
CFA2: a Context-Free Approach

to Control-Flow Analysis

Dimitrios Vardoulakis Olin Shivers

Northeastern University

1



What is a flow analysis?

Flow analysis: find information about the control
and data flow of a program without running it.

2



Applications

Bug finding

argument mismatch
type mismatch
array-index out of bounds
dead-code detection

Semantic navigation

what functions get called at this call site
what flows to this variable

Optimization

classic dataflow optimizations
function-call resolution
type recovery for tag elimination

3



From graphs to pushdown models

Program as a graph whose nodes are the program points.
⇒ executions are strings in a regular language.
⇒ approximate program with finite-state machine.

4



From graphs to pushdown models

Program as a graph whose nodes are the program points.
⇒ executions are strings in a regular language.
⇒ approximate program with finite-state machine.

Fine for conditionals and loops (think Fortran).
Weak for first-class functions.

4



From graphs to pushdown models

Program as a graph whose nodes are the program points.
⇒ executions are strings in a regular language.
⇒ approximate program with finite-state machine.

Fine for conditionals and loops (think Fortran).
Weak for first-class functions.

Approximate program with pushdown automaton.
⇒ unbounded call/return matching.

4



(define id (λ(x) x))

(let* ((n1 (id 1))

(n2 (id 2)))

(+ n1 n2))

5



0CFA execution

start

Global environment:

6



0CFA execution

start

call id(1)

n1 := ret
Global environment:

6



0CFA execution

start

call id(1)

n1 := ret
id(x) Global environment:

x 1

6



0CFA execution

start

call id(1)

n1 := ret
id(x)

ret x

Global environment:
x 1

6



0CFA execution

start

call id(1)

n1 := ret
id(x)

ret x

Global environment:
x 1
n1 1

6



0CFA execution

start

call id(1)

n1 := ret
id(x)

ret x
call id(2)

n2 := ret

Global environment:
x 1
n1 1

6



0CFA execution

start

call id(1)

n1 := ret
id(x)

ret x
call id(2)

n2 := ret

Global environment:
x 1 2
n1 1

6



0CFA execution

start

call id(1)

n1 := ret
id(x)

ret x
call id(2)

n2 := ret

Global environment:
x 1 2
n1 1 2
n2 1 2

6



0CFA execution

start

call id(1)

n1 := ret
id(x)

ret x
call id(2)

n2 := ret

end (+ n1 n2)

Global environment:
x 1 2
n1 1 2
n2 1 2

6



0CFA execution

start

call id(1)

n1 := ret
id(x)

ret x
call id(2)

n2 := ret

end (+ n1 n2)

Global environment:
x 1 2
n1 1 2
n2 1 2

Call/return mismatch causes spurious flows
⇒ commonly called functions pollute the analysis.

6



0CFA execution

start

call id(1)

n1 := ret
id(x)

ret x
call id(2)

n2 := ret

end (+ n1 n2)

Global environment:
x 1 2
n1 1 2
n2 1 2

6



0CFA execution

start

call id(1)

n1 := ret
id(x)

ret x
call id(2)

n2 := ret

end (+ n1 n2)

Global environment:
x 1 2
n1 1 2
n2 1 2

6



0CFA execution

start

call id(1)

n1 := ret
id(x)

ret x
call id(2)

n2 := ret

end (+ n1 n2)

Global environment:
x 1 2
n1 1 2
n2 1 2

6



0CFA execution

start

call id(1)

n1 := ret
id(x)

ret x
call id(2)

n2 := ret

end (+ n1 n2)

Global environment:
x 1 2
n1 1 2
n2 1 2

6



0CFA execution

start

call id(1)

n1 := ret
id(x)

ret x
call id(2)

n2 := ret

end (+ n1 n2)

Global environment:
x 1 2
n1 1 2
n2 1 2

6



0CFA execution

start

call id(1)

n1 := ret
id(x)

ret x
call id(2)

n2 := ret

end (+ n1 n2)

Global environment:
x 1 2
n1 1 2
n2 1 2

6



0CFA execution

start

call id(1)

n1 := ret
id(x)

ret x
call id(2)

n2 := ret

end (+ n1 n2)

Global environment:
x 1 2
n1 1 2
n2 1 2

6



0CFA execution

start

call id(1)

n1 := ret
id(x)

ret x
call id(2)

n2 := ret

end (+ n1 n2)

Global environment:
x 1 2
n1 1 2
n2 1 2

6



0CFA execution

start

call id(1)

n1 := ret
id(x)

ret x
call id(2)

n2 := ret

end (+ n1 n2)

Global environment:
x 1 2
n1 1 2
n2 1 2

Can’t use a graph model to calculate stack change
⇒ stack-based optimizations out of reach.

6



Fake Rebinding

(define (compose-same f x)
2(f 1(f x)))

7



Fake Rebinding

(define (compose-same f x)
2(f 1(f x)))

λa λb

7



Fake Rebinding

(define (compose-same f x)
2(f 1(f x)))

λa λb

Flows:
2(f 1(f x))

7



Fake Rebinding

(define (compose-same f x)
2(f 1(f x)))

λa λb

Flows:
2(f 1(λa x))

7



Fake Rebinding

(define (compose-same f x)
2(f 1(f x)))

λa λb

Flows:
2(λa

1(λa x)) !
7



Fake Rebinding

(define (compose-same f x)
2(f 1(f x)))

λa λb

Flows:
2(λa

1(λa x)) !
2(λb

1(λb x)) !
7



Fake Rebinding

(define (compose-same f x)
2(f 1(f x)))

λa λb

Flows:
2(λa

1(λa x)) !
2(λb

1(λb x)) !
2(λb

1(λa x)) %
7



Fake Rebinding

(define (compose-same f x)
2(f 1(f x)))

λa λb

Flows:
2(λa

1(λa x)) !
2(λb

1(λb x)) !
2(λb

1(λa x)) %
2(λa

1(λb x)) %
7



The vicious cycle of approximation

imprecision
spurious flows

to be analyzed

8



The vicious cycle of approximation

imprecision
spurious flows

to be analyzed

flow data along

spurious flows

8



The vicious cycle of approximation

imprecision
spurious flows

to be analyzed

flow data along

spurious flows

8



The vicious cycle of approximation

imprecision
spurious flows

to be analyzed

flow data along

spurious flows

◮ In HOFA, imprecision can increase running time.

◮ k-CFA intractably slow for k > 0 (Van Horn–Mairson).

8



CFA2: pushdown automaton

start1

Stack:

9



CFA2: pushdown automaton

start1

call id(1)2

n1 := ret3

Stack:

9



CFA2: pushdown automaton

start1

call id(1)2

n1 := ret3
id(x) 4

push

Stack:

x 7→ 1, ret 7→ 3

9



CFA2: pushdown automaton

start1

call id(1)2

n1 := ret3
id(x) 4

push

ret x 5

Stack:

x 7→ 1, ret 7→ 3

9



CFA2: pushdown automaton

start1

call id(1)2

n1 := ret3
id(x) 4

push

ret x 5pop

Stack:

9



CFA2: pushdown automaton

start1

call id(1)2

n1 := ret3
id(x) 4

push

ret x 5popcall id(2)6

n2 := ret7

Stack:

9



CFA2: pushdown automaton

start1

call id(1)2

n1 := ret3
id(x) 4

push

ret x 5popcall id(2)6

n2 := ret7

push

Stack:

x 7→ 2, ret 7→ 7

9



CFA2: pushdown automaton

start1

call id(1)2

n1 := ret3
id(x) 4

push

ret x 5popcall id(2)6

n2 := ret7

push

pop

Stack:

9



CFA2: pushdown automaton

start1

call id(1)2

n1 := ret3
id(x) 4

push

ret x 5popcall id(2)6

n2 := ret7

push

pop

end (+ n1 n2)8

Stack:

9



Summarization

Why:

Stack can grow arbitrarily—infinite state space
⇒ simple analysis techniques won’t terminate!

Summarization handles infinite-space issue (Sharir–Pnueli, Reps).

10



Summarization

Why:

Stack can grow arbitrarily—infinite state space
⇒ simple analysis techniques won’t terminate!

Summarization handles infinite-space issue (Sharir–Pnueli, Reps).

How:
On function entry, forget return point; remember before return.

Inside a function, remember only the top frame.

To avoid reanalyzing functions often, record summaries from
function entries to function exits.

10



CFA2: summarization

start1

11



CFA2: summarization

start1

call id(1)2

n1 := ret3

11



CFA2: summarization

start1

call id(1)2

n1 := ret3
id(x) 4

Callers:
2 calls 4[x 7→ 1]

11



CFA2: summarization

start1

call id(1)2

n1 := ret3
id(x) 4

ret x 5

Callers:
2 calls 4[x 7→ 1]

Summaries:
4[x 7→ 1] goes to 5[x 7→ 1]

11



CFA2: summarization

start1

call id(1)2

n1 := ret3
id(x) 4

ret x 5

Callers:
2 calls 4[x 7→ 1]

Summaries:
4[x 7→ 1] goes to 5[x 7→ 1]

Toplevel:
n1 1

11



CFA2: summarization

start1

call id(1)2

n1 := ret3
id(x) 4

ret x 5
call id(2)6

n2 := ret7

Callers:
2 calls 4[x 7→ 1]

Summaries:
4[x 7→ 1] goes to 5[x 7→ 1]

Toplevel:
n1 1

11



CFA2: summarization

start1

call id(1)2

n1 := ret3
id(x) 4

ret x 5
call id(2)6

n2 := ret7

Callers:
2 calls 4[x 7→ 1]
6 calls 4[x 7→ 2]

Summaries:
4[x 7→ 1] goes to 5[x 7→ 1]

Toplevel:
n1 1

11



CFA2: summarization

start1

call id(1)2

n1 := ret3
id(x) 4

ret x 5
call id(2)6

n2 := ret7

Callers:
2 calls 4[x 7→ 1]
6 calls 4[x 7→ 2]

Summaries:
4[x 7→ 1] goes to 5[x 7→ 1]
4[x 7→ 2] goes to 5[x 7→ 2]

Toplevel:
n1 1

11



CFA2: summarization

start1

call id(1)2

n1 := ret3
id(x) 4

ret x 5
call id(2)6

n2 := ret7

Callers:
2 calls 4[x 7→ 1]
6 calls 4[x 7→ 2]

Summaries:
4[x 7→ 1] goes to 5[x 7→ 1]
4[x 7→ 2] goes to 5[x 7→ 2]

Toplevel:
n1 1
n2 2

11



CFA2: summarization

start1

call id(1)2

n1 := ret3
id(x) 4

ret x 5
call id(2)6

n2 := ret7

end (+ n1 n2)8

Callers:
2 calls 4[x 7→ 1]
6 calls 4[x 7→ 2]

Summaries:
4[x 7→ 1] goes to 5[x 7→ 1]
4[x 7→ 2] goes to 5[x 7→ 2]

Toplevel:
n1 1
n2 2

11



Stack filtering

(define (compose-same f x)
2(f 1(f x)))

λa λb

12



Stack filtering

(define (compose-same f x)
2(f 1(f x)))

λa λb

Flows: Frame: Action:
2(f 1(f x)) [f 7→ {λa, λb}] pick a lambda

12



Stack filtering

(define (compose-same f x)
2(f 1(f x)))

λa λb

Flows: Frame: Action:
2(f 1(f x)) [f 7→ {λa, λb}] pick a lambda
2(f 1(λa x)) [f 7→ {λa}] commit to λa

12



Stack filtering

(define (compose-same f x)
2(f 1(f x)))

λa λb

Flows: Frame: Action:
2(f 1(f x)) [f 7→ {λa, λb}] pick a lambda
2(f 1(λa x)) [f 7→ {λa}] commit to λa

2(λa
1(λa x)) [f 7→ {λa}]

12



Stack filtering

(define (compose-same f x)
2(f 1(f x)))

λa λb

Flows: Frame: Action:
2(f 1(f x)) [f 7→ {λa, λb}] pick a lambda
2(f 1(λa x)) [f 7→ {λa}] commit to λa

2(λa
1(λa x)) [f 7→ {λa}]

Similarly for λb

12



Stack and heap references

Stack filtering possible because both references to f in top frame
(stack references).

13



Stack and heap references

Stack filtering possible because both references to f in top frame
(stack references).

Some references not in top frame though (heap references),
e.g., (λ(x)(λ(y) (+ x y)))

13



Characteristics of CFA2

◮ handles first-class functions, tail calls.

◮ unbounded call/return matching.

◮ applies to statically typed and dynamic languages.

◮ precise lookup for stack references.

◮ strong update for stack references.

14



Correctness

Simulation
The abstract semantics is a safe approximation of the runtime
behavior of the program.

15



Correctness

Simulation
The abstract semantics is a safe approximation of the runtime
behavior of the program.

Soundness
The summarization algorithm doesn’t miss any flows of the
abstract semantics . . .

15



Correctness

Simulation
The abstract semantics is a safe approximation of the runtime
behavior of the program.

Soundness
The summarization algorithm doesn’t miss any flows of the
abstract semantics . . .

Completeness

. . . and it doesn’t add spurious flows.

15



Benchmarks

0CFA 1CFA CFA2
S? H? visited const visited const visited const

len 9 0 81 0 126 0 55 2
rev-iter 17 0 121 0 198 0 82 4
len-Y 15 4 199 0 356 0 131 2
tree-count 33 0 293 2 2856 6 183 10
ins-sort 33 5 509 0 1597 0 600 4
DFS 94 11 1337 8 6890 8 1709 16
flatten 37 0 1520 0 6865 0 478 5
sets 90 3 3915 0 54414 0 4233 4
church-nums 46 23 19130 0 19411 0 24580 0

16



Future work

◮ call/cc

◮ increase precision in heap (Might–Shivers ΓCFA).

◮ escape analysis: stack allocation of closures, cons cells etc.

17



Conclusions

◮ Flow-analysis of higher-order languages has captivated
researchers for the past 20 years.

◮ CFA2 models well the important control-flow structure of
these languages: function call/return.

◮ Exciting possibilities opening up:
◮ optimization
◮ informative development environments
◮ compile-time error detection

18



Thank you!

19


