] by IH

Then, by Note 9,
⊔

ϕ∈Xϕ

⊔

ρ∈Xρ
λv.[[g]]ϕρ[x = ♭v] = λv.

⊔

ϕ∈Xϕ

⊔

ρ∈Xρ
[[g]]ϕρ[x = ♭v] (h1)

Also, [[h]](
⊔

Xϕ)(
⊔

Xρ) =
⊔

ϕ∈Xϕ

⊔

ρ∈Xρ
[[h]]ϕρ by IH (h2)

By h1, h2 and Corollary 1 we get the result
i) h where x :∈ g

By Lemma 6 and IH,
[[h]](

⊔

Xϕ)(
⊔

Xρ)[x = ♮v] =
⊔

ϕ∈Xϕ

⊔

ρ∈Xρ
[[h]]ϕρ[x = ♮v]

=⇒
⋃

v∈Val

⊔

ϕ∈Xϕ

⊔

ρ∈Xρ
[[h]]ϕρ[x = ♮v] =

=
⊔

ϕ∈Xϕ

⊔

ρ∈Xρ

⋃

v∈Val
[[h]]ϕρ[x = ♮v]

By this, IH for g and Corollary 2 we get the result ⊓⊔

14

C Prefix-Closure Proofs

Lemma 14. t1 ‖ t2 = t1 ‖̆ t2

Proof. By induction on |t1| + |t2|.
The only interesting case is when |t1| ≥ 2 and |t2| ≥ 2 i.e. t1 = a1t

′
1a2 and

t2 = b1t
′
2b2

=⇒ t1 ‖ t2 = a1(t
′
1a2 ‖ t2) ∪ b1(t1 ‖ t′2b2)

= a1(t
′
1a2 ‖̆ t2) ∪ b1(t1 ‖̆ t′2b2) by IH

= a1((t
′
1 ‖̆ t2)a2 ∪ (t′1a2 ‖̆ b1t

′
2)b2) ∪ b1((a1t

′
1 ‖̆ t′2b2)a2 ∪ (t1 ‖̆ t′2)b2)

= a1(t
′
1 ‖̆ t2)a2 ∪ a1(t

′
1a2 ‖̆ b1t

′
2)b2 ∪ b1(a1t

′
1 ‖̆ t′2b2)a2 ∪ b1(t1 ‖̆ t′2)b2

= (a1(t
′
1 ‖̆ t2) ∪ b1(a1t

′
1 ‖̆ t′2b2))a2 ∪ (a1(t

′
1a2 ‖̆ b1t

′
2) ∪ b1(t1 ‖̆ t′2))b2

= (a1(t
′
1 ‖ t2) ∪ b1(a1t

′
1 ‖ t′2b2))a2 ∪ (a1(t

′
1a2 ‖ b1t

′
2) ∪ b1(t1 ‖ t′2))b2 by IH

= (a1t
′
1 ‖ t2)a2 ∪ (t1 ‖ b1t

′
2)b2

= (a1t
′
1 ‖̆ t2)a2 ∪ (t1 ‖̆ b1t

′
2)b2 by IH

= t1 ‖̆ t2 ⊓⊔

By this lemma, we can use the operators ‖ and ‖̆ interchangeably.

Lemma 15. T1, T2 ∈ P implies T1 ‖T2 ∈ P

Proof. By Lemma 14, suffices to show that T1 ‖̆T2 ∈ P , i.e. suffices to show that

for all t ∈ T1 ‖̆T2, tp ⊆ T1 ‖̆T2

By induction on |t|

Since t ∈ T1 ‖̆T2, then ∃t1∈T1, t2∈T2. t ∈ t1 ‖̆ t2 (1)
The only interesting case is when |t| ≥ 2 and t1 = t′1a and t2 = t′2b

=⇒ t ∈ ((t′1 ‖̆ t2)a ∪ (t1 ‖̆ t′2)b)

=⇒ tp ⊆ ((t′1 ‖̆ t2)a ∪ (t1 ‖̆ t′2)b)p

=⇒ tp ⊆ ((t′1 ‖̆ t2)p ∪ (t′1 ‖̆ t2)a ∪ (t1 ‖̆ t′2)p ∪ (t1 ‖̆ t′2)b) (2)
But T1 ∈ P ⇒ t′1 ∈ T1 and T2 ∈ P ⇒ t′2 ∈ T2

=⇒ by IH, (t′1 ‖̆ t2)p ⊆ T1 ‖̆T2 and (t1 ‖̆ t′2)p ⊆ T1 ‖̆T2

=⇒ by 2, suffices to show that ((t′1 ‖̆ t2)a ∪ (t1 ‖̆ t′2)b) ⊆ T1 ‖̆T2

i.e. that t1 ‖̆ t2 ⊆ T1 ‖̆T2 which holds by 1 ⊓⊔

Lemma 16. If F ∈ [Val → P] and s ∈ Traces, then (
⋃

s′∈sp
s′ ≫ F) ∈ P

Proof. By induction on the number of publications in s.
If no publications in s,
=⇒

⋃

s′∈sp
s′ ≫ F =

⋃

s′∈sp
{s′} = sp ∈ P

If s = s1!vs2 and no publications in s1,
=⇒

⋃

s′∈sp
s′ ≫ F = (

⋃

s′∈(s1)p
s′ ≫ F) ∪ (s1!v ≫ F) ∪ (

⋃

s′∈s1!v(s2)p
s′ ≫ F)

= (s1)p ∪ {s1τ} ∪ s1τ((
⋃

s′∈(s2)p
s′ ≫ F) ‖F (v))

= {s1τ}p ∪ s1τ((
⋃

s′∈(s2)p
s′ ≫ F) ‖F (v))

=⇒ suffices to show that ((
⋃

s′∈(s2)p
s′ ≫ F) ‖F (v)) ∈ P

which, by Lemma 15, follows by (
⋃

s′∈(s2)p
s′ ≫ F) ∈ P and F (v) ∈ P , which

holds by IH for s2

15

Corollary 3. If T ∈ P and F ∈ [Val → P], then (
⋃

s∈T s ≫ F) ∈ P ⊓⊔

Lemma 17. T1, T2 ∈ P implies T1 <x T2 ∈ P

Proof. If t ∈ T1 <x T2 then ∃t1∈T1, t2∈T2. t ∈ t1 <x t2
We must show that tp ⊆ T1 <x T2.
Cases depending on which branch of the definition of <x was used

a) t ∈ t1 ‖ t2, no recv. for x in t1, no publ. in t2 (1)
=⇒ t ∈

⋃

t′1∈(t1)p,t′2∈(t2)p
t′1 ‖ t′2 = (t1)p ‖ (t2)p by Note 13

=⇒ tp ⊆ ((t1)p ‖ (t2)p)p = (t1)p ‖ (t2)p by Lemma 15
By 1, (t1)p <x (t2)p = (t1)p ‖ (t2)p
=⇒ tp ⊆ (t1)p <x (t2)p
=⇒ tp ⊆ T1 <x T2 by Note 13

b) t ∈ t1 ‖ t21τ , no recv. for x in t1, t2 = t21!v t22, no publ. in t21
=⇒ t ∈ (t1)p ‖ (t21τ)p by Note 13
=⇒ tp ⊆ ((t1)p ‖ (t21τ)p)p = (t1)p ‖ (t21τ)p by Lemma 15
=⇒ tp ⊆ ((t1)p ‖ (t21)p) ∪ ((t1)p ‖ {t21τ})
=⇒ tp ⊆ ((t1)p <x (t21)p) ∪ ((t1)p <x {t21!v})
=⇒ tp ⊆ (t1)p <x (t21!v)p
=⇒ tp ⊆ T1 <x T2 by Note 13

c) t ∈ (t11 ‖ t21τ)(t12\[v/x]), t1 = t11[v/x]t12, no recv. for x in t11,
t2 = t21!v t22, no publ. in t21
=⇒ tp ∈ (t11 ‖ t21τ)p ∪ (t11 ‖ t21τ)(t12\[v/x])p
=⇒ tp ∈ ({t11}p ‖ {t21τ}p)p ∪ (t11 ‖ t21τ)(t12\[v/x])p by Note 13
=⇒ tp ∈ ({t11}p ‖ {t21τ}p) ∪ (t11 ‖ t21τ)(t12\[v/x])p by Lemma 15
By the previous case, this can be written
=⇒ tp ∈ ({t11}p <x {t21!v}p) ∪ (t11[v/x]{t12}p <x {t21!v})
=⇒ tp ∈ ({t11}p <x {t21!v}p) ∪ (t11[v/x]{t12}p <x {t21!v}p) by Note 13
=⇒ tp ⊆ {t1}p <x {t21!v}p

=⇒ tp ⊆ T1 <x T2 by Note 13 ⊓⊔

Theorem 7. For all f , [[f]]ϕρ ∈ P

Proof. By structural induction on f , using Lemmas 15, 17 and Corollary 3 ⊓⊔

16

D Denotational Lemmas

Lemma 18 (Weakening). If x not free in f then [[f]]ϕρ = [[f]]ϕρ[x = ♭v] =
[[f]]ϕρ[x = ♮w] for any v, w

Proof. By structural induction on f

a) If f is 0, let(v), M (v), ?k, Ei(v) it holds because the traces are independent
of the environment

b) If f is let(y), M (y), Ei(y), it holds because the traces depend only on y
c) f ≡ h | g

By IH, [[h]]ϕρ = [[h]]ϕρ[x = ♭v] = [[h]]ϕρ[x = ♮w]
and [[g]]ϕρ = [[g]]ϕρ[x = ♭v] = [[g]]ϕρ[x = ♮w]
Therefore, [[h | g]]ϕρ = [[h]]ϕρ ‖ [[g]]ϕρ = [[h | g]]ϕρ[x = ♭v] =
= [[h | g]]ϕρ[x = ♮w]

d) f ≡ h >x> g (Similarly when f ≡ h >y> g, x 6= y)
By the statement of the lemma, x is not free in h
=⇒ [[h]]ϕρ = [[h]]ϕρ[x = ♭v] = [[h]]ϕρ[x = ♮w] by IH (d1)
Then, [[h >x> g]]ϕρ[x = ♮w] =

⋃

s∈[[h]]ϕρ[x=♮w] s ≫ λv.[[g]]ϕρ[x = ♮w][x = ♭v]

=
⋃

s∈[[h]]ϕρ s ≫ λv.[[g]]ϕρ[x = ♭v] by d1 and def. of extend-env

= [[h >x> g]]ϕρ
Similarly, [[h >x> g]]ϕρ[x = ♭v] = [[h >x> g]]ϕρ

e) f ≡ h where x :∈ g (Similarly when f ≡ h where y :∈ g, x 6= y)
By the statement of the lemma, x is not free in g
=⇒ [[g]]ϕρ = [[g]]ϕρ[x = ♭v] = [[g]]ϕρ[x = ♮w] by IH (e1)
Then, [[h where x :∈ g]]ϕρ[x = ♮w] =
= (

⋃

v∈Val
[[h]]ϕρ[x = ♮w][x = ♮v]) <x [[g]]ϕρ[x = ♮w]

= (
⋃

v∈Val
[[h]]ϕρ[x = ♮v]) <x [[g]]ϕρ by e1 and def. of extenv-env

= [[h where x :∈ g]]ϕρ
Similarly, [[h where x :∈ g]]ϕρ[x = ♭v] = [[h where x :∈ g]]ϕρ ⊓⊔

Lemma 19 (Substitution). [[[v/x]f]]ϕρ = [[f]]ϕρ[x = ♭v]

Proof. By structural induction on f

a) If x not free in f then [v/x]f = f and the result holds by Lemma 18
b) f ≡ let(x)

=⇒ [v/x]f = let(v)
=⇒ [[[v/x]f]]ϕρ = {!v}p = [[let(x)]]ϕρ[x = ♭v]

c) f is M (x) or Ei(x), as above
d) f ≡ h | g

[[[v/x]f]]ϕρ = [[[v/x]h]]ϕρ ‖ [[[v/x]g]]ϕρ
= [[h]]ϕρ[x = ♭v] ‖ [[g]]ϕρ[x = ♭v] by IH
= [[f]]ϕρ[x = ♭v]

e) f ≡ h >x> g (Similarly when f ≡ h >y> g, x 6= y)
[[[v/x]f]]ϕρ = [[([v/x]h) >x> g]]ϕρ
=

⋃

s∈[[[v/x]h]]ϕρ s ≫ λw.[[g]]ϕρ[x = ♭w]

=
⋃

s∈[[h]]ϕρ[x=♭v] s ≫ λw.[[g]]ϕρ[x = ♭v][x = ♭w] by IH

= [[h >x> g]]ϕρ[x = ♭v]

17

f) f ≡ h where x :∈ g (Similarly when f ≡ h where y :∈ g, x 6= y)
[[[v/x]f]]ϕρ = [[h where x :∈ [v/x]g]]ϕρ
=

⋃

w∈Val
[[h]]ϕρ[x = ♮w] <x [[[v/x]g]]ϕρ

=
⋃

w∈Val
[[h]]ϕρ[x = ♭v][x = ♮w] <x [[g]]ϕρ[x = ♭v] by IH

= [[h where x :∈ g]]ϕρ[x = ♮v] ⊓⊔

Lemma 20. If t ∈ [[f]]ϕρ and [v/x]∈̂ t then ρ(x) = ♮v ⊓⊔

Corollary 4. If t ∈ [[f]]ϕρ, [v/x]∈̂ t and v 6= w then [w/x] 6∈̂ t ⊓⊔

Lemma 21. If t ∈ [[f]]ϕρ[x = ♮v] and [v/x] 6∈̂ t then t ∈ [[f]]ϕρ

Proof. By structural induction on f
If x not free in f , it holds by Lemma 18. If x is free in f ,

a) f ≡ let(x)
=⇒ [[let(x)]]ϕρ[x = ♮v] = {[v/x] !v}p

[v/x] 6∈̂ t ∴ t = ε ∴ t ∈ [[let(x)]]ϕρ
b) f is M (x) or Ei(x), as above
c) f ≡ h | g

If t ∈ [[h | g]]ϕρ[x = ♮v] then there exist t1 ∈ [[h]]ϕρ[x = ♮v],
t2 ∈ [[g]]ϕρ[x = ♮v] such that t ∈ t1 ‖ t2.
But [v/x] 6∈̂ t, so [v/x] 6∈̂ t1 and [v/x] 6∈̂ t2
=⇒ by IH t1 ∈ [[h]]ϕρ and t2 ∈ [[g]]ϕρ
=⇒ t ∈ [[h | g]]ϕρ

d) f ≡ h >x> g (Similarly when f ≡ h >y> g, x 6= y)
If t ∈ [[h >x> g]]ϕρ[x = ♮v] then there exists s ∈ [[h]]ϕρ[x = ♮v] such that
t ∈ s ≫ λw.[[g]]ϕρ[x = ♮v][x = ♭w]
=⇒ t ∈ s ≫ λw.[[g]]ϕρ[x = ♭w] (d1)
By Lemma 20, [v/x] not in the traces of [[g]]ϕρ[x = ♭w]
=⇒ [v/x] 6∈̂ t means [v/x] 6∈̂ s
=⇒ by IH s ∈ [[h]]ϕρ, so by d1 we get the desired result

e) f ≡ h where x :∈ g (Similarly when f ≡ h where y :∈ g, x 6= y)
If t ∈ [[h where x :∈ g]]ϕρ[x = ♮v] then there exist
t1 ∈

⋃

w∈Val
[[h]]ϕρ[x = ♮w], t2 ∈ [[g]]ϕρ[x = ♮v] such that t ∈ t1 <x t2 (e1)

Cases depending on which branch of the definition of <x was used:
We consider only one case, the others are similar.
t1 = t11[u/x] t12, [u/x] 6∈̂ t11 and
t2 = t21!u t22, !u′ 6∈̂ t21 for any u′

=⇒ t ∈ (t11 ‖ t21τ)(t12\[u/x]) (e2)
But then, [v/x] 6∈̂ t means [v/x] 6∈̂ t21
and by Theorem 7, t21 !u ∈ [[g]]ϕρ[x = ♮v]
=⇒ t21 !u ∈ [[g]]ϕρ by IH (e3)
By e1, e2 and e3 we get the desired result ⊓⊔

Lemma 22. If ρ(x) =⊥ then [[f]]ϕρ ⊆ [[f]]ϕρ[x = ♮v] ⊓⊔

Lemma 23. If ρ(x) =⊥ then [[f]]ϕρ ⊆ [[f]]ϕρ[x = ♭v] ⊓⊔

18

Lemma 24. (t1 ‖ t2)\a = t1\a ‖ t2\a

Proof. By induction on |t1| + |t2|
The interesting case is when |t1| + |t2| ≥ 2 and t1 = bt′1, t2 = ct′2
Then, (t1 ‖ t2)\a = (b(t′1 ‖ t2) ∪ c(t1 ‖ t′2))\a
= (b(t′1 ‖ t2))\a ∪ (c(t1 ‖ t′2))\a
If b 6= a and c 6= a the above becomes
= b(t′1 ‖ t2)\a ∪ c(t1 ‖ t′2)\a
= b(t′1\a ‖ t2\a) ∪ c(t1\a ‖ t′2\a) by IH
= t1\a ‖ t2\a
Similarly when b and/or c is equal to a ⊓⊔

Corollary 5. (T1 ‖T2)\a = T1\a ‖T2\a ⊓⊔

Lemma 25. Let s ∈ Traces and F : Val → Pow (Traces).
Then, (s ≫ F)\[v/x] = s\[v/x] ≫ λw.F (w)\[v/x]

Proof. By induction on the number of publications in s
If no publ. in s then (s ≫ F)\[v/x] = {s}\[v/x] = s\[v/x] ≫ λw.F (w)\[v/x]
If s = s1!us2 and no publ. in s1 then
(s ≫ F)\[v/x] = (s1τ)\[v/x]((s2 ≫ F) ‖F (u))\[v/x]
= (s1τ)\[v/x]((s2 ≫ F)\[v/x] ‖F (u)\[v/x]) by Corollary 5
= (s1τ)\[v/x]((s2\[v/x] ≫ λw.F (w)\[v/x]) ‖F (u)\[v/x]) by IH for s2

= (s1!us2)\[v/x] ≫ λw.F (w)\[v/x]
= s\[v/x] ≫ λw.F (w)\[v/x] ⊓⊔

Lemma 26. (t1 <y t2)\[v/x] = t1\[v/x] <y t2\[v/x], when y 6= x and
(t1 <x t2)\[v/x] = t1 <x t2\[v/x]

Proof. Assume a well-formedness constraint for t1, t2 similar to Corollary 4.
Cases depending on which branch of the definition of <x was used:

a) no recv. for x in t1, no publ. in t2, t1 <y t2 = t1 ‖ t2
=⇒ holds by Lemma 24

b) no recv. for x in t1, t2 = t21!w t22, no publ. in t21 t1 <y t2 = t1 ‖ t21 τ
=⇒ holds by Lemma 24

c) t1 = t11[w/y] t12, [w/y] 6∈̂ t11, t2 = t21!w t22, no publ. in t21,
t1 <y t2 = (t11 ‖ t21 τ)(t12\[w/y]) (c1)
When x 6= y, by c1 ⇒ ((t11 ‖ t21 τ)(t12\[w/y]))\[v/x]
= (t11 ‖ t21 τ)\[v/x] (t12\[w/y])\[v/x]
= (t11\[v/x] ‖ (t21 τ)\[v/x]) (t12\[w/y])\[v/x] by Corollary 5
= t1\[v/x] <y t2\[v/x]
When x = y, by c1 ⇒ ((t11 ‖ t21 τ)(t12\[w/x]))\[v/x]
= (t11 ‖ t21 τ)\[v/x] (t12\[w/x])\[v/x] (c2)
By the well-formedness constraint, [v/x] 6∈̂ t12 when v 6= w,
therefore (t12\[w/x])\[v/x] = t12\[w/x]
(c2) ⇒ (t11 ‖ (t21 τ)\[v/x]) (t12\[w/x])
= t1 <x t2\[v/x] ⊓⊔

19

Lemma 27. [[f]]ϕρ[x = ♭v] = ([[f]]ϕρ[x = ♮v])\[v/x]

Proof. By structural induction on f
If x is not free in f , by Lemma 18 we get
[[f]]ϕρ = [[f]]ϕρ[x = ♮v] = [[f]]ϕρ[x = ♭v] (I)
But ρ(x) = ♭v in [[f]]ϕρ[x = ♭v], so by (the contrapositive of) Lemma 20 we
know that [v/x] is not in the traces of [[f]]ϕρ[x = ♭v]
=⇒ ([[f]]ϕρ[x = ♮v])\[v/x] = [[f]]ϕρ[x = ♮v] by I
=⇒ [[f]]ϕρ[x = ♭v] = ([[f]]ϕρ[x = ♮v])\[v/x]
If x is free in f ,

a) f is let(x) or M (x) or Ei(x),
by inspection of the trace definitions

b) f ≡ h | g
[[h | g]]ϕρ[x = ♭v] = [[h]]ϕρ[x = ♭v] ‖ [[g]]ϕρ[x = ♭v]
([[h]]ϕρ[x = ♮v])\[v/x] ‖ ([[g]]ϕρ[x = ♮v])\[v/x] by IH
([[h]]ϕρ[x = ♮v] ‖ [[g]]ϕρ[x = ♮v])\[v/x] by Corollary 5
= ([[h | g]]ϕρ[x = ♮v])\[v/x]

c) f ≡ h >x> g (Similarly when f ≡ h >y> g, x 6= y)
[[h >x> g]]ϕρ[x = ♭v] =

⋃

s∈[[h]]ϕρ[x=♭v] s ≫ λw.[[g]]ϕρ[x = ♭v][x = ♭w]

=
⋃

s∈([[h]]ϕρ[x=♮v])\[v/x] s ≫ λw.[[g]]ϕρ[x = ♭w] by IH (c1)

By Lemma 20, [v/x] is not in the traces of [[g]]ϕρ[x = ♭w]
=⇒ [[g]]ϕρ[x = ♭w] = ([[g]]ϕρ[x = ♭w])\[v/x]
= ([[g]]ϕρ[x = ♮v][x = ♭w])\[v/x]
c1 ⇒

⋃

s∈[[h]]ϕρ[x=♮v] s\[v/x] ≫ λw.([[g]]ϕρ[x = ♮v][x = ♭w])\[v/x]

=
⋃

s∈[[h]]ϕρ[x=♮v](s ≫ [[g]]ϕρ[x = ♮v][x = ♭w])\[v/x] by Lemma 25

= (
⋃

s∈[[h]]ϕρ[x=♮v] s ≫ [[g]]ϕρ[x = ♮v][x = ♭w])\[v/x]

= ([[h >x> g]]ϕρ[x = ♮v])\[v/x]
d) f ≡ h where x :∈ g (Similarly when f ≡ h where y :∈ g, x 6= y)

[[h where x :∈ g]]ϕρ[x = ♭v] =
=

⋃

w∈Val
[[h]]ϕρ[x = ♭v][x = ♮w] <x [[g]]ϕρ[x = ♭v]

=
⋃

w∈Val
[[h]]ϕρ[x = ♮w] <x ([[g]]ϕρ[x = ♮v])\[v/x] by IH

Let T1 =
⋃

w∈Val
[[h]]ϕρ[x = ♮w], T2 = [[g]]ϕρ[x = ♮v]

then the above becomes T1 <x T2\[v/x]
=

⋃

t1∈T1,t2∈T2\[v/x] t1 <x t2
=

⋃

t1∈T1,t2∈T2
t1 <x t2\[v/x]

=
⋃

t1∈T1,t2∈T2
(t1 <x t2)\[v/x] by Lemma 26

= (
⋃

t1∈T1,t2∈T2
t1 <x t2)\[v/x]

= (T1 <x T2)\[v/x]
= (

⋃

w∈Val
[[h]]ϕρ[x = ♮w] <x [[g]]ϕρ[x = ♮v])\[v/x]

= ([[h where x :∈ g]]ϕρ[x = ♮v])\[v/x] ⊓⊔

20

E Operational Lemmas

Lemma 28. If ∆, Γ ⊢ f
a
→ f ′ and ‘a’ not a recv for x, then

∆, Γ [x = v] ⊢ f
a
→ f ′ for any v

Proof. By induction on the height of the derivation

– (SITEC)
∆, Γ ⊢ M (v)

Mk(v)
→ ?k

k fresh

This reduction is independent of Γ , thus the Lemma holds.
Similarly for SITERET, LET, DEF

– (LET-VAR)
∆, Γ ⊢ let(y)

[w/y]
→ let(w)

Γ (y) = w

This reduction is independent of Γ (x), thus the Lemma holds.
Similarly for SITEC-VAR, DEF-VAR

– (SYM-L)
∆, Γ ⊢ f

a
→ f ′

∆, Γ ⊢ f | g
a
→ f ′ | g

a 6= [w/x]

By IH, ∆, Γ [x = v] ⊢ f
a
→ f ′

=⇒ ∆, Γ [x = v] ⊢ f | g
a
→ f ′ | g by SYM-L

Similarly for SYM-R

– (ASYM-L)
∆, Γ ⊢ f

a
→ f ′

∆, Γ ⊢ f where x :∈ g
a
→ f ′ where x :∈ g

a 6= [w/x]

By IH, ∆, Γ [x = v] ⊢ f
a
→ f ′

=⇒ ∆, Γ [x = v] ⊢ f where x :∈ g
a
→ f ′ where x :∈ g by ASYM-L

Also, consider the case when x 6= y and

(ASYM-L)
∆, Γ ⊢ f

a
→ f ′

∆, Γ ⊢ f where y :∈ g
a
→ f ′ where x :∈ g

a 6= [w/x], a 6= [w/y]

As above.

Similarly for the other rules. ⊓⊔

Lemma 29. If ∆, Γ [x = v] ⊢ f
a
→ f ′ and a 6= [v/x] then

∆, Γ ′ ⊢ f
a
→ f ′ where Γ ′(y) =

{

Γ (y) x 6= y

unspecified/anything x = y

Proof. By induction on the height of the derivation.
The Lemma trivially holds for the reductions that are independent of the envi-
ronment.

– (SITEC-VAR)
∆, Γ [x = v] ⊢ M (y)

[w/y]
→ M (w)

Γ (y) = w and x 6= y

=⇒
∆, Γ ′ ⊢ M (y)

[w/y]
→ M (w)

Γ ′(y) = w

Similarly for LET-VAR, DEF-VAR

21

– (SYM-L)
∆, Γ [x = v] ⊢ f

a
→ f ′

∆, Γ [x = v] ⊢ f | g
a
→ f ′ | g

a 6= [v/x]

By IH and SYM-L we get the result. Similarly for SYM-R, ASYM-R,
ASYM-P, SEQ, SEQ-P

– (ASYM-L)
∆, Γ [x = v] ⊢ f

a
→ f ′

∆, Γ [x = v] ⊢ f where x :∈ g
a
→ f ′ where x :∈ g

a 6= [v/x]

By IH and ASYM-L we get the result.
Consider also the case when x 6= y and

(ASYM-L)
∆, Γ [x = v] ⊢ f

a
→ f ′

∆, Γ [x = v] ⊢ f where y :∈ g
a
→ f ′ where y :∈ g

a6=[v/x]
a6=[v′/y]

By IH, ∆, Γ ′ ⊢ f
a
→ f ′ and when a 6= [w/y]

∆, Γ ′ ⊢ f where y :∈ g
a
→ f ′ where y :∈ g by ASYM-L ⊓⊔

Lemma 30. ∆, Γ ⊢ f
a
→ f ′ implies f.v.(f ′) ⊆ f.v.(f)

Proof. By induction on the height of the derivation. The interesting cases are

– (DEF)
∆, Γ ⊢ Ei(v)

τ
→ [v/x]fi

(Ei(x) = fi) ∈ ∆

f.v.(Ei(v)) = ∅ = f.v.([v/x]fi) by the constraint f.v.(fi) ⊆ {x}

– (ASYM-L)
∆, Γ ⊢ h

a
→ h′

∆, Γ ⊢ h where x :∈ g
a
→ h′ where x :∈ g

a 6= [v/x]

f.v.(h′) ⊆ f.v.(h) by IH (I)
f.v.(h′ where x :∈ g) = (f.v.(h′) − {x}) ∪ f.v.(g)
⊆ (f.v.(h) − {x}) ∪ f.v.(g) by I
= f.v.(h where x :∈ g) ⊓⊔

Lemma 31. If x /∈ f.v.(f) then for any v, Γ ∆, Γ ⊢ f
[v/x]

6→ f ′

Proof. By structural induction on f . ⊓⊔

22

F Soundness - Adequacy

Lemma 32. If ∆, Γ ⊢ f
a
→ f ′ and t ∈ [[f ′]][[∆]]ρ then at ∈ [[f]][[∆]]ρ

where ρ = ρ0[x = ♮v1] . . . [xm = ♮vm] and Γ = {(x1, v1), . . . , (xm, vm)}

Proof. By structural induction on f and cases on the reduction rule used

a) (SITEC)
∆, Γ ⊢ M (v)

Mk(v)
→ ?k

k fresh

[[?k]][[∆]]ρ = { k?w !w | w ∈ Val}p

Consider only the case when t = k?w !w
Then, (Mk (v) k?w !w) ∈ [[M (v)]][[∆]]ρ

b) (SITEC-VAR)
∆, Γ ⊢ M (x)

[v/x]
→ M (v)

Γ (x) = v

[[M (v)]][[∆]]ρ = {Mk (v) k?w !w | w ∈ Val , k fresh}p

Consider only the case when t = Mk (v) k?w
We know Γ (x) = v, therefore ρ(x) = ♮v
=⇒ ([v/x] Mk (v) k?w) ∈ [[M (x)]][[∆]]ρ when ρ(x) = ♮v

c) SITERET, LET, LET-VAR, DEF-VAR similarly

d) (DEF)
∆, Γ ⊢ Ei(v)

τ
→ [v/x]fi

(Ei(x) , fi) ∈ ∆

Let t ∈ [[[v/x]fi]][[∆]]ρ
Lem. 19
=⇒ t ∈ [[fi]][[∆]]ρ[x = ♭v] (d1)

Also, [[Ei (v)]][[∆]]ρ = { τ t′ | t′ ∈ [[∆]]i(v)}p

where [[∆]]i(v) = [[fi]][[∆]]ρ0[x = ♭v] (d2)
By d2, it suffices to show that t ∈ [[fi]][[∆]]ρ0[x = ♭v], which holds by d1 and
Lemma 18, because x1, . . . , xm are not free in fi

e) (SYM-L)
∆, Γ ⊢ h

a
→ h′

∆, Γ ⊢ h | g
a
→ h′ | g

Let t ∈ [[h′ | g]][[∆]]ρ, then there exist t1 ∈ [[h′]][[∆]]ρ, t2 ∈ [[g]][[∆]]ρ
such that t ∈ t1 ‖ t2 (e1)

By IH for h, at1 ∈ [[h]][[∆]]ρ
e1

=⇒ at ∈ at1 ‖ t2
=⇒ at ∈ [[h | g]][[∆]]ρ

f) Similarly for (SYM-R)

g) (ASYM-L)
∆, Γ ⊢ h

a
→ h′

∆, Γ ⊢ h where x :∈ g
a
→ h′ where x :∈ g

a 6= [v/x]

Let t ∈ [[h′ where x :∈ g]][[∆]]ρ, then there exist
t1 ∈

⋃

v∈Val
[[h′]][[∆]]ρ[x = ♮v], t2 ∈ [[g]][[∆]]ρ such that t ∈ t1 <x t2 (g1)

Also, by Lemma 28, ∆, Γ [x = w] ⊢ h
a
→ h′ for any w (g2)

Cases depending on which branch of the definition of <x was used for t:
• 1st branch was used,

=⇒ no recv. for x in t1, no publ. in t2, t ∈ t1 ‖ t2 (g3)
By g1, g2 and IH for h we get at1 ∈

⋃

v∈Val
[[h]][[∆]]ρ[x = ♮v] (g4)

=⇒ at ∈ at1 ‖ t2 by g3
=⇒ at ∈ [[h where x :∈ g]][[∆]]ρ by g1, g4

23

• 2nd branch was used,
=⇒ no recv. for x in t1, t2 = t21!u t22, no publ. in t21,

t ∈ t1 ‖ t21τ (g5)
By g1, g2 and IH for h we get at1 ∈

⋃

v∈Val
[[h]][[∆]]ρ[x = ♮v] (g6)

=⇒ at ∈ at1 <x t2 by g5
=⇒ at ∈ [[h where x :∈ g]][[∆]]ρ by g1, g6

• 3rd branch was used,
=⇒ t1 = t11[u/x] t12, no recv. for x in t11,

t2 = t21!u t22, no publ. in t21, t ∈ (t11 ‖ t21τ)(t12\[u/x]) (g7)
t1 ∈ [[h′]][[∆]]ρ[x = ♮u] by Lemma 20
=⇒ by g2 and IH for h we get at1 ∈ [[h]][[∆]]ρ[x = ♮u]
=⇒ at1 ∈

⋃

v∈Val
[[h]][[∆]]ρ[x = ♮v] (g8)

=⇒ at ∈ at1 <x t2 by g7
=⇒ at ∈ [[h where x :∈ g]][[∆]]ρ by g1, g8

• 4th branch was used, t = ε
ε ∈ [[g]][[∆]]ρ, ε ∈

⋃

v∈Val
[[h′]][[∆]]ρ[x = ♮v] by Thm. 7

=⇒ a ∈
⋃

v∈Val
[[h]][[∆]]ρ[x = ♮v] by IH

=⇒ a ∈ a <x ε
=⇒ a ∈ [[h where x :∈ g]][[∆]]ρ

h) (ASYM-R) Similar to the previous case

i) (ASYM-P)
∆, Γ ⊢ g

!v
→ g′

∆, Γ ⊢ h where x :∈ g
τ
→ [v/x]h

Let t ∈ [[[v/x]h]][[∆]]ρ
=⇒ t ∈ [[h]][[∆]]ρ[x = ♭v] by Lemma 19
=⇒ ∃ t′ ∈ [[h]][[∆]]ρ[x = ♮v]. t = t′\[v/x] by Lemma 27 (i1)
ε ∈ [[g′]][[∆]]ρ by Thm. 7
=⇒ !v ∈ [[g]][[∆]]ρ by IH (i2)

• no recv. for x in t′

=⇒ t = t′ and τ t ∈ t <x!v by i1
=⇒ τ t ∈ [[h where x :∈ g]][[∆]]ρ by i1, i2

• t′ = t′1[v/x]t′2, no recv. for x in t′1 (i3)
=⇒ τ t′1(t

′
2\[v/x]) ∈ t′ <x!v

=⇒ τ t ∈ t′ <x!v by i1, i3
=⇒ τ t ∈ [[h where x :∈ g]][[∆]]ρ by i1, i2

j) (SEQ)
∆, Γ ⊢ h

a
→ h′

∆, Γ ⊢ h >x> g
a
→ h′ >x> g

a 6=!v

Let t ∈ [[h′ >x> g]][[∆]]ρ, then there exists s ∈ [[h′]][[∆]]ρ
such that t ∈ s ≫ λv.[[g]][[∆]]ρ[x = ♭v] (j1)
Cases on s:

• no publ. in s ⇒ t ∈ {s} ⇒ t = s (j2)
By IH for h, as ∈ [[h]][[∆]]ρ
=⇒ at ∈ as ≫ λv.[[g]][[∆]]ρ[x = ♭v] by j2
=⇒ at ∈ [[h >x> g]][[∆]]ρ

• s = s1!u s2, no publ. in s1

=⇒ t ∈ s1τ((s2 ≫ λv.[[g]][[∆]]ρ[x = ♭v]) ‖ [[g]][[∆]]ρ[x = ♭u]) by j1

24

=⇒ at ∈ as ≫ λv.[[g]][[∆]]ρ[x = ♭v] (j3)
By IH for h, as ∈ [[h]][[∆]]ρ
=⇒ at ∈ [[h >x> g]][[∆]]ρ by j3

k) (SEQ-P)
∆, Γ ⊢ h

!u
→ h′

∆, Γ ⊢ h >x> g
τ
→ (h′ >x> g) | [u/x]g

Let t ∈ [[(h′ >x> g) | [u/x]g]][[∆]]ρ, then there exist
t1 ∈ [[h′ >x> g]][[∆]]ρ, t2 ∈ [[[u/x]g]][[∆]]ρ such that t ∈ t1 ‖ t2 (k1)
By Lemma 19, t2 ∈ [[g]][[∆]]ρ[x = ♭u] (k2)
By k1, ∃s ∈ [[h′]][[∆]]ρ. t1 ∈ s ≫ λv.[[g]][[∆]]ρ[x = ♭v] (k3)
By IH for h, !u s ∈ [[h]][[∆]]ρ (k4)
By k1, k2, k3 t ∈ (s ≫ λv.[[g]][[∆]]ρ[x = ♭v]) ‖ [[g]][[∆]]ρ[x = ♭u]
=⇒ τ t ∈ τ((s ≫ λv.[[g]][[∆]]ρ[x = ♭v]) ‖ [[g]][[∆]]ρ[x = ♭u])
=⇒ τ t ∈ !u s ≫ λv.[[g]][[∆]]ρ[x = ♭v]
=⇒ τ t ∈ [[h >x> g]][[∆]]ρ by k4 ⊓⊔

Theorem 8 (Soundness). If Γ = {(x1, v1), . . . , (xm, vm)},
σ = [w1/y1] . . . [wn/yn], ρ = ρ0[x1 = ♮v1] . . . [xm = ♮vm][y1 = ♭w1] . . . [yn = ♭wn],
x’s and y’s are all distinct, then

∆, Γ ⊢ σf
t
→∗ f ′ implies t ∈ [[f]][[∆]]ρ

Proof. By induction on |t|

– If |t| = 0 ⇔ t = ε
=⇒ ε ∈ [[f]][[∆]]ρ by Thm. 7

– If t = a t′

=⇒ ∆, Γ ⊢ σf
a
→ f ′′ t′

→∗ f ′

By IH for t′, t′ ∈ [[f ′′]][[∆]]ρ0[x1 = ♮v1] . . . [xm = ♮vm]
and by Lemma 32, a t′ ∈ [[σf]][[∆]]ρ0[x1 = ♮v1] . . . [xm = ♮vm]
therefore t ∈ [[f]][[∆]]ρ by Lemma 19 ⊓⊔

Lemma 33. If at ∈ [[f]][[∆]]ρ then ∆, Γ ⊢ f
a
→ f ′ and t ∈ [[f ′]][[∆]]ρ

where ρ = ρ0[x1 = ♮v1] . . . [xm = ♮vm] and Γ = {(x1, v1), . . . , (xm, vm)}

Proof. By structural induction on f

a) f ≡ 0 vacuously true
b) f ≡ let(v)

=⇒ [[let(v)]][[∆]]ρ = {!v}p

=⇒ a =!v and t = ε
Also, ∆, Γ ⊢ let(v)

!v
→ 0 and ε ∈ [[0]][[∆]]ρ

c) f ≡ M (v) or ?k similarly
d) f ≡ let(x)

For a non-empty trace of f , we know ρ(x) = ♮v
=⇒ [[let(x)]][[∆]]ρ = {[v/x] !v}p

Consider only the case when a = [v/x] and t =!v

Then, by LET-VAR, ∆, Γ ⊢ let(x)
[v/x]
→ let(v) and !v ∈ [[let(v)]][[∆]]ρ

25

e) f ≡ M (x) similarly
f) f ≡ Ei(v)

=⇒ [[Ei(v)]][[∆]]ρ = { τ t | t ∈ [[∆]]i(v)}p

By DEF, ∆, Γ ⊢ Ei(v)
τ
→ [v/x]fi

=⇒ suffices to show that for any t ∈ [[∆]]i(v) then t ∈ [[[v/x]fi]][[∆]]ρ

We know [[∆]] = fix(∆̂) ⇒ ∆̂([[∆]]) = [[∆]]
Then, t ∈ [[∆]]i(v) implies t ∈ [[fi]][[∆]]ρ0[x = ♭v]
=⇒ t ∈ [[[v/x]fi]][[∆]]ρ0 by Lemma 19
=⇒ t ∈ [[[v/x]fi]][[∆]]ρ by Lemma 18 because f.v.([v/x]fi) = ∅

g) f ≡ h | g
Let a t ∈ [[h | g]][[∆]]ρ, then there exist
t1 ∈ [[h]][[∆]]ρ, t2 ∈ [[g]][[∆]]ρ such that a t ∈ t1 ‖ t2 (g1)
• ‘a’ is an event of t1, i.e. t1 = a t′1, and by g1, t ∈ t′1 ‖ t2 (g2)

By IH for h, ∆, Γ ⊢ h
a
→ h′ and t′1 ∈ [[h′]][[∆]]ρ (g3)

=⇒ ∆, Γ ⊢ h | g
a
→ h′ | g by SYM-L

=⇒ t ∈ [[h′ | g]][[∆]]ρ by g1, g2, g3
• ‘a’ is an event of t2, similarly

h) f ≡ h >x> g
Let a t ∈ [[h >x> g]][[∆]]ρ then there exists
s ∈ [[h]][[∆]]ρ such that a t ∈ s ≫ λw.[[g]][[∆]]ρ[x = ♭w] (h1)
• no publ. in s

=⇒ a t = s by h1
=⇒ ∆, Γ ⊢ h

a
→ h′ and t ∈ [[h′]][[∆]]ρ by IH for h (h2)

=⇒ ∆, Γ ⊢ h >x> g
a
→ h′ >x> g by SEQ

=⇒ suffices to show that t ∈ [[h′ >x> g]][[∆]]ρ which holds by h2
• s = s1 !v s2, no publ. in s1

Then, by h1
a t ∈ s1τ((s2 ≫ λw.[[g]][[∆]]ρ[x = ♭w]) ‖ [[g]][[∆]]ρ[x = ♭v]) (h3)
∗ ‘a’ is the first event of s1, s1 = a s′1

=⇒ ∆, Γ ⊢ h
a
→ h′ and s′1!vs2 ∈ [[h′]][[∆]]ρ by IH for h (h4)

=⇒ ∆, Γ ⊢ h >x> g
a
→ h′ >x> g by SEQ

We know that, t ∈ s′1!vs2 ≫ λw.[[g]][[∆]]ρ[x = ♭w] by h3
=⇒ t ∈ [[h′ >x> g]][[∆]]ρ by h4

∗ s1 is empty, therefore s =!v s2 and by h3 a = τ

=⇒ ∆, Γ ⊢ h
!v
→ h′ and s2 ∈ [[h′]][[∆]]ρ by IH for h (h6)

Then, by SEQ-P
∆, Γ ⊢ h >x> g

τ
→ (h′ >x> g) | [v/x]g

By h3, t ∈ (s2 ≫ λw.[[g]][[∆]]ρ[x = ♭w]) ‖ [[g]][[∆]]ρ[x = ♭v]
=⇒ t ∈ [[h′ >x> g]][[∆]]ρ ‖ [[g]][[∆]]ρ[x = ♭v] by h6
=⇒ t ∈ [[(h′ >x> g) | [v/x]g]][[∆]]ρ by Lem. 19

i) f ≡ h where x :∈ g
Let a t ∈ [[h where x :∈ g]][[∆]]ρ, then there exist
t1 ∈

⋃

v∈Val
[[h]][[∆]]ρ[x = ♮v], t2 ∈ [[g]][[∆]]ρ such that a t ∈ t1 <x t2 (i1)

Cases on the branch of the definition of <x used for a t
• no recv. for x in t1, no publ. in t2 =⇒ a t ∈ t1 ‖ t2 (i2)

26

∗ ‘a’ is an event of t1, i.e. t1 = a t′1 and t ∈ t′1 ‖ t2 (i3)
We know that, a t′1 ∈ [[h]][[∆]]ρ by i2 and Lemma 21

=⇒ ∆, Γ ⊢ h
a
→ h′ and t′1 ∈ [[h′]][[∆]]ρ by IH (i4)

ASYM-L
=⇒ ∆, Γ ⊢ h where x :∈ g

a
→ h′ where x :∈ g

By i1, ∃u ∈ Val . a t′1 ∈ [[h]][[∆]]ρ[x = ♮u]

=⇒ ∆, Γ [x = u] ⊢ h
a
→ h′ and t′1 ∈ [[h′]][[∆]]ρ[x = ♮u] by IH

=⇒ t′1 ∈
⋃

v∈Val
[[h′]][[∆]]ρ[x = ♮v]

=⇒ t ∈ [[h′ where x :∈ g]][[∆]]ρ by i1, i3
∗ ‘a’ is an event of t2, i.e. t2 = a t′2 and t ∈ t1 ‖ t′2 (i5)

∆, Γ ⊢ g
a
→ g′ and t′2 ∈ [[g′]][[∆]]ρ by IH for g (i6)

ASYM-R
=⇒ ∆, Γ ⊢ h where x :∈ g

a
→ h where x :∈ g′

Also, t ∈ t1 <x t′2 by i2, i5
=⇒ t ∈ [[h where x :∈ g′]][[∆]]ρ by i1, i6

• no recv. for x in t1, t2 = t21!w t22, no publ. in t21
=⇒ a t ∈ t1 ‖ t21 τ (i7)

∗ ‘a’ is an event of t1, i.e. t1 = a t′1 and t ∈ t′1 ‖ t21 τ
. . . It’s exactly the same as the previous case for t1

∗ ‘a’ is an event of t21, i.e. t21 = a t′21 and t ∈ t1 ‖ t′21 τ
. . . It’s exactly the same as the previous case for t2

∗ t21 is empty, a = τ and t = t1

∆, Γ ⊢ g
!w
→ g′ and t22 ∈ [[g′]][[∆]]ρ by IH for g

ASYM-P
=⇒ ∆, Γ ⊢ h where x :∈ g

τ
→ [w/x]h

Suffices to show that t1 ∈ [[[w/x]h]][[∆]]ρ
We know that t1 ∈ [[h]][[∆]]ρ–x by i7 and Lemma 21
=⇒ t1 ∈ [[h]][[∆]]ρ[x = ♭w] by Lemma 23
=⇒ t1 ∈ [[[w/x]h]][[∆]]ρ by Lemma 19

• t1 = t11[w/x] t12, [w/x] 6∈̂ t11, t2 = t21!w t22, no publ. in t21
=⇒ a t ∈ (t11 ‖ t21τ)(t12\[w/x])

∗ ‘a’ is an event of t11,
i.e. t11 = a t′11 and t ∈ (t′11 ‖ t21 τ)(t12\[w/x])
=⇒ t ∈ (t′11[w/x]t12 <x t2) (i8)
By Lemma 20, t1 ∈ [[h]][[∆]]ρ[x = ♮w]

=⇒ ∆, Γ [x = w] ⊢ h
a
→ h′ and

t′11[w/x]t12 ∈ [[h′]][[∆]]ρ[x = ♮w] by IH (i9)

=⇒ ∆, Γ ⊢ h
a
→ h′ by Lemma 29

ASYM-L
=⇒ ∆, Γ ⊢ h where x :∈ g

a
→ h′ where x :∈ g

Also, by i8 and i9 t ∈ [[h′ where x :∈ g]][[∆]]ρ
∗ ‘a’ is an event of t21,

i.e. t21 = a t′21 and t ∈ (t11 ‖ t′21 τ)(t12\[w/x])
=⇒ t ∈ (t1 <x t′21!w t22) (i10)

∆, Γ ⊢ g
a
→ g′ and t′21!w t22 ∈ [[g′]][[∆]]ρ by IH (i11)

ASYM-R
=⇒ ∆, Γ ⊢ h where x :∈ g

a
→ h where x :∈ g′

and t ∈ [[h where x :∈ g′]][[∆]]ρ by i10, i11

27

∗ t21 is empty, a = τ and t = t11(t21\[w/x]) = t1\[w/x] (i12)

∆, Γ ⊢ g
!w
→ g′ and t22 ∈ [[g′]][[∆]]ρ by IH

ASYM-P
=⇒ ∆, Γ ⊢ h where x :∈ g

τ
→ [w/x]h

By Lemma 20, t1 ∈ [[h]][[∆]]ρ[x = ♮w]
=⇒ t1\[w/x] ∈ [[h]][[∆]]ρ[x = ♭w] by Lemma 27
=⇒ t ∈ [[[w/x]h]][[∆]]ρ by i12 and Lemma 19

• a t = ε
not applicable, a t can not be empty ⊓⊔

Theorem 9 (Adequacy). If Γ = {(x1, v1), . . . , (xm, vm)},
σ = [w1/y1] . . . [wn/yn], ρ = ρ0[x1 = ♮v1] . . . [xm = ♮vm][y1 = ♭w1] . . . [yn = ♭wn],
x’s and y’s are all distinct, then

t ∈ [[f]][[∆]]ρ implies ∆, Γ ⊢ σf
t
→∗ f ′

Proof. By induction on |t|

– If |t| = 0 ⇔ t = ε, then σf reduces to itself in 0 steps.
– If t = a t′ then

a t′ ∈ [[f]][[∆]]ρ
=⇒ a t′ ∈ [[σf]][[∆]]ρ[x1 = ♮v1] . . . [xm = ♮vm] by Lemma 19

=⇒ ∆, Γ ⊢ σf
a
→ f ′ and

t′ ∈ [[f ′]][[∆]]ρ[x1 = ♮v1] . . . [xm = ♮vm] by Lemma 33

=⇒ ∆, Γ ⊢ f ′ t′
→∗ f ′′ by IH for t′

=⇒ ∆, Γ ⊢ σf
a
→ f ′ t′ ∗

→ f ′′

=⇒ ∆, Γ ⊢ σf
t
→∗ f ′′ ⊓⊔

28

