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What is a flow analysis?

Flow analysis: find information about the control
and data flow of a program without running it.
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Applications

Bug finding

argument mismatch
type mismatch
array-index out of bounds
dead-code detection

Semantic navigation

what functions get called at this call site
what flows to this variable

Optimization

classic dataflow optimizations
function-call resolution
type recovery for tag elimination
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From graphs to pushdown models

Program as a graph whose nodes are the program points.
⇒ executions are strings in a regular language.
⇒ approximate program with finite-state machine.
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From graphs to pushdown models

Program as a graph whose nodes are the program points.
⇒ executions are strings in a regular language.
⇒ approximate program with finite-state machine.

Fine for conditionals and loops (think Fortran).
Weak for first-class functions.

Approximate program with pushdown automaton.
⇒ unbounded call/return matching.
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(define id (λ(x) x))

(let* ((n1 (id 1))

(n2 (id 2)))

(+ n1 n2))
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0CFA execution

start

Global environment:
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0CFA execution

start

call id(1)

n1 := ret
id(x)

ret x
call id(2)

n2 := ret

end (+ n1 n2)

Global environment:
x 1 2
n1 1 2
n2 1 2

Call/return mismatch causes spurious flows
⇒ commonly called functions pollute the analysis.
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0CFA execution

start

call id(1)

n1 := ret
id(x)

ret x
call id(2)

n2 := ret

end (+ n1 n2)

Global environment:
x 1 2
n1 1 2
n2 1 2

Can’t use a graph model to calculate stack change
⇒ stack-based optimizations out of reach.
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Fake Rebinding

(define (compose-same f x)
2(f 1(f x)))
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The vicious cycle of approximation

imprecision
spurious flows

to be analyzed
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The vicious cycle of approximation

imprecision
spurious flows

to be analyzed

flow data along

spurious flows

◮ In HOFA, imprecision can increase running time.

◮ k-CFA intractably slow for k > 0 (Van Horn–Mairson).

8



CFA2: pushdown automaton
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CFA2: pushdown automaton
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n1 := ret3
id(x) 4

push
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CFA2: pushdown automaton
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CFA2: pushdown automaton

start1

call id(1)2

n1 := ret3
id(x) 4

push

ret x 5popcall id(2)6

n2 := ret7

push

pop

end (+ n1 n2)8

Stack:
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Summarization

Why:

Stack can grow arbitrarily—infinite state space
⇒ simple analysis techniques won’t terminate!

Summarization handles infinite-space issue (Sharir–Pnueli, Reps).
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Summarization

Why:

Stack can grow arbitrarily—infinite state space
⇒ simple analysis techniques won’t terminate!

Summarization handles infinite-space issue (Sharir–Pnueli, Reps).

How:
On function entry, forget return point; remember before return.

Inside a function, remember only the top frame.

To avoid reanalyzing functions often, record summaries from
function entries to function exits.
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CFA2: summarization
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Stack filtering

(define (compose-same f x)
2(f 1(f x)))

λa λb

Flows: Frame: Action:
2(f 1(f x)) [f 7→ {λa, λb}] pick a lambda
2(f 1(λa x)) [f 7→ {λa}] commit to λa

2(λa
1(λa x)) [f 7→ {λa}]

Similarly for λb
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Stack and heap references

Stack filtering possible because both references to f in top frame
(stack references).
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Stack and heap references

Stack filtering possible because both references to f in top frame
(stack references).

Some references not in top frame though (heap references),
e.g., (λ(x)(λ(y) (+ x y)))
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Characteristics of CFA2

◮ handles first-class functions, tail calls.

◮ unbounded call/return matching.

◮ applies to statically typed and dynamic languages.

◮ precise lookup for stack references.

◮ strong update for stack references.
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Correctness

Simulation
The abstract semantics is a safe approximation of the runtime
behavior of the program.
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Correctness

Simulation
The abstract semantics is a safe approximation of the runtime
behavior of the program.

Soundness
The summarization algorithm doesn’t miss any flows of the
abstract semantics . . .

Completeness

. . . and it doesn’t add spurious flows.
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Benchmarks

0CFA 1CFA CFA2
S? H? visited const visited const visited const

len 9 0 81 0 126 0 55 2
rev-iter 17 0 121 0 198 0 82 4
len-Y 15 4 199 0 356 0 131 2
tree-count 33 0 293 2 2856 6 183 10
ins-sort 33 5 509 0 1597 0 600 4
DFS 94 11 1337 8 6890 8 1709 16
flatten 37 0 1520 0 6865 0 478 5
sets 90 3 3915 0 54414 0 4233 4
church-nums 46 23 19130 0 19411 0 24580 0
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Future work

◮ call/cc

◮ increase precision in heap (Might–Shivers ΓCFA).

◮ escape analysis: stack allocation of closures, cons cells etc.
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Conclusions

◮ Flow-analysis of higher-order languages has captivated
researchers for the past 20 years.

◮ CFA2 models well the important control-flow structure of
these languages: function call/return.

◮ Exciting possibilities opening up:
◮ optimization
◮ informative development environments
◮ compile-time error detection
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Thank you!
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