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Abstract
Pushdown models are better than control-flow graphs for higher-
order flow analysis. They faithfully model the call/return structure
of a program, which results in fewer spurious flows and increased
precision. However, pushdown models require that calls and returns
in the analyzed program nest properly. As a result, they cannot be
used to analyze language constructs that break call/return nesting
such as generators, coroutines, call/cc, etc.

In this paper, we extend the CFA2 flow analysis to create the
first pushdown flow analysis for languages with first-class control.
We modify the abstract semantics of CFA2 to allow continuations
to escape to, and be restored from, the heap. We then present a
summarization algorithm that handles escaping continuations via a
new kind of summary edges. We prove that the algorithm is sound
with respect to the abstract semantics.

Categories and Subject Descriptors F.3.2 [Semantics of Pro-
gramming Languages]: Program Analysis

General Terms Languages

Keywords pushdown flow analysis, first-class continuations, re-
stricted continuation-passing style, summarization

1. Introduction
Function call and return is the fundamental control-flow mecha-
nism in higher-order languages. Therefore, if a flow analysis is to
model program behavior faithfully, it must handle call and return
well. Pushdown models of programs [14, 16, 21] enable flow anal-
yses with unbounded call/return matching. These analyses are more
precise than analyses based on control-flow graphs.

Pushdown models require that calls and returns in the analyzed
program nest properly. However, many control constructs, some
of them in mainstream programming languages, break call/return
nesting. Generators [3, Python] [2, JavaScript] are functions that
are usually called inside loops to produce a sequence of values one
at a time. A generator executes until it reaches a yield statement,
at which point it returns the value passed to yield to its calling
context. When the generator is called again, execution resumes at
the first instruction after the yield. Coroutines [6, Simula67][4,
Lua] can also suspend and resume their execution, but are more
expressive than generators because they can specify where to pass
control to when they yield. Last but not least, first-class continua-
tions reify the rest of the computation as a function. Continuations
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allow complex control flow, such as jumping back to functions that
have already returned. Continuations come in two flavors. Unde-
limited continuations (call/cc in Scheme [19] and SML/NJ [5])
capture the entire stack. Delimited continuations [7, 9] [15, Scala
2.8] capture part of the stack. Continuations can express generators
and coroutines, and also multi-threading [17, 24] and Prolog-style
backtracking. All these operators provide a rich variety of control
behaviors. Unfortunately, we cannot currently use pushdown mod-
els to analyze programs that use them.

We rectify this situation by extending the CFA2 flow analy-
sis [21] to languages with first-class control. We make the following
contributions.

• CFA2 is based on abstract interpretation of programs in contin-
uation-passing style (abbrev. CPS). We present a CFA2-style
abstract semantics for Restricted CPS, a variant of CPS that
allows continuations to escape but also permits effective rea-
soning about the stack [23]. When we detect a continuation that
may escape, we copy the stack into the heap (sec. 4.3). We prove
that the abstract semantics is a safe approximation of the actual
runtime behavior of the program (sec. 4.4).

• In pushdown flow analysis, each state has a stack of unbounded
size. Hence, the state space is infinite. Algorithms that explore
the state space use a technique called summarization. First-
class control causes the stack to be copied into the heap, so our
analysis must also deal with infinitely many heaps. We show
that it is not necessary to keep continuations in the heap during
summarization; we handle escaping continuations using a new
kind of summary edges (sec. 5.3).

• When calls and returns nest properly, execution paths satisfy
a property called unique decomposition: for each state s in a
path, we can uniquely identify another state s′ as the entry of
the procedure that contains s [16]. In the presence of first-class
control, a state can belong to more than one procedure. We
allow paths that are decomposable in multiple ways and prove
that our analysis is sound (sec. 5.4).

• If continuations escape upward, a flow analysis cannot gener-
ally avoid spurious control flows. What about continuations that
are only used downward, such as exception handlers or contin-
uations captured by call/cc that never escape? We show that
CFA2 can avoid spurious control flows for downward continu-
ations (sec. 5.5).

2. Why pushdown models?
Finite-state flow analyses, such as k-CFA, approximate programs
as graphs of abstract machine states. Each node in such a graph
represents a program point plus some amount of abstracted envi-
ronment and control context. Every path in the graph is considered
a possible execution of the program. Thus, executions are strings in
a regular language.
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Figure 1: Control-flow graph for a simple program

Finite-state analyses do not handle call and return well. They
remember only a bounded number of pending calls, so they allow
paths in which a function is called from one program point and
returns to a different one.

Execution traces that match calls with returns are strings in
a context-free language. Therefore, by abstracting a program to
a pushdown automaton (or equivalent), we can use the stack to
eliminate call/return mismatch. The following examples illustrate
the advantages of pushdown models.

2.1 Data-flow information
The following Scheme program defines the apply and identity func-
tions, then binds n1 to 1 and n2 to 2 and adds them. At program
point (+ n1 n2), both variables are bound to constants; we would
like a static analysis to be able to find that.

(define app
(λ (f e) (f e)))

(define id
(λ (x) x))

(let* ((n1 (app id 1))
(n2 (app id 2)))

(+ n1 n2))

Fig. 1 shows the control-flow graph for this program. In the
graph, the top level of the program is presented as a function
called main. Function entry and exit nodes are rectangles with
sharp corners. Inner nodes are rectangles with rounded corners.
Each call site is represented by a call node and a corresponding
return node, which contains the variable to which the result of the
call is assigned. Each function uses a local variable ret for its
return value. Solid arrows are intraprocedural steps. Dashed arrows
go from call sites to function entries and from function exits to
return points. There is no edge between call and return nodes; a
call reaches its corresponding return only if the callee terminates.

A monovariant analysis, such as 0CFA, considers all paths to be
valid executions. Thus, we can bind n1 to 2 by calling app from 4
and returning to 3. Also, we can bind n2 to 1 by calling app from 2
and returning to 5. At point 6, 0CFA thinks that each variable can
be bound to either 1 or 2. (For polyvariant analyses, we can create
similar examples.) On the other hand, if we only consider paths that
respect call/return matching, there is no spurious flow of data. At 6,
n1 and n2 are bound to constants.

2.2 Stack-change calculation
Besides data-flow information, pushdown models also improve
control-flow information. Hence, we can use them to accurately
calculate stack changes between program points. With call/return
matching, there is only one execution path in our example:

1 2
8 9

12 13 14
10 11

3 4
8 9

12 13 14
10 11

5 6 7

In contrast, 0CFA thinks that the program has a loop (there is a path
from 4 to 3).

Many optimizations require accurate information about stack
change. For instance:

• Most compound data are heap allocated in the general case.
Examples include: closure environments, cons pairs, records,
objects, etc. If we can show statically that such a piece of data
is only passed downward, we can allocate it on the stack and
reduce garbage-collection overhead.

• Continuations captured by call/cc may not escape upward. In
this case, we do not need to copy the stack into the heap.

• In object-oriented languages, objects may have methods that
are thread-safe by using locks. An escape analysis can eliminate
unnecessary locking/unlocking in the methods of thread-private
objects.

Such optimizations are better performed with pushdown models.

2.3 Fake rebinding
It is possible that two references to the same variable are always
bound in the same runtime environment. If a flow analysis cannot
detect that, it may allow paths in which the two references are
bound to different abstract values. We call this phenomenon fake
rebinding [21].

(define (compose-same f x) (f (f x)))

In compose-same, both references to f are always bound in the
same environment (the top stack frame). However, if multiple clo-
sures flow to f, a finite-state analysis may call one closure at the
inner call site and a different closure at the outer call site. CFA2
forbids this path because it knows that both references are bound in
the top frame.

2.4 Broadening the applicability of pushdown models
Pushdown-reachability algorithms use a dynamic-programming
technique called summarization. Summarization relies on proper
nesting of calls and returns. If we call app from 2 in our example,
summarization knows that, if the call returns, it will return to 3.

What if the call to app is a tail call, in which case the return
point is in a different procedure from the call site? We can make
this work by creating cross-procedure summaries [21].

In languages with exceptions, the return point may be deeper
in the stack. We can transform this case into ordinary call/return
nesting and handle it precisely with CFA2. Instead of thinking of
an exception as a single jump deeper in the stack, we can return
to the caller, which checks if it can handle the exception and if
not, it passes it to its own caller and so on. Functions return a pair
of values, one for normal return and one for exceptional return.
The JavaScript implementation of CFA2 [1] uses this technique for
exceptions.

But what if the return point has been popped off, as is the case
when using first-class control constructs? Pushdown models cannot
currently analyze such programs, so we have to fall back to a finite-
state analysis and live with its limitations. In the rest of this paper,
we show how to generalize pushdown models to first-class control.
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v ∈ Var = UVar + CVar
u ∈ UVar = a set of identifiers
k ∈ CVar = a set of identifiers
ψ ∈ Lab = ULab + CLab
l ∈ ULab = a set of labels
γ ∈ CLab = a set of labels

lam ∈ Lam = ULam + CLam
ulam ∈ ULam ::= J(λl(u k) call)K
clam ∈ CLam ::= J(λγ(u) call)K

call ∈ Call = UCall + CCall
UCall ::= J(f e q)lK
CCall ::= J(q e)γK

g ∈ Exp = UExp + CExp
f, e ∈ UExp = ULam + UVar
q ∈ CExp = CLam + CVar

pr ∈ Program ::= ULam

Figure 2: Partitioned CPS

3. Restricted CPS
Preliminary definitions In this section we describe our CPS lan-
guage. Compilers that use CPS [5, 11, 20] usually partition the
terms in a program in two disjoint sets, the user and the continu-
ation set, and treat user terms differently from continuation terms.
We adopt this partitioning here (Fig. 2). Variables, lambdas and
calls get labels from ULab or CLab. Labels are pairwise distinct.
User lambdas take a user argument and the current continuation;
continuation lambdas take only a user argument.

We assume that all variables in a program have distinct names.
Then, the defining lambda of a variable v, written def λ(v), is the
lambda term that contains v in its list of formals. For any term
g, iuλ(g) is the innermost user lambda that contains g. Concrete
syntax enclosed in J·K denotes an item of abstract syntax. Functions
with a ‘?’ subscript are predicates, e.g., Var?(e) returns true if e is
a variable and false otherwise.

We use two notations for tuples, (e1, . . . , en) and 〈e1, . . . , en〉,
to avoid confusion when tuples are deeply nested. We use the latter
for lists as well; ambiguities will be resolved by the context. Lists
are also described by a head-tail notation, e.g., 3 :: 〈1, 3,−47〉.

Handling first-class control In CPS, we can naturally express
first-class control without using special primitives: when contin-
uations are captured by user closures, they may escape.

Escaping continuations complicate reasoning about the stack.
To permit effective reasoning about the stack in the presence of
first-class control, we have previously proposed a syntactically-
restricted variant of CPS, called Restricted CPS (abbrev. RCPS) [23].

Definition 1 (Restricted CPS). A program is in Restricted CPS iff a
continuation variable can appear free in a user lambda in operator
position only.

In RCPS, continuations escape in a well-behaved way: a contin-
uation can only be called after its escape, it cannot be passed as an
argument again. For example, the CPS-translation of call/cc,
which is (λ(f cc) (f (λ(v k) (cc v)) cc)), is a valid
RCPS term. Terms like (λ(x k) (k (λ(y k2) (y 123 k))))
are not valid.

We can transform this term (and any CPS term) to a valid RCPS
term by η-expanding to bring the free reference in operator po-
sition: (λ(x k) (k (λ(y k2) (y 123 (λ(u) (k u)))))).
Why do we separate these very similar terms? Because, accord-
ing to the Orbit policy (cf. sec. 4.1), their stack behaviors differ.
In the case of the first term, when execution reaches (y 123 k),
we must restore the environment of the continuation that flows to

ς ∈ State = Eval + Apply
Eval = UEval + CEval

UEval = UCall × BEnv ×VEnv × Time
CEval = CCall × BEnv ×VEnv × Time
Apply = UApply + CApply

UApply = UClos ×UClos ×CClos ×VEnv ×Time
CApply = CClos ×UClos ×VEnv ×Time

Clos = UClos + CClos
d ∈ UClos = ULam × BEnv
c ∈ CClos = (CLam × BEnv) + halt
β ∈ BEnv = Var ⇀ Time

ve ∈ VEnv = Var × Time ⇀ Clos
t ∈ Time = Lab∗

(a) Concrete domains

A(g, β, ve) ,

(
(g, β) Lam?(g)

ve(g, β(g)) Var?(g)

[UEA] (J(f e q)lK, β, ve, t)→ (proc, d, c, ve, l :: t)
proc = A(f, β, ve)
d = A(e, β, ve)
c = A(q, β, ve)

[UAE] (proc, d, c, ve, t)→ (call , β′, ve ′, t)
proc ≡ 〈J(λl(u k) call)K, β〉
β′ = β[u 7→ t][k 7→ t]
ve ′ = ve[(u, t) 7→ d][(k, t) 7→ c]

[CEA] (J(q e)γK, β, ve, t)→ (proc, d, ve, γ :: t)
proc = A(q, β, ve)
d = A(e, β, ve)

[CAE] (proc, d, ve, t)→ (call , β′, ve ′, t)
proc = 〈J(λγ(u) call)K, β〉
β′ = β[u 7→ t]
ve ′ = ve[(u, t) 7→ d]

(b) Concrete semantics

Figure 3: Concrete semantics and domains

k, which may cause arbitrary change to the stack. In the second
case, when execution reaches (y 123 (λ(u) (k u))), a new
continuation is born and no stack change is required. Thus, RCPS
forces all exotic stack change to happen when calling an escaping
continuation, not in other kinds of call sites.

Concrete semantics Execution in RCPS is guided by the seman-
tics of Fig. 3. In the terminology of abstract interpretation, this se-
mantics is called the concrete semantics. In order to find properties
of a program at compile time, one needs to derive a computable
approximation of the concrete semantics, called the abstract se-
mantics (cf. sec. 4).

Execution traces alternate between Eval and Apply states. At
an Eval state, we evaluate the subexpressions of a call site before
performing a call. At an Apply , we perform the call.

The last component of each state is a time, which is a sequence
of call sites. Eval -to-Apply transitions increment the time by re-
cording the label of the corresponding call site. Apply-to-Eval
transitions leave the time unchanged. Thus, the time t of a state
reveals the call sites along the execution path to that state.

Times indicate points in the execution when variables are
bound. The binding environment β is a partial function that maps
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variables to their binding times. The variable environment ve maps
variable/time pairs to values. To find the value of a variable v, we
look up the time v was put in β, and use that to search for the ac-
tual value in ve . By pairing variables with times, we allow a single
variable to have multiple bindings at runtime.

Let’s look at each transition individually. At a UEval state
over J(f e q)lK, we use the function A to evaluate the atomic
expressions f , e and q. Lambdas are paired up with β to become
closures, while variables are looked up in ve using β. We add the
label l in front of the current time and transition to a UApply state
(rule [UEA]).

From UApply to Eval , we bind the formals of a procedure
〈J(λl(u k) call)K, β〉 to the arguments and jump to its body. The
new binding environment β′ extends the procedure’s environment,
with u and k mapped to the current time. The new variable envi-
ronment ve ′ maps (u, t) to the user argument d, and (k, t) to the
continuation c (rule [UAE]).

The remaining two transitions are similar. We use halt to denote
the top-level continuation of a program pr . The initial state I(pr)
is ((pr , ∅), input, halt , ∅, 〈〉), where input is a closure of the form
〈J(λl(u k) call)K, ∅〉. The initial time is the empty sequence of
call sites.

4. The CFA2 abstraction
This section shows how to extend the abstract semantics of CFA2
to handle first-class control. The semantics uses two binding envi-
ronments, a stack and a heap. We also use the stack for return-point
information.

We show the actual transition rules in section 4.3; the main
difference from the previous semantics is that continuations can
now be copied to, and restored from, the heap. Before that, we
discuss how to manage the stack in RCPS (sec. 4.1) and how to
decide whether a variable reference will be looked up in the stack
or the heap (sec. 4.2). In section 4.4, we prove that the abstract
semantics is an approximation of the concrete semantics.

The CFA2 abstraction is the first half of the story: the abstract
state space is infinite, so we cannot explore it by enumerating all
states. We tackle this problem in section 5.

4.1 Stack-management policy
The Orbit compiler [10, 11] compiles a CPS intermediate repre-
sentation to final code that uses a stack. Orbit views continuations
as closures whose environment record is a stack frame. To decide
when to push and pop the stack, we follow Orbit’s policy. The main
idea behind Orbit’s policy is that we can manage the stack for a
CPS program in the same way that we would manage it for the
original direct-style program:

• For every call to a user function, we push a frame for the
arguments.

• We pop a frame at function returns. In CPS, user functions
“return” by calling the current continuation with a return value.

• We also pop a frame at tail calls. A UCall call site is a tail call
in CPS iff it was a tail call in the original direct-style program.
In tail calls, the continuation argument is a variable.

• When a continuation is captured by a user closure, we copy the
stack into the heap.

• When we call a continuation that has escaped, we restore its
stack from the heap.

4.2 Stack/heap split
The stack in CFA2 is more than a control structure for return-point
information; it is also an environment structure—it contains bind-
ings. CFA2 has a novel approach to variable binding: two references

to the same variable need not be looked up in the same binding en-
vironment. We split references into two categories: stack and heap
references. In direct-style, if a reference appears at the same nest-
ing level as its binder, then it is a stack reference, otherwise it is a
heap reference. For example, (λ1(x)(λ2(y)(x (x y)))) has a
stack reference to y and two heap references to x.

Intuitively, only heap references may escape. When we call a
user function, we push a frame for its arguments, so we know that
stack references are always bound in the top frame. When control
reaches a heap reference, its frame is either deeper in the stack, or
it has been popped. We look up stack references in the top frame,
and heap references in the heap. Stack lookups below the top frame
never happen (Fig. 4b).

When a program p is CPS-converted to a program p′, stack
(resp. heap) references in p remain stack (resp. heap) references
in p′. All references added by the transform are stack references.

We can give an equivalent definition of stack and heap refer-
ences directly in CPS, without referring to the original direct-style
program. Labels can be split into disjoint sets according to the in-
nermost user lambda that contains them. For the CPS translation of
the previous program,

(λ1(x k1)
(k1 (λ2(y k2)

(x y (λ3(u) (x u k2)4))5))6)

these sets are {1, 6} and {2, 3, 4, 5}. The “label to variable” map
LV (ψ) returns all the variables bound by any lambdas that belong
in the same set as ψ, e.g., LV (4) = {y, k2, u} and LV (6) =
{x, k1}. We use this map to model stack behavior, because all
continuation lambdas that “belong” to a given user lambda λl
get closed by extending λl’s stack frame (cf. section 4.3). Notice
that, for any ψ, LV (ψ) contains exactly one continuation variable.
Using LV , we give the following definition.

Definition 2 (Stack and heap references).
• Let ψ be a call site that refers to a variable v. The predicate

S?(ψ, v) holds iff v ∈ LV (ψ). We call v a stack reference.
• Let ψ be a call site that refers to a variable v. The predicate

H?(ψ, v) holds iff v /∈ LV (ψ). We call v a heap reference.
• v is a stack variable, written S?(v), iff all its references satisfy S?.
• v is a heap variable, written H?(v), iff some of its references

satisfy H?.

For instance, S?(5, y) holds because y∈{y, k2, u} and H?(5, x)
holds because x /∈ {y, k2, u}.

4.3 Abstract semantics
The CFA2 semantics is an abstract machine that executes a program
in RCPS (Fig. 4). The abstract domains appear in Fig. 4a. An ab-
stract user closure (member of the set ÛClos) is a set of user lamb-
das. An abstract continuation closure (member of ĈClos) is either
a continuation lambda or halt . A frame is a map from variables to
abstract values, and a stack is a sequence of frames. All stack oper-
ations except push are defined for non-empty stacks only. A heap is
a map from variables to abstract values. In contrast to the previous
semantics of CFA2, the heap can contain continuation bindings.

Fig. 4c shows the transition rules. First-class control shows up
in two of the rules, [ÛAE] and [ĈEA].

On transition from a ÛEval state to a ÛApply state (rule
[ÛEA]), we first evaluate f , e and q. We evaluate atomic user
terms using Âu . We non-deterministically choose one of the lamb-
das that flow to f as the operator in the ÛApply state.1 The change

1 An abstract execution explores one path, but the algorithm that searches
the state space considers all possible executions.
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ς̂ ∈ ÛEval = UCall × Stack× Heap

ς̂ ∈ ÛApply = ULam×ÛClos×ĈClos×Stack×Heap

ς̂ ∈ ĈEval = CCall × Stack× Heap

ς̂ ∈ ĈApply = ĈClos × ÛClos × Stack× Heap

d̂ ∈ ÛClos = Pow(ULam)

ĉ ∈ ĈClos = CLam + halt

fr , tf ∈ Frame = (UVar⇀ÛClos) + (CVar⇀ ĈClos)

st ∈ Stack = Frame∗

h ∈ Heap = (UVar⇀ÛClos)+

(CVar⇀Pow(ĈClos × Stack))

(a) Abstract domains

pop(tf :: st) , st

push(fr , st) , fr :: st

(tf :: st)(v) , tf (v)

(tf :: st)[u 7→ d̂] , tf [u 7→ d̂] ::st

(b) Stack operations

Âu(e, ψ, st , h) ,

8><>:
{e} Lam?(e)

st(e) S?(ψ, e)

h(e) H?(ψ, e)

[ÛEA] (J(f e q)lK, st , h) ; (ulam, d̂, ĉ, st ′, h)

ulam ∈ Âu(f, l, st , h)

d̂ = Âu(e, l, st , h)

ĉ =

(
st(q) Var?(q)

q Lam?(q)

st ′ =

8><>:
pop(st) Var?(q)

st Lam?(q) ∧ (H?(l, f) ∨ Lam?(f))

st [f 7→ {ulam}] Lam?(q) ∧ S?(l, f)

[ÛAE] (J(λl(u k) call)K, d̂, ĉ, st , h) ; (call , st ′, h ′)

st ′ = push([u 7→ d̂][k 7→ ĉ], st)

h ′(v) =

8><>:
h(u) ∪ d̂ (v = u) ∧H?(u)

h(k) ∪ {(ĉ, st)} (v = k) ∧H?(k)

h(v) o/w

[ĈEA] (J(q e)γK, st , h) ; (ĉ, d̂, st ′, h)

d̂ = Âu(e, γ, st , h)

(ĉ, st ′) ∈

8><>:
{(q, st)} Lam?(q)

{(st(q), pop(st))} S?(γ, q)

h(q) H?(γ, q)

[ĈAE] (J(λγ(u) call)K, d̂, st , h) ; (call , st ′, h ′)

st ′ = st [u 7→ d̂]

h ′(v) =

(
h(u) ∪ d̂ (v = u) ∧H?(u)

h(v) o/w

(c) Abstract semantics

Figure 4: Abstract semantics and relevant definitions

to the stack depends on q and f . If q is a variable, the call is a
tail call so we pop the stack (case 1). If q is a lambda, it evaluates
to a new closure whose environment is the top frame, hence we
do not pop the stack (cases 2, 3). Moreover, if f is a lambda or a
heap reference then we leave the stack unchanged. However, if f
is a stack reference, we set f ’s value in the top frame to {ulam},
possibly forgetting other lambdas that flow to f . The strong update
to the stack prevents fake rebinding for stack references (cf. sec.
2.3): when we return to ĉ, we may reach more stack references of
f . These references and the current one are bound at the same time.
Therefore, they must also be bound to ulam .

In the ÛApply-to-Êval transition (rule [ÛAE]), we push a
frame for the procedure’s arguments. If u is a heap variable, we
update its binding in the heap with all lambdas in d̂. If k is a heap
variable, we have a possibly escaping continuation. We save ĉ in
the heap and also copy the stack, so that we can restore it if ĉ gets
called later.

In a ĈEval -to-ĈApply transition (rule [ĈEA]), we are prepar-
ing for a call to a continuation so we must reset the stack to the
stack of its birth. When q is a lambda, it is a newly created clo-
sure so the stack does not change. When q is a stack reference, the
ĈEval state is a function return and the continuation’s environment
is the second stack frame. Therefore, we pop a frame before calling
ĉ. When q is a heap reference, we are calling a continuation that
may have escaped. The stack change since the continuation capture
can be arbitrary. We non-deterministically pick a pair (ĉ, st ′) from
h(q), jump to ĉ and restore st ′, which contains bindings for the
stack references in ĉ.

In the ĈApply-to-Êval transition (rule [ĈAE]), the top frame is
the environment of J(λγ(u) call)K; stack references in call need
this frame on the top of the stack. Hence, we do not push; we extend
the top frame with the binding for the continuation’s parameter u.
If u is a heap variable, we also update the heap.

Example Let’s see how the abstract semantics works on a pro-
gram with call/cc. Consider the program

(call/cc (λ(c) (somefun (c 42))))

where somefun is an arbitrary function. We use call/cc to cap-
ture the top-level continuation and bind it to c. Then, somefun will
never be called, because (c 42) will return to the top level with 42
as the result.

The CPS translation of call/cc is

(λ1(f cc) (f (λ2(x k2) (cc x)) cc))

The CPS translation of its argument is

(λ3(c k) (c 42 (λ4(u) (somefunCPS u k))))

The initial state Î(pr) is a ÛApply . We abbreviate lambdas by
their labels.

(λ1, {λ3}, halt , 〈〉, ∅)
We push a frame and jump to the body of λ1. Since cc is a heap
variable, we save the continuation and the stack in the heap. The
heap h contains a single binding [cc 7→ {(halt , 〈〉)}].

(J(f λ2 cc)K, 〈[f 7→ {λ3}][cc 7→ halt ]〉, h)

λ2 is essentially a continuation reified as a user value. We tail call
to λ3, so we pop the stack.

(λ3, {λ2}, halt , 〈〉, h)

We push a frame and jump to the body of λ3.

(J(c 42 λ4)K, 〈[c 7→ {λ2}][k 7→ halt ]〉, h)

This is a non-tail call, so we do not pop.

(λ2, {42}, λ4, 〈[c 7→ {λ2}][k 7→ halt ]〉, h)
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|(J(g1 . . . gn)ψK, β, ve, t)|ca = (J(g1 . . . gn)ψK, toStack(LV (ψ), β, ve), |ve|ca)

|(〈J(λl(u k) call)K, β〉, d, c, ve, t)|ca = (J(λl(u k) call)K, |d|ca , |c|ca , st , |ve|ca)

where st =

(
〈〉 c = halt

toStack(LV (γ), β′, ve) c = (J(λγ(u′)call ′)K, β′)

|(〈J(λγ(u) call)K, β〉, d, ve, t)|ca = (J(λγ(u) call)K, |d|ca , toStack(LV (γ), β, ve), |ve|ca)

|(halt , d, ve, t)|ca = (halt , |d|ca , 〈〉, |ve|ca)

|(J(λl(u k) call)K, β)|ca = {J(λl(u k) call)K}

|(J(λγ(u) call)K, β)|ca = J(λγ(u) call)K

|halt |ca = halt

|ve|ca = { (u,
S
t |ve(u, t)|ca) : (u ∈ UVar) ∧H?(u)} ∪ { (k,

S
tmakecs(ve(k, t), ve)) : (k ∈ CVar) ∧H?(k)}

where makecs(c, ve) ,

(
(halt , 〈〉) c = halt

(J(λγ(u′)call)K, toStack(LV (γ), β, ve)) c = 〈J(λγ(u′)call)K, β〉

toStack({u1, . . . , un, k}, β, ve) ,

8<:〈[ui 7→ d̂i ][k 7→ halt ]〉 ve(k, β(k)) = halt

[ui 7→ d̂i ][k 7→ J(λγ(u) call)K] :: st ve(k, β(k)) = (J(λγ(u) call)K, β′)

where d̂i = |ve(ui, β(ui))|ca and st = toStack(LV (γ), β′, ve)

Figure 5: From concrete states to abstract states

g v g where g ∈ (halt + Lam + Call)

〈a1, . . . , an〉 v 〈b1, . . . , bn〉 iff for 1 6 i 6 n, ai v bi

d̂1 v d̂2 iff d̂1 ⊆ d̂2

h1 v h2 iff h1(v) v h2(v) for each v ∈ dom(h1)

tf 1 :: st1 v tf 2 :: st2 iff tf 1 v tf 2 ∧ st1 v st2

〈〉 v 〈〉

tf 1 v tf 2 iff tf 1(v) v tf 2(v) for each v ∈ dom(tf 1)

Figure 6: The v relation on abstract states

We push a frame and jump to the body of λ2.

(J(cc x)K, 〈[x 7→ {42}][k2 7→ λ4], [c 7→ {λ2}][k 7→ halt ]〉, h)

cc is a heap reference, so we ignore the current continuation and
stack and restore (halt , 〈〉) from the heap.

(halt , {42}, 〈〉, h)

The program terminates with value {42}.

4.4 Correctness of the abstract semantics
In this section, we show that the abstract semantics simulates the
concrete semantics, which means that the execution of a program
under the abstract semantics is a safe approximation of its actual
runtime behavior. First, we define a map |·|ca from concrete to ab-
stract states. Next, we show that if ς transitions to ς ′ in the concrete
semantics, the abstract counterpart |ς|ca of ς transitions to a state
ς̂ ′ which approximates |ς ′|ca . Therefore, each concrete execution,

i.e., sequence of states related by→, has a corresponding abstract
execution that computes an approximate answer.

The map |·|ca appears in Fig. 5. The abstraction of an Eval

state ς of the form (J(g1 . . . gn)ψK, β, ve, t) is an Êval state ς̂ with
the same call site. Since ς does not have a stack, we must expose
stack-related information hidden in β and ve . Assume that λl is
the innermost user lambda that contains ψ. To reach ψ, control
passed from a ÛApply state ς̂ ′ over λl. According to our stack
policy, the top frame contains bindings for the formals of λl and
any temporaries added along the path from ς̂ ′ to ς̂ . Therefore, the
domain of the top frame is a subset of LV (l), i.e., a subset of
LV (ψ). For each user variable ui ∈ (LV (ψ) ∩ dom(β)), the
top frame contains [ui 7→ |ve(ui, β(ui))|ca ]. Let k be the sole
continuation variable in LV (ψ). If ve(k, β(k)) is halt (the return
continuation is the top-level continuation), the rest of the stack is
empty. If ve(k, β(k)) is (J(λγ(u) call)K, β′), the second frame is
for the user lambda in which λγ was born, and so forth: proceeding
through the stack, we add a frame for each live activation of a user
lambda until we reach halt .

The abstraction of a UApply state over 〈J(λl(u k) call)K, β〉
is a ÛApply state ς̂ whose operator is J(λl(u k) call)K. The stack
of ς̂ represents the environment in which the continuation argument
was created, and we compute it using toStack as above.

Abstracting a CApply is similar to the UApply case, only now
the top frame is the environment of the continuation operator. Note
that the abstraction maps drop the time of the concrete states, since
the abstract states do not use times.

The abstraction of a user closure is the singleton set with the
corresponding lambda. The abstraction of a continuation closure is
the corresponding lambda.

The abstraction |ve|ca of a variable environment is a heap,
which contains bindings for the user and the continuation heap
variables. Each heap user variable is bound to the set of lambdas
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of the closures that can flow to it. Each heap continuation variable
k is bound to a set of continuation-stack pairs. For each closure that
can flow to k, we create a pair with the lambda of that closure and
the corresponding stack.

The relation ς̂1 v ς̂2 is a partial order on abstract states and can
be read as “ς̂1 is more precise than ς̂2” (Fig. 6). Tuples are ordered
pointwise. Abstract user closures are ordered by inclusion. Two
stacks are inv iff they have the same length and the corresponding
frames are in v.

We can now state the simulation theorem. The proof proceeds
by case analysis on the concrete transition relation. It can be found
in the appendix.

Theorem 3 (Simulation). If ς → ς ′ and |ς|ca v ς̂ , then there exists
ς̂ ′ such that ς̂ ; ς̂ ′ and |ς ′|ca v ς̂ ′.

5. Exploring the infinite state space
Pushdown-reachability algorithms, including CFA2, deal with the
unbounded stack size by using a dynamic-programming technique
called summarization. These algorithms work on transition systems
whose stack is unbounded, but the rest of the components are
bounded. Due to escaping continuations, we also have to deal with
infinitely-many heaps.

5.1 Overview of summarization
We start with an informal overview of summarization. Assume that
a program is executing and control reaches the entry of a procedure.
We start computing inside the procedure. While doing so, we are
visiting several program points inside the procedure and possibly
calling (and returning from) other procedures. Sometime later, we
reach the exit and are about to return to the caller with a result. The
intuition behind summarization is that, during this computation, the
return point was irrelevant; it influences reachability only after we
return to the caller. Consequently, if from a program point n with
an empty stack we can reach a point n′ with stack s′, then from n
with s we can reach n′ with append(s′, s).

Let’s use summarization to find which nodes of the graph of
Fig. 1 are reachable from node 1. We find reachable nodes by
recording path edges, i.e., edges whose source is the entry of a
procedure and target is some program point in the same procedure.
Path edges should not be confused with the edges already present in
the graph. They are artificial edges used by the analysis to represent
intraprocedural paths, hence the name.

Node 1 goes to 2, so we record the edges 〈1, 1〉 and 〈1, 2〉.
From 2 we call app, so we record the call 〈2, 8〉 and jump to 8.
In app, we find path edges 〈8, 8〉 and 〈8, 9〉. We find a new call
〈9, 12〉 and jump to 12. Inside id, we discover the edges 〈12, 12〉,
〈12, 13〉 and 〈12, 14〉. Edges that go from an entry to an exit, such
as 〈12, 14〉, are called summary edges. We have not been keeping
track of the stack, so we use the recorded calls to find the return
point. The only call to id is 〈9, 12〉, so 14 returns to 10 and we find
a new edge 〈8, 10〉, which leads to 〈8, 11〉. We record 〈8, 11〉 as
a summary also. From the call 〈2, 8〉, we see that 11 returns to 3,
so we record edges 〈1, 3〉 and 〈1, 4〉. Now, we have a new call to
app. Reachability inside app does not depend on its calling context.
From the summary 〈8, 11〉, we know that 4 can reach 5, so we find
〈1, 5〉. Subsequently, we find the last two path edges, which are
〈1, 6〉 and 〈1, 7〉.

During the search, we did two kinds of transitions. The first
kind includes intraprocedural steps and calls; these transitions do
not shrink the stack. The second is function returns, which shrink
the stack. Since we are not keeping track of the stack, we find the
target nodes of the second kind of transitions in an indirect way, by
recording calls and summaries. We show a summarization-based
algorithm for CFA2 in section 5.3. The next section describes the

gEval = Call × S̃tack× H̃eap

ŨApply = ULam × ÛClos × H̃eap

C̃Apply = ĈClos × ÛClos × S̃tack× H̃eap

F̃rame = UVar ⇀ ÛClos

S̃tack = F̃rame

H̃eap = UVar ⇀ ÛClos

(a) Local domains

|(call , st , h)|al = (call , |st |al , |h|al)

|(ulam, d̂, ĉ, st , h)|al = (ulam, d̂, |h|al)

|(ĉ, d̂, st , h)|al = (ĉ, d̂, |st |al , |h|al)

|st |al =

(
∅ st = 〈〉
tf � UVar st = tf :: st ′

|h|al = h � UVar

(b) Abstract to local maps

Ãu(e, ψ, tf , h) ,

8><>:
{e} Lam?(e)

tf (e) S?(ψ, e)

h(e) H?(ψ, e)

[ŨEA] (J(f e q)lK, tf , h) ≈> (ulam, d̂, h)

ulam ∈ Ãu(f, l, tf , h)

d̂ = Ãu(e, l, tf , h)

[ŨAE] (J(λl(u k) call)K, d̂, h) ≈> (call , [u 7→ d̂], h ′)

h ′(v) =

(
h(u) ∪ d̂ (v = u) ∧H?(u)

h(v) o/w

[C̃EA] (J(clam e)γK, tf , h) ≈> (clam, d̂, tf , h)

d̂ = Ãu(e, γ, tf , h)

[C̃AE] (J(λγ(u) call)K, d̂, tf , h) ≈> (call , tf ′, h ′)

tf ′ = tf [u 7→ d̂]

h ′(v) =

(
h(u) ∪ d̂ (v = u) ∧H?(u)

h(v) o/w

(c) Local semantics

Figure 7: Local semantics and relevant definitions

local semantics, which we use in the algorithm for transitions that
do not shrink the stack.

5.2 Local semantics
Summarization operates on a finite set of program points. Since
the abstract state space is infinite, we cannot use abstract states as
program points. For this reason, we introduce local states (Fig. 7a)
and define a map |·|al from abstract to local states (Fig. 7b).

The local semantics (Fig. 7) describes executions that do not
touch the rest of the stack (i.e., executions where functions do not
return). A C̃Eval state with call site J(k e)γK has no successor in
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this semantics. Since functions do not call their continuations, the
local frames and heaps contain only user bindings. Local steps are
otherwise similar to abstract steps. Note that there is no provision
for first-class control in the local transitions; they are identical to
the previous ones [21]. The metavariable ς̃ ranges over local states.
We define the map |·|cl from concrete to local states to be |·|al◦|·|ca .

Summarization distinguishes between different kinds of states:
entries, exits, calls, returns and inner states. CPS lends itself nat-
urally to such a categorization. The following definition works for
all three state spaces: concrete, abstract and local.

Definition 4 (Classification of states).

• A UApply state is an Entry—control is about to enter the body
of a function.

• A CEval state is an Exit-Ret when the operator is a stack
reference—a function is about to return a result to its context.

• A CEval state is an Exit-Esc when the operator is a heap
reference—we are calling a continuation that may have es-
caped.

• A CEval state where the operator is a lambda is an Inner state.
• A UEval state is an Exit-TC when the continuation argument

is a variable—at tail calls control does not return to the caller.
• A UEval state is a Call when the continuation argument is a

lambda.
• A CApply state is a Return if its predecessor is an exit, or an

Inner state if its predecessor is also an inner state. Our algo-
rithm does not distinguish between the two kinds of CApplys;
the difference is just conceptual.

5.3 The CFA2 algorithm
The algorithm for CFA2 appears in Fig. 8. Its goal is to compute
which local states are reachable from the initial state of a program.

For readers familiar with the previous algorithm: the main ad-
dition is the handling of Exit-Esc states (lines 25-33). Escaping
continuations also require changes to the handling of entries and
tail calls. Entries are now a separate case, instead of together with
C̃Applys and inner C̃Evals. Last, the Propagate function takes an
extra argument.

Structure of the algorithm The algorithm uses a workset W,
which contains path edges and summaries to be examined. An edge
(ς̃1, ς̃2) is an ordered pair of local states. We call ς̃1 the source and
ς̃2 the target of the edge. At every iteration, we remove an edge
from W and process it, potentially adding new edges in W. We
stop when W is empty.

An edge (ς̃1, ς̃2) is a summary when ς̃1 is an entry and ς̃2 is
either an Exit-Ret or an Exit-Esc, not necessarily in the same pro-
cedure. Summaries carry an important message: each continuation
that can be passed to ς̃1 can flow to the operator position of ς̃2.

The algorithm maintains several sets. The results of the analysis
are stored in the set Seen . It contains path edges (from a procedure
entry to a state in the same procedure) and summary edges. The
target of an edge in Seen is reachable from the source and from
the initial state. Summaries are also stored in Summary . Escapes
contains Exit-Esc states. If the continuation parameter of a user
lambda is a heap variable, entries over that lambda are stored
in EntriesEsc. Final records final states, i.e., C̃Applys that call
halt with a return value for the whole program. Callers contains
triples 〈ς̃1, ς̃2, ς̃3〉, where ς̃1 is an entry, ς̃2 is a call in the same
procedure and ς̃3 is the entry of the callee. TCallers contains
triples 〈ς̃1, ς̃2, ς̃3〉, where ς̃1 is an entry, ς̃2 is a tail call in the same
procedure and ς̃3 is the entry of the callee. The initial state Ĩ(pr)
is defined as |I(pr)|cl . The helper function succ(ς̃) returns the
successor(s) of ς̃ according to the local semantics.

Summaries for first-class continuations Perhaps surprisingly,
even though continuations can escape to the heap in the abstract
semantics, we do not need continuations in the local heap. We can
handle escaping continuations with summaries. Consider the ex-
ample from section 4.3. When control reaches J(cc x)K, we want
to find which continuation flows to cc. We know that def λ(cc)

is λ1. By looking at the single ÛApply over λ1, we find that halt
flows to cc. This suggests that, for escaping continuations, we need
summaries of the form (ς̃1, ς̃2) where ς̃2 is an Exit-Esc over a call
site J(k e)γK and ς̃1 is an entry over def λ(k).

Edge processing Each edge (ς̃1, ς̃2) is processed in one of six
ways, depending on ς̃2. If ς̃2 is a return or an inner state (line 12),
then its successor ς̃3 is a state in the same procedure. Since ς̃2 is
reachable from ς̃1, ς̃3 is also reachable from ς̃1. If we have not
already recorded the edge (ς̃1, ς̃3), we do it now (line 44).

If ς̃2 is a call (line 14) then ς̃3 is the entry of the callee, so
we propagate (ς̃3, ς̃3) instead of (ς̃1, ς̃3) (line 16). Also, we record
the call in Callers . If an exit ς̃4 is reachable from ς̃3, it should
return to the continuation born at ς̃2 (line 18). The function Update
is responsible for computing the return state. We find the return
value d̂ by evaluating the expression e4 passed to the continuation
(lines 48-49). Since we are returning to λγ2 , we must restore
the environment of its creation, which is tf 2 (possibly with stack
filtering, line 50). The new state ς̃ is the corresponding return of ς̃2,
so we propagate (ς̃1, ς̃) (lines 51-52).

If ς̃2 is an Exit-Ret and ς̃1 is the initial state (lines 19-20), then
ς̃2’s successor is a final state (lines 53-54). If ς̃1 is some other entry,
we record the edge in Summary and pass the result of ς̃2 to the
callers of ς̃1 (lines 22-23). Last, consider the case of a tail call ς̃4 to
ς̃1 (line 24). No continuation is born at ς̃4. Thus, we must find where
ς̃3 (the entry that led to the tail call) was called from. Then again, all
calls to ς̃3 may be tail calls, in which case we keep searching further
back in the call chain to find a return point. We do the backward
search by transitively adding a cross-procedure summary from ς̃3
to ς̃2.

Let ς̃2 be an Exit-Esc over a call site J(k e)γK (line 25). Its
predecessor ς̃ ′ is an entry or a C̃Apply. To reach ς̃2, the algorithm
must go through ς̃ ′. Hence, the first time the algorithm sees ς̃2 is at
line 7 or 13, which means that ς̃1 is an entry over iuλ(J(k e)γK)
and (ς̃1, ς̃2) is not in Summary . Thus, the test at line 26 is true. We
record ς̃2 in Escapes . We also create summaries from entries over
def λ(k) to ς̃2, in order to find which continuations can flow to k.
We make sure to put these summaries in Summary (line 29), so
that when they are examined, the test at line 26 is false.

When ς̃2 is examined again, this time (ς̃1, ς̃2) is in Summary .
If ς̃1 is the initial state, ς̃2 can call halt and transition to a final state
(line 30). Otherwise, we look for calls to ς̃1 to find continuations
that can be called at ς̃2 (line 32). If there are tail calls to ς̃1, we
propagate summaries transitively (line 33).

If ς̃2 is an entry over J(λl(u k) call)K, its successor ς̃3 is a state
in the same procedure, so we propagate (ς̃1, ς̃3) (lines 6-7). If k is
a heap variable (lines 8-9), we put ς̃2 in EntriesEsc (so that it can
be found from line 29). Also, if we have seen Exit-Esc states that
call k, we create summaries from ς̃2 to those states (line 11).

If ς̃2 is a tail call (line 34), we find its successors and record the
call in TCallers (lines 35-37). If a successor of ς̃2 goes to an exit,
we propagate a cross-procedure summary transitively (line 41).
Moreover, if ς̃4 is an Exit-Esc, we want to make sure that (ς̃1, ς̃4)
is in Summary when it is examined. We cannot call Propagate
with true at line 41 because we would be mutating Summary
while iterating over it. Instead, we use a temporary set which we
unite with Summary after the loop (line 42).
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01 Summary, Callers, TCallers, EntriesEsc, Escapes, Final ←− ∅
02 Seen, W ←− {(Ĩ(pr), Ĩ(pr))}
03 while W 6= ∅
04 remove (ς̃1, ς̃2) from W
05 switch ς̃2
06 case ς̃2 of Entry
07 for the ς̃3 in succ(ς̃2), Propagate(ς̃1, ς̃3, false)

08 ς̃2 of the form (J(λl(u k) call)K, d̂, h)
09 if H?(k) then
10 insert ς̃2 in EntriesEsc
11 for each ς̃3 in Escapes that calls k, Propagate(ς̃2, ς̃3, true)
12 case ς̃2 of CApply, Inner-CEval
13 for the ς̃3 in succ(ς̃2), Propagate(ς̃1, ς̃3, false)
14 case ς̃2 of Call
15 for each ς̃3 in succ(ς̃2)
16 Propagate(ς̃3, ς̃3, false)
17 insert (ς̃1, ς̃2, ς̃3) in Callers
18 for each (ς̃3, ς̃4) in Summary, Update(ς̃1, ς̃2, ς̃3, ς̃4)
19 case ς̃2 of Exit-Ret
20 if ς̃1 = Ĩ(pr) then Final(ς̃2)
21 else
22 insert (ς̃1, ς̃2) in Summary
23 for each (ς̃3, ς̃4, ς̃1) in Callers, Update(ς̃3, ς̃4, ς̃1, ς̃2)
24 for each (ς̃3, ς̃4, ς̃1) in TCallers, Propagate(ς̃3, ς̃2, false)
25 case ς̃2 of Exit-Esc
26 if (ς̃1, ς̃2) not in Summary then
27 insert ς̃2 in Escapes
28 ς̃2 of the form (J(k e)γK, tf , h)
29 for each ς̃3 in EntriesEsc over def λ(k), Propagate(ς̃3, ς̃2, true)

30 else if ς̃1 = Ĩ(pr) then Final(ς̃2)
31 else
32 for each (ς̃3, ς̃4, ς̃1) in Callers, Update(ς̃3, ς̃4, ς̃1, ς̃2)
33 for each (ς̃3, ς̃4, ς̃1) in TCallers, Propagate(ς̃3, ς̃2, true)
34 case ς̃2 of Exit-TC
35 for each ς̃3 in succ(ς̃2)
36 Propagate(ς̃3, ς̃3, false)
37 insert (ς̃1, ς̃2, ς̃3) in TCallers
38 S ←− ∅
39 for each (ς̃3, ς̃4) in Summary
40 insert (ς̃1, ς̃4) in S
41 Propagate(ς̃1, ς̃4, false)
42 Summary ←− Summary ∪ S

Propagate(ς̃1, ς̃2, esc) ,
43 if esc then insert (ς̃1, ς̃2) in Summary
44 if (ς̃1, ς̃2) not in Seen then insert (ς̃1, ς̃2) in Seen and W

Update(ς̃1, ς̃2, ς̃3, ς̃4) ,
45 ς̃1 of the form (J(λl1(u1 k1) call1)K , d̂1, h1)
46 ς̃2 of the form (J(f e2 (λγ2 (u2) call2))

l2K, tf 2, h2)

47 ς̃3 of the form (J(λl3(u3 k3) call3)K , d̂3, h2)
48 ς̃4 of the form (J(k4 e4)

γ4K, tf 4, h4)

49 d̂ ←− Ãu(e4, γ4, tf 4, h4)

50 tf ←−

(
tf 2[f 7→ {J(λl3(u3 k3) call3)K}] S?(l2, f)

tf 2 H?(l2, f) ∨ Lam?(f)

51 ς̃ ←− (J(λγ2(u2) call2)K, d̂, tf , h4)
52 Propagate(ς̃1, ς̃, false)

Final(ς̃) ,
53 ς̃ of the form (J(k e)γK, tf , h)

54 insert (halt , Ãu(e, γ, tf , h), ∅, h) in Final

Figure 8: CFA2 workset algorithm
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5.4 Soundness
The local state space is finite, so there are finitely many path and
summary edges. We record edges as seen when we insert them in
W, which ensures that no edge is inserted in W twice. Therefore,
the algorithm always terminates.

We obviously cannot visit an infinite number of abstract states.
To establish soundness, we relate the results of the algorithm to
the abstract semantics: we show that if a state ς̂ is reachable from
Î(pr), then the algorithm visits |ς̂|al (cf. theorem 8).

First-class continuations create an intricate call/return structure,
which complicates reasoning about soundness. When calls and
returns nest properly, an execution path can be decomposed so that
for each state ς̂ , we can uniquely identify another state ς̂ ′ as the
entry of the procedure that contains ς̂ [16]. When we add tail calls
into the mix, unique decomposition is still possible [22].

However, in the presence of first-class control, a state can be-
long to more than one procedure. For instance, suppose we want to
find the entry of the procedure containing ς̂ in the following path

Î(pr) ;
∗ ς̂c ; ς̂e ;

∗ ς̂ ′c ; ς̂ ′e ;
∗ ς̂ ′ ; ς̂

where ς̂ ′ is an Exit-Esc over J(k e)γK, ς̂e and ς̂ ′e are entries over
def λ(k), ς̂c and ς̂ ′c are calls. The two entries have the form

ς̂e = (def λ(k), d̂, ĉ, st , h)

ς̂ ′e = (def λ(k), d̂′, ĉ′, st ′, h ′)

Both ĉ and ĉ′ can flow to k and we can call either at ς̂ ′. If we
choose to restore ĉ and st then ς̂ is in the same procedure as ς̂c. If
we restore ĉ′ and st ′, ς̂ is in the same procedure as ς̂ ′c. However, it
is possible that ĉ = ĉ′ and st = st ′, in which case ς̂ belongs to two
procedures. Unique decomposition no longer holds.

For this reason, we now define a set of corresponding entries for
each state, instead of a single entry [21].

Definition 5 (Corresponding Entries).
Let p ≡ ς̂e ;∗ ς̂ where ς̂e is an entry. We define CEp(ς̂) to be the
smallest set such that:

• if ς̂ is an entry, CEp(ς̂) = {ς̂}
• if p ≡ ς̂e ;∗ ς̂1 ;+ ς̂ , ς̂ is an Exit-Esc over J(k e)γK, ς̂1 is

an entry over def λ(k), then ς̂1 ∈ CEp(ς̂).
• if p ≡ ς̂e ;∗ ς̂1 ; ς̂ , ς̂ is neither an entry nor an Exit-Esc, ς̂1 is

neither an Exit-Ret nor an Exit-Esc, then CEp(ς̂) = CEp(ς̂1).
• if p ≡ ς̂e ;∗ ς̂1 ; ς̂2 ;∗ ς̂3 ;+ ς̂4 ; ς̂ , ς̂ is a ĈApply of

the form (ĉ, d̂, st , h), ς̂4 is an Exit-Esc, ς̂3 ∈ CEp(ς̂4) and has
the form (ulam, d̂′, ĉ, st , h ′), ς̂2 ∈ CE∗p(ς̂3), ς̂1 is a Call, then
CEp(ς̂1) ⊆ CEp(ς̂).

• if p ≡ ς̂e ;∗ ς̂1 ; ς̂2 ;+ ς̂3 ; ς̂ , ς̂ is a ĈApply , ς̂3 is an
Exit-Ret, ς̂2 ∈ CE∗p(ς̂3), ς̂1 is a Call, then CEp(ς̂1) ⊆ CEp(ς̂).

For each state ς̂ , we also define CE∗p(ς̂) to be the set of entries
that can reach an entry in CEp(ς̂) through tail calls.

Definition 6. Let p ≡ ς̂e ;∗ ς̂ where ς̂e is an entry. We define
CE∗p(ς̂) to be the smallest set such that:

• CEp(ς̂) ⊆ CE∗p(ς̂)
• if p ≡ ς̂e ;∗ ς̂1 ; ς̂2 ;∗ ς̂ , ς̂2 ∈ CEp(ς̂), ς̂1 is a Tail Call,

then CE∗p(ς̂1) ⊆ CE∗p(ς̂).

Note that if ς̂ is an Exit-Esc over J(k e)γK, a procedure that
contains ς̂ has an entry ς̂ ′ over iuλ(J(k e)γK). Thus, ς̂ ′ is not in
CEp(ς̂) because iuλ(J(k e)γK) 6= def λ(k). For all other states,
CEp(ς̂) is the set of entries of procedures that contain ς̂ . The
following lemma relates the stack of a state with the stacks of its
corresponding entries.

Lemma 7.
Let p ≡ Î(pr) ;∗ ς̂ where ς̂ ≡ (. . . , st , h).

1. If ς̂ is a final state then CEp(ς̂) = ∅.
2. If ς̂ is an entry then CEp(ς̂) 6= ∅. (Thus, CE∗p(ς̂) 6= ∅.)

Let ς̂e ∈ CE∗p(ς̂), of the form (ulam, d̂, ĉ, ste, he). Then,
st = ste and the continuation argument of ς̂ is ĉ.

3. If ς̂ is an Exit-Esc then its stack is not empty and CEp(ς̂) 6= ∅.
(We do not assert anything about the stack change between a
state in CE∗p(ς̂) and ς̂ , it can be arbitrary.)

4. If ς̂ is none of the above then CEp(ς̂) 6= ∅.
Let ς̂e = (J(λl(u k) call)K, d̂, ĉ, ste, he).
If ς̂e ∈ (CE∗p(ς̂) \ CEp(ς̂)) then
• there is a frame tf such that st ≡ tf :: ste.
• there is a variable k′ such that tf (k′) = ĉ .

If ς̂e ∈CEp(ς̂) then there is a frame tf such that st ≡ tf ::ste,

dom(tf ) ⊆ LV (l), tf (u) v d̂, tf (k) = ĉ .

The proof of lemma 7 proceeds by induction on the length of
the path p. We now state the soundness theorem. Its proof and the
proof of lemma 7 can be found in the appendix.

Theorem 8 (Soundness).
If p ≡ Î(pr) ;∗ ς̂ then, after summarization:

• If ς̂ is a final state then |ς̂|al ∈ Final
• If ς̂ is not final and ς̂ ′ ∈ CEp(ς̂) then (|ς̂ ′|al , |ς̂|al) ∈ Seen
• If ς̂ is an Exit-Ret or Exit-Esc and ς̂ ′ ∈ CE∗p(ς̂) then

(|ς̂ ′|al , |ς̂|al) ∈ Seen

CFA2 without first-class control is complete, which means that
there is no loss in precision when going from abstract to local states
[22]. The algorithm of Fig. 8 is not complete; it may compute flows
that never happen in the abstract semantics.

(define esc (λ(f cc) (f (λ(x k) (cc x)) cc)))

(esc (λ1(v1 k1) (v1 "foo" k1))
(λ(a) (halt a)))

(esc (λ2(v2 k2) (k2 "bar"))
(λ(b) (halt b)))

In this program, esc is the CPS translation of call/cc. The two
user functions λ1 and λ2 expect a reified continuation as their first
argument; λ1 uses that continuation and λ2 does not. The abstract
semantics finds that {"foo"} flows to a and {"bar"} flows to b.

However, the workset algorithm thinks that that {"foo","bar"}
flows to b. At the second call to esc, it connects the entry to the
Exit-Esc state over J(cc x)K at line 11, which is a spurious flow.

5.5 Various approaches to downward continuations
In RCPS, the general form of a user lambda that binds a heap
continuation variable is

(λ1(u k) (...(λ2(u2 k2) (...(k e)γ ...)) ...))

where λ1 contains a user lambda λ2, which in turn contains a heap
reference to k in operator position.

During execution, if a closure over λ2 escapes upward, merging
of continuations at J(k e)γK is unavoidable. However, when λ2 is
not passed upward, the abstract semantics still merges at J(k e)γK.
A natural question to ask is how precise can CFA2 be for downward
continuations, either exception handlers or continuations captured
by call/cc that never escape. In both cases, we can avoid merging.

In section 2.4, we saw how the JavaScript implementation of
CFA2 handles exception throws precisely. Another way to achieve
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this is by uniformly passing two continuations to each user func-
tion, the current continuation and an exception handler [5]. Con-
sider a user lambda J(λ(u k1 k2) (...(k2 e)γ ...))K where
S?(γ, k2) holds. Every Exit-Ret over J(k2 e)γK is an exception
throw. The handler continuation lives somewhere on the stack. To
find it, we propagate transitive summaries for calls, like we do for
tail calls. When the algorithm finds an edge (ς̃1, ς̃2) where ς̃2 is
an Exit-Ret over J(k2 e)γK, it searches in Callers for a triple
(ς̃3, ς̃4, ς̃1). If the second continuation argument of ς̃4 is a lambda,
we have found a handler. If not, we propagate a summary (ς̃3, ς̃2),
which has the effect of looking for a handler deeper in the stack.
Note that the algorithm must keep these new summaries separate
from the other summaries, to not confuse exceptional with ordinary
control flow.

For continuations captured by call/cc that are only used
downward, we can avoid merging by combining flow analysis
and escape analysis. Consider the lambda at the beginning of this
subsection. During flow analysis, we track if any closure over λ2

escapes upward. We do that by checking for summaries (ς̃1, ς̃2),
where ς̃1 is an entry over λ1. If λ2 is contained in a binding reach-
able from ς̃2 (cf. [12, sec. 4.4.2]), then λ2 is passed upward and we
use the heap to look up k at J(k e)γK. Otherwise, we can assume
that λ2 does not escape. Hence, when we see an edge (ς̃1, ς̃2) where
ς̃1 is an entry over λ2 and ς̃2 is an Exit-Esc over J(k e)γK, we treat
it as an exception throw. We use the new transitive summaries to
search deeper in the stack for a live activation of λ1, which tells us
what flows to k.

6. Related work
The CFA2 workset algorithm is influenced by the functional ap-
proach of Sharir and Pnueli [16] and the tabulation algorithm of
Reps et al. [14]. CFA2 extends these algorithms to first-class func-
tions, introduces the stack/heap split and applies to control con-
structs that break call/return nesting. Traditional summary edges
describe intraprocedural entry-to-exit flows. We have created sev-
eral kinds of cross-procedure summaries for the various control pat-
terns. Summaries for tail calls describe flows that do not grow the
stack. Summaries for exceptions describe flows that grow the stack;
the source of the summary may be deeper in the stack than the tar-
get. Finally, summaries for first-class control describe flows with
arbitrary stack-change. The four different kinds of summaries can
be conceptually unified because they serve a common purpose: they
connect a continuation passed to a user function with the state that
calls it.

Earl et al. proposed a pushdown higher-order flow analysis that
does not use frames [8]. Instead, it allocates all bindings in the heap
with context, in the style of k-CFA. For k = 0, their analysis runs in
timeO(n6), where n is the size of the program. Like all pushdown-
reachability algorithms, Earl et al.’s analysis records pairs of states
(ς1, ς2) where ς2 is same-context reachable from ς1. However, their
algorithm does not classify states as entries, exits, calls, etc. This
has two drawbacks compared to the tabulation algorithm. First,
they do not distinguish between path and summary edges. Thus,
they have to search the whole set of edges when they look for
return points, even though only summaries can contribute to the
search. More importantly, path edges are only a small subset of the
set S of all edges between same-context reachable states. By not
classifying states, their algorithm maintains the whole set S, not
just the path edges. In other words, it records edges whose source
is not an entry. In the graph of Fig. 1, some of these edges are
〈2, 3〉, 〈2, 6〉, 〈5, 7〉. Such edges slow down the analysis and do not
contribute to call/return matching, because they cannot evolve into
summary edges. In CFA2, it is possible to disable the use of frames
by classifying each reference as a heap reference. The resulting
analysis has similar precision to Earl et al.’s analysis for k = 0.

We conjecture that this variant is not a viable alternative in practice,
because of the significant loss in precision.

While there is extensive literature on finite-state higher-order
flow analysis, little progress has been made in taming the power
of call/cc and general continuations. Might and Shivers’s ∆CFA
[12, 13] introduced a notion of “frame strings” to track stack mo-
tion; these strings provide a notational vocabulary for describing
and distinguishing various sorts of control transfer: recursive call,
tail call, return, primitive application, as well as the more exotic
control acts that are constructed with first-class control operators.
However, the expressiveness of this device is brought low by its
eventual regular-expression-based abstraction. Once abstracted, it
loses much of its ability to reason about unusual patterns of con-
trol flow. We suspect that the infinite-state analytic framework pro-
vided by CFA2 could be the missing piece that would enable a
∆CFA-based analysis to be computed without requiring precision-
destroying abstractions.

Shivers and Might have also shown how functional coroutines
can be constructed with continuations, and then exploited to fuse
pipelines of online transducers together into efficient, optimized
code [18]. Being able to apply the power of pushdown models
such as CFA2 to the transducer-fusion task raises interesting new
possibilities. For example, suppose we had a coroutine generator
with a recursive control structure—one that walks a binary tree
producing the elements at the leaves. We wish to connect this tree-
walking generator to a simple iterative coroutine that adds up all the
items it receives. Is a pushdown flow analysis powerful enough to
fuse the composition of these two coroutines into a single, recursive
tree traversal, instead of an awkward, heavyweight implementation
that ping-pongs back and forth between two independent stacks?

7. Conclusions
In this paper, we generalize the CFA2 flow analysis to first-class
control. We propose an abstract semantics that allows stacks to be
copied to the heap, and a summarization algorithm that handles
the infinitely many heaps with a new kind of summary edges.
With these additions, CFA2 becomes the first pushdown model
that analyzes first-class control constructs. Moreover, CFA2 can
now analyze the same language features as k-CFA, and do it more
accurately. Thus, implementors of higher-order languages can use
CFA2 as a drop-in replacement of k-CFA.

We also revisit the idea of path decomposition to accommodate
states that belong to multiple procedures and prove our analysis
sound. We show a program for which the abstract semantics gives a
different result from the local semantics and conclude that our new
summarization algorithm is not complete. We are not certain that
first-class control unavoidably leads to incompleteness; we plan to
investigate if changes to the algorithm can make it complete. How-
ever, it is possible that the abstract semantics describes a machine
strictly more expressive than pushdown systems, and that reacha-
bility for this machine is not decidable.
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A.
We assume that CFA2 works on an alphatized program, i.e., a
program where all variables have distinct names. Thus, if an al-
phatized program contains a term (λψ(v1 . . . vn)call), we know
that no other lambda in that program binds variables with names
v1, . . . , vn. (During execution of CFA2, we do not rename any vari-
ables.) The following lemma is a simple consequence of alphatiza-
tion.

Lemma 9. A concrete state ς has the form (. . . , ve, t).

1. For any closure (lam, β) ∈ range(ve), it holds that dom(β)∩
BV (lam) = ∅.

2. If ς is an Eval with call site call and environment β, then
dom(β) ∩ BV (call) = ∅.

3. If ς is an Apply , for any closure (lam, β) in operator or
argument position, then dom(β) ∩ BV (lam) = ∅.

Proof. We show that the lemma holds for the initial state I(pr).
Then, for each transition ς → ς ′, we assume that ς satisfies the
lemma and show that ς ′ also satisfies it.

• I(pr) is a UApply of the form ((pr , ∅), (lam, ∅), halt , ∅, 〈〉).
Since ve is empty, (1) trivially holds. Also, both closures have
an empty environment so (3) holds.

• The [UEA] transition is:
(J(f e q)lK, β, ve, t)→ (proc, d, c, ve, l :: t)
proc = A(f, β, ve)
d = A(e, β, ve)
c = A(q, β, ve)

The ve doesn’t change in the transition, so (1) holds for ς ′.
The operator is a closure of the form (lam, β′). We must show
that dom(β′) ∩ BV (lam) = ∅. If Lam?(f), then lam = f
and β′ = β. Also, we know
dom(β) ∩ BV (J(f e q)lK) = ∅
⇒ dom(β) ∩ (BV (f) ∪ BV (e) ∪ BV (q)) = ∅
⇒ dom(β) ∩ BV (f) = ∅.
If Var?(f), then (lam, β′) ∈ range(ve), so we get the desired
result because ve satisfies (1).
Similarly for d and c.

• The [UAE] transition is:
(proc, d, c, ve, t)→ (call , β′, ve ′, t)
proc ≡ 〈J(λl(u k) call)K, β〉
β′ = β[u 7→ t][k 7→ t]
ve ′ = ve[(u, t) 7→ d][(k, t) 7→ c]

To show (1) for ve ′, it suffices to show that d and c don’t violate
the property. The user argument d is of the form (lam1, β1).
Since ς satisfies (3), we know dom(β1) ∩ BV (lam1) = ∅,
which is the desired result. Similarly for c.
Also, we must show that ς ′ satisfies (2). We know {u, k} ∩
BV (call) = ∅ because the program is alphatized. Also, from
property (3) for ς we know dom(β)∩BV (J(λl(u k) call)K) =
∅, which implies dom(β) ∩ BV (call) = ∅. We must show
dom(β′) ∩ BV (call) = ∅
⇔ (dom(β) ∪ {u, k}) ∩ BV (call) = ∅
⇔ (dom(β) ∩ BV (call)) ∪ ({u, k} ∩ BV (call)) = ∅
⇔ ∅ ∪ ∅ = ∅.

• Similarly for the other two transitions.

Theorem 10 (Simulation). If ς → ς ′ and |ς|ca v ς̂ , then there
exists ς̂ ′ such that ς̂ ; ς̂ ′ and |ς ′|ca v ς̂ ′.

Proof. By cases on the concrete transition.

Rule [UAE]:
(proc, d, c, ve, t)→ (call , β′, ve ′, t)
proc ≡ 〈J(λl(u k) call)K, β〉
β′ = β[u 7→ t][k 7→ t]
ve ′ = ve[(u, t) 7→ d][(k, t) 7→ c]

Let ts =

(
〈〉 c = halt

toStack(LV (L(lam)), β1, ve) c = (lam, β1)

Since |ς|ca v ς̂ , ς̂ is of the form (J(λl(u k) call)K, d̂, ĉ, st , h),
where

|d|ca v d̂, |c|ca = ĉ, ts v st , |ve|ca v h (1)

The abstract transition is
(J(λl(u k) call)K, d̂, ĉ, st , h) ; (call , st ′, h ′)

st ′ = push([u 7→ d̂][k 7→ ĉ], st)

h ′(v) =

8><>:
h(u) ∪ d̂ (v = u) ∧H?(u)

h(k) ∪ {(ĉ, st)} (v = k) ∧H?(k)

h(v) o/w

Let ts ′ be the stack of |ς ′|ca . The innermost user lambda that con-
tains call is λl, therefore ts ′ = toStack(LV (l), β′, ve ′). We must
show that |ς ′|ca v ς̂ ′, i.e.,

ts ′ v st ′ (2)

and

|ve ′|ca v h ′ (3)

We assume that c = (lam, β1). (Showing (2) and (3) for c = halt
is similar.) We start with (3). We know that |ve ′|ca is the same as
|ve|ca , except potential bindings for u and k.
If H?(u) holds, we must show
|ve ′|ca(u) v h ′(u)

⇐ |ve|ca(u) ∪ |d|ca v h(u) ∪ d̂
⇐ |ve|ca v h ∧ |d|ca v d̂
⇐ (1)
If H?(k), then we must show |ve ′|ca(k) v h ′(k). We know that
|ve ′|ca(k) = |ve|ca(k) ∪ 〈lam, toStack(LV (L(lam)), β1, ve

′)〉
and h ′(k) = h(k) ∪ 〈lam, st〉.
By (1), it is enough to show toStack(LV (L(lam)), β1, ve

′) v st .
Since ts v st , it suffices to show

ts = toStack(LV (L(lam)), β1, ve
′) (4)

By the temporal consistency of states (cf. [12] def. 4.4.5), (4) holds
because the two bindings of ve ′ born at time t are younger than all
bindings in β1.

We proceed to show (2). We know that β′ contains bindings
for u and k, and by lemma 9 it doesn’t bind any variables in
BV (call). Since LV (l) \ {u, k} = BV (call), β′ doesn’t bind
any variables in LV (l) \ {u, k}. Thus, the top frame of ts ′ is
[u 7→ |d|ca ][k 7→ |c|ca ]. The top frame of st ′ is [u 7→ d̂][k 7→ ĉ],
therefore the frames are inv. To complete the proof of (2), we must
show that
pop(ts ′) v pop(st ′)
⇐ pop(ts ′) v st
(1)⇐= pop(ts ′) = ts
But pop(ts ′) = toStack(LV (L(lam)), β1, ve

′), so by (4) we get
the desired result.

Rule [CEA]:
(J(q e)γK, β, ve, t)→ (proc, d, ve, γ :: t)
proc = A(q, β, ve)
d = A(e, β, ve)

Let ts = toStack(LV (γ), β, ve). Since |ς|ca v ς̂ , ς̂ is of the
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form (J(q e)γK, st , h), where

|ve|ca v h, ts v st (5)

The abstract transition is
(J(q e)γK, st , h) ; (ĉ, d̂, st ′, h)

d̂ = Âu(e, γ, st , h)

(ĉ, st ′) ∈

8><>:
{(q, st)} Lam?(q)

{(st(q), pop(st))} S?(γ, q)

h(q) H?(γ, q)

Let ts ′ be the stack of |ς ′|ca . We must show |ς ′|ca v ς̂ ′, i.e.,

|proc|ca = ĉ (6)

|d|ca v d̂ (7)

ts ′ v st ′ (8)

Showing (7) is simple, by cases on e.
We will show (6) and (8) simultaneously, by cases on q:

• Lam?(q)
Then, proc = (q, β) and ĉ = q, which imply (6).
Also, st ′ = st , so (8) follows from ts ′ v st
⇐ toStack(LV (L(q)), β, ve) v st
⇐ toStack(LV (γ), β, ve) v st
⇐ (5)

• S?(γ, q) and proc = ve(q, β(q)) = (lam, β1)
For (6), it suffices to show ĉ = lam
⇐ st(q) = lam
(5)⇐= ts(q) = lam
⇐ q ∈ LV (γ)
which holds because S?(γ, q).
For (8), it suffices to show
toStack(LV (L(lam)), β1, ve) v pop(st)
⇐ pop(ts) v pop(st)
⇐ (5)

• S?(γ, q) and proc = ve(q, β(q)) = halt
Similar to the previous case.

• H?(γ, q) and proc = ve(q, β(q)) = (lam, β1)
In this case, |proc|ca = lam and
(lam, toStack(LV (L(lam)), β1, ve)) ∈ |ve|ca(q).
By (5), there exists a pair (lam, st ′) ∈ h(q) such that
toStack(LV (L(lam)), β1, ve) v st ′.
By picking this pair for ς̂ ′, we get (6) and (8) because
ts ′ = toStack(LV (L(lam)), β1, ve).

• H?(γ, q) and proc = ve(q, β(q)) = halt
Similar to the previous case.

Lemma 11 (Same-level reachability).
Let p ≡ Î(pr) ;∗ ς̂ where ς̂ ≡ (. . . , st , h).

1. If ς̂ is a final state then CEp(ς̂) = ∅.
2. If ς̂ is an entry then CEp(ς̂) 6= ∅. (Thus, CE∗p(ς̂) 6= ∅.)

Let ς̂e ∈ CE∗p(ς̂), of the form (ulam, d̂, ĉ, ste, he). Then,
st = ste and the continuation argument of ς̂ is ĉ.

3. If ς̂ is an Exit-Esc then its stack is not empty and CEp(ς̂) 6= ∅.
(We do not assert anything about the stack change between a
state in CE∗p(ς̂) and ς̂ , it can be arbitrary.)

4. If ς̂ is none of the above then CEp(ς̂) 6= ∅.
Let ς̂e = (J(λl(u k) call)K, d̂, ĉ, ste, he).
If ς̂e ∈ (CE∗p(ς̂) \ CEp(ς̂)) then
• there is a frame tf such that st ≡ tf :: ste.
• there is a variable k′ such that tf (k′) = ĉ.

If ς̂e ∈ CEp(ς̂) then

• there is a frame tf such that st ≡ tf :: ste,dom(tf ) ⊆
LV (l), tf (u) v d̂, tf (k) = ĉ.

• if ς̂ is an Êval over a call site labeled ψ then ψ ∈ LL(l).
• if ς̂ is a ĈApply over a lambda labeled γ then γ ∈ LL(l).

Proof. By induction on the length of p.
If the length is 0, then ς̂ = Î(pr). By definitions 5 and 6,
CEp(ς̂) = CE∗p(ς̂) = {Î(pr)} and the lemma trivially holds.

If the length is greater than 0, p has the form Î(pr) ;∗ ς̂ ′ ; ς̂ .
We take cases on ς̂ .

ς̂ is an entry.
By def. 5, CEp(ς̂) = {ς̂}. If ς̂ ′ is a call, then by def. 6, CE∗p(ς̂) =
{ς̂}. The lemma trivially holds in this case.

If ς̂ ′ is a tail call, let a state ς̂e of the form (ulam, d̂, ĉ, ste, he)
be in CE∗p(ς̂

′). Thus, ς̂e ∈ CE∗p(ς̂) by def. 6. We must show that
st = ste and the continuation argument of ς̂ is ĉ. By IH, the stack
st ′ of ς̂ ′ has the form tf :: ste and there is a variable k such that
tf (k) = ĉ. By rule [ÛEA], st = ste and the continuation argument
of ς̂ is ĉ.

ς̂ is an Exit-Esc.
Let J(k e)γK be the call site in ς̂ . The set h(k) contains pairs
of the form (ĉ′, st ′). Each such pair can only be put in h when
transitioning from a ÛApply over def λ(k) to an Êval . Each such
ÛApply is in CEp(ς̂).

We must show that the stack of ς̂ is not empty. The predecessor
ς̂ ′ of ς̂ is an Âpply . If ς̂ ′ is a ÛApply then by rule [ÛAE] the stack
of ς̂ has at least one frame. If ς̂ ′ a ĈApply then by IH we get that
CEp(ς̂

′) 6= ∅ and that the stack of ς̂ ′ has one more frame than the
stack of any state in CEp(ς̂

′). Thus, by rule [ĈAE], the stack of ς̂
is also non-empty.

ς̂ is a ĈApply and ς̂ ′ is an Exit-Esc.
The two states have the form:
ς̂ = (ĉ, d̂, st , h)
ς̂ ′ = (J(k e)γK, st ′, h)
By IH, CE∗p(ς̂

′) 6= ∅. All entries in CE∗p(ς̂
′) are over def λ(k).

Since ς̂ is over ĉ and has stack st , there is one or more entries in
CE∗p(ς̂

′) whose stack is st and their continuation argument is ĉ.
Let S be the set of those entries. We first show that one of the

two following statements holds.

• For each ς̂1 in S, Î(pr) ∈ CE∗p(ς̂1).
• For each ς̂1 in S, Î(pr) /∈ CE∗p(ς̂1).

For the sake of contradiction, let ς̂1, ς̂2 ∈ S, such that Î(pr) ∈
CE∗p(ς̂1) and Î(pr) /∈ CE∗p(ς̂2). Then, let ς̂3 6= Î(pr) be the ear-
liest state in CE∗p(ς̂2). Since it’s the earliest, its predecessor ς̂4 is a
call. By IH for Î(pr) ;+ ς̂2, the stack of ς̂3 is st and its contin-
uation argument is ĉ. Then, since ς̂4 is a call, ĉ is the continuation
lambda appearing at ς̂4. Also, by IH for Î(pr) ;+ ς̂1, the continu-
ation argument of ς̂1 is halt . But then, ĉ is simultaneously a lambda
and halt , contradiction.

Now we prove the lemma considering only the two cases for S.

• For each ς̂1 in S, Î(pr) ∈ CE∗p(ς̂1).
In this case, ĉ = halt and st = 〈〉. Thus, ς̂ is a final state. We
must show that CE∗p(ς̂) = ∅. By def. 5, if CE∗p(ς̂) is not empty,
then the path can be decomposed according to the fourth case:
p ≡ Î(pr) ;+ ς̂3 ; ς̂2 ;∗ ς̂1 ;+ ς̂ ′ ; ς̂
where ς̂2 ∈ CE∗p(ς̂1), ς̂3 is a call, CEp(ς̂3) ⊆ CEp(ς̂). But by
IH, the continuation of ς̂2 is halt , which is impossible because
its predecessor is a call. Thus, CE∗p(ς̂) = ∅.
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• For each ς̂1 in S, Î(pr) /∈ CE∗p(ς̂1).
Let ς̂2 6= Î(pr) be the earliest state in CE∗p(ς̂1). Then, its
predecessor ς̂3 is a call. Thus, p has the form
Î(pr) ;+ ς̂3 ; ς̂2 ;∗ ς̂1 ;+ ς̂ ′ ; ς̂

By IH for Î(pr) ;+ ς̂1, we get that the continuation argument
of ς̂2 is ĉ and its stack is st . Then, by rule [ÛEA], we get that ĉ
is the continuation lambda appearing at the call site of ς̂3. Thus,
ς̂ is not a final state, so we must show that CEp(ς̂) 6= ∅.
By the fourth item of def. 5, CEp(ς̂3) ⊆ CEp(ς̂). But by IH for
Î(pr) ;+ ς̂3, we get that CEp(ς̂3) 6= ∅. Thus, CEp(ς̂) 6= ∅.
We now proceed to prove the remaining obligations for the
states in CEp(ς̂).
Let ς̂e∈CEp(ς̂), of the form (J(λl(uk′)call)K,d̂e,ĉe, ste,he).
ς̂3 has the form (J(e1 e2 q)l

′
K, st3, h3) where q = ĉ.

By IH for Î(pr) ;+ ς̂3, we get that st3 = tf ::ste,dom(tf ) ⊆
LV (l), tf (u) v d̂e, tf (k′) = ĉe, l

′ ∈ LL(l).
ς̂2 has the form (ulam, d̂2, ĉ, st , h) where st = tf ′ :: ste and

tf ′ =

(
tf Lam?(e1) ∨H?(l′, e1)

tf [e1 7→ {ulam}] S?(l′, e1)

We can see that the stack of ς̂ has the appropriate form:
tf ′(k′) = tf (k′) = ĉ and tf ′(u) v tf (u) v d̂e. Also, ĉ is
a lambda appearing at l′, so L(ĉ) ∈ LL(l).
For the case where ς̂e ∈ CE∗p(ς̂3) \ CEp(ς̂3), the proof is
similar and simpler.

ς̂ is a ĈApply and ς̂ ′ is an Exit-Ret.
The two states have the form:
ς̂ = (ĉ, d̂, st , h)
ς̂ ′ = (J(k e)γK, st ′, h)

By IH for Î(pr) ;+ ς̂ ′, we get CEp(ς̂
′) 6= ∅,CE∗p(ς̂

′) 6= ∅.
Also, by IH and rule [ĈEA], st′ = tf :: st , tf (k) = ĉ.

• Î(pr) ∈ CE∗p(ς̂
′)

By IH for Î(pr) ;+ ς̂ ′, we get ĉ = halt , st = 〈〉. Thus, ς̂
is a final state, so we must show CEp(ς̂) = ∅. Assume that
CEp(ς̂) 6= ∅. This can only happen if the fifth item of def. 5
applies. In this case, p has the form
Î(pr) ;+ ς̂1 ; ς̂2 ;+ ς̂ ′ ; ς̂

where ς̂1 is a call and ς̂2 ∈ CE∗p(ς̂
′). By IH for Î(pr) ;+ ς̂ ′,

we get that the continuation argument of ς̂2 is halt and by rule
[ÛEA] we get that it is the lambda passed in ς̂1, which is a
contradiction. Therefore, CEp(ς̂) = ∅.

• Î(pr) /∈ CE∗p(ς̂
′)

Let ς̂2 6= Î(pr) be the earliest state in CE∗p(ς̂
′). The prede-

cessor ς̂3 of ς̂2 is a call. By IH for Î(pr) ;+ ς̂ ′, we get that
the continuation argument of ς̂2 is ĉ and its stack is st . By rule
[ÛEA], we get that ĉ is the continuation lambda appearing at
the call site of ς̂1. Thus, ς̂ is not a final state, so we must show
that CEp(ς̂) 6= ∅. But by the fifth item of def. 5 we know that
CEp(ς̂1) ⊆ CEp(ς̂) and by IH we know that CE∗p(ς̂1) 6= ∅.
To show that the stack of ς̂ has the desirable form, we work in
the same way as in the case where ς̂ is a ĈApply and ς̂ ′ is an
Exit-Esc.

ς̂ is none of the above.
In this case, ς̂ is one of: ÛEval , inner ĈEval , Exit-Ret, ĈApply

whose predecessor is an inner ĈEval . The path can be decomposed
as Î(pr) ;∗ ς̂ ′ ; ς̂ . By IH, CEp(ς̂

′) 6= ∅, and by the third item
of def. 5, CEp(ς̂) 6= ∅. It’s simple to show that the stack of ς̂ has the
desirable properties by assuming that the stack of ς̂ ′ has them.

Lemma 12 (Local simulation).
If ς̂ ; ς̂ ′ and succ(|ς̂|al) 6= ∅ then |ς̂ ′|al ∈ succ(|ς̂|al).

Theorem 13 (Soundness).
If p ≡ Î(pr) ;∗ ς̂ then, after summarization:

• If ς̂ is a final state then |ς̂|al ∈ Final
• If ς̂ is not final and ς̂ ′ ∈ CEp(ς̂) then (|ς̂ ′|al , |ς̂|al) ∈ Seen
• If ς̂ is an Exit-Ret or Exit-Esc and ς̂ ′ ∈ CE∗p(ς̂) then

(|ς̂ ′|al , |ς̂|al) ∈ Seen
• If ς̂ is an Exit-Esc and ς̂ ′ ∈ CE∗p(ς̂) then (|ς̂ ′|al , |ς̂|al) is al-

ready in Summary when it is removed from W to be examined

Proof. By induction on the length of p.
The basecase is simple.
If the length is greater than 0, p has the form Î(pr) ;∗ ς̂ ′ ; ς̂ .
We take cases on ς̂ .

ς̂ is an entry.
Then, CEp(ς̂) = {ς̂}. Also, ς̂ ′ is a call or a tail call.
By lemma 11, CEp(ς̂

′) 6= ∅. Let ς̂1 ∈ CEp(ς̂
′). Then, p can be

decomposed as Î(pr) ;∗ ς̂1 ;+ ς̂ ′ ; ς̂ . By IH, (|ς̂1|al , |ς̂ ′|al)
was put in Seen at some point during the execution, so it was also
put in W and examined. By lemma 12, |ς̂|al ∈ succ(|ς̂ ′|al) so in
line 16 or 36 (|ς̂|al , |ς̂|al) will be propagated.

ς̂ is a ĈApply and ς̂ ′ is an Exit-Esc.
The two states have the form:
ς̂ = (ĉ, d̂, st , h)
ς̂ ′ = (J(k e)γK, st ′, h)
By lemma 11, CE∗p(ς̂

′) 6= ∅. Since (ĉ, st) ∈ h(k), there is a state
ς̂1 in CEp(ς̂

′) of the form:
ς̂1 = (def λ(k), d̂1, ĉ, st , h1)
Also, by H?(γ, k) we get def λ(k) 6= pr , which implies ς̂1 6=
Î(pr). Thus, p can be written Î(pr) ;+ ς̂1 ;+ ς̂ ′ ; ς̂ . We
take two cases.

• Î(pr) ∈ CE∗p(ς̂1)

In this case, Î(pr) ∈ CE∗p(ς̂
′). By lemma 11 for Î(pr) ;+

ς̂1, we get ĉ = halt and st = 〈〉. Thus, ς̂ is a final state. By
IH, (|Î(pr)|al , |ς̂ ′|al) was put in Summary before it was put
in Seen . Therefore, when it was examined at line 25, it was
already in Summary and the test at line 26 was false.
The test at line 30 was true, so Final(|ς̂ ′|al) was called. By
lemma 11 for Î(pr) ;+ ς̂ ′, we get that st ′ is not empty, so it
has the form tf ::st ′′. Then, |ς̂ ′|al is
(J(k e)γK, tf �UVar , h �UVar).
At line 54, (halt , Ãu(e, γ, tf �UVar , h �UVar), ∅, h �UVar)
goes in Final . But this state is |ς̂|al because
Ãu(e, γ, tf �UVar , h �UVar) is equal to Âu(e, γ, st ′, h).

• Î(pr) /∈ CE∗p(ς̂1)

Let ς̂2 6= Î(pr) be the earliest state in CE∗p(ς̂1). (Thus, ς̂2 ∈
CE∗p(ς̂

′).) The predecessor ς̂3 of ς̂2 is a call. Thus,
p ≡ Î(pr) ;+ ς̂3 ; ς̂2 ;∗ ς̂1 ;+ ς̂ ′ ; ς̂

By lemma 11 for Î(pr) ;+ ς̂1, we find that the continuation
argument of ς̂2 is ĉ and its stack is st . By [ÛEA], ĉ is the
continuation lambda passed at ς̂3. Therefore, ς̂ is not a final
state. By def. 5 we know that CEp(ς̂3) ⊆ CEp(ς̂). For each
ς̂4 ∈ CEp(ς̂3), we must show that (|ς̂4|al , |ς̂|al) was put in
Seen . By IH, we know that (|ς̂4|al , |ς̂3|al) and (|ς̂2|al , |ς̂ ′|al)
were put in W and examined. We take cases on which edge
was examined first.
Assume that (|ς̂4|al , |ς̂3|al) was examined first. By lemma 12,
|ς̂2|al ∈ succ(|ς̂3|al), so in line 17 we put (|ς̂4|al , |ς̂3|al , |ς̂2|al)
in Callers . We later examine (|ς̂2|al , |ς̂ ′|al). By IH, (|ς̂2|al , |ς̂ ′|al)
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is in Summary when it is examined, so the test at line 26
is false. Also, ς̂2 6= Î(pr) so the test at line 30 is false as
well. Since (|ς̂4|al , |ς̂3|al , |ς̂2|al) is in Callers , at line 32 we
call Update(|ς̂4|al , |ς̂3|al ,|ς̂2|al , |ς̂ ′|al ). We must show that the
state ς̃ constructed by Update is the same as |ς̂|al .
By lemma 11 for Î(pr) ;+ ς̂ ′, we get that st ′ is not empty.
It is easy to see that the user value passed at ς̃ , which is
Ãu(e, γ, |st ′|al , |h|al), is equal to Âu(e, γ, st ′, h).
By lemma 11 for Î(pr) ;+ ς̂3, the stack of ς̂3 is not empty.
Thus, ς̂3 has the form (J(e1 e2 q)lK, tf :: st3, h3) where q = ĉ.
Let ulam be the function applied at ς̂2. Then, by rule [ÛEA],
the stack st of ς̂2 is

st =

(
tf :: st3 Lam?(e1) ∨H?(l, e1)

tf [e1 7→ {ulam}] :: st3 S?(l, e1)

But then, |st |al is equal to the frame constructed at line 50.
Therefore, ς̃ = |ς̂|al .
Assume that (|ς̂2|al , |ς̂ ′|al) was examined first. In this case,
when (|ς̂4|al , |ς̂3|al) is examined, we call Update at line 18.
The proof is similar.

ς̂ is an Exit-Esc.
Then, ς̂ ′ is an Âpply . By lemma 11, CEp(ς̂

′) 6= ∅. Let ς̂1 ∈
CEp(ς̂

′). By IH, (|ς̂1|al , |ς̂ ′|al) was examined. Also, by lemma
12, |ς̂|al ∈ succ(ς̂ ′). Thus, in line 7 or 13, (|ς̂1|al , |ς̂|al) was
propagated but not put in Summary .

By lemma 11, CEp(ς̂) 6= ∅. Let ς̂2 ∈ CEp(ς̂). By IH,
(|ς̂2|al , |ς̂2|al) was examined.

We proceed by cases on whether (|ς̂1|al , |ς̂|al) or (|ς̂2|al , |ς̂2|al)
was examined first.

• (|ς̂2|al , |ς̂2|al) was first
When (|ς̂1|al , |ς̂|al) is examined, the test at line 26 is true.
Also, |ς̂2|al is in EntriesEsc, it was put at line 10 when
(|ς̂2|al , |ς̂2|al) was examined. Thus, at line 29, (|ς̂2|al , |ς̂|al)
is put in Summary and Seen .

• (|ς̂1|al , |ς̂|al) was first
At line 27, |ς̂|al was put in Escapes . When (|ς̂2|al , |ς̂2|al) is
examined, at line 11 (|ς̂2|al , |ς̂|al) is put in Summary and
Seen .

If ς̂2 has a predecessor ς̂3 which is a tail call, we must show
that each state ς̂4 ∈ CE∗p(ς̂2) satisfies the theorem. Wlog, we
assume that ς̂4 /∈ CEp(ς̂). (We have not constrained ς̂2, so if ς̂4 ∈
CEp(ς̂), we have already covered this case.) Since ς̂4 /∈ CEp(ς̂),
(|ς̂4|al , |ς̂|al) can only be propagated in lines 33 or 41. By IH,
(|ς̂4|al , |ς̂3|al) was examined. There are two cases depending on
which of (|ς̂4|al , |ς̂3|al) or (|ς̂2|al , |ς̂|al) was examined first.

• (|ς̂4|al , |ς̂3|al) was first
By lemma 12, |ς̂2|al ∈ succ(ς̂3). Thus, in line 37, we put
(|ς̂4|al , |ς̂3|al , |ς̂2|al) in TCallers . When (|ς̂2|al , |ς̂|al) is exam-
ined, we follow the else branch at line 31. As a result, at line
33 (|ς̂4|al , |ς̂|al) is put in Summary and Seen .

• (|ς̂2|al , |ς̂|al) was first
Then, when (|ς̂4|al , |ς̂3|al) is examined, (|ς̂2|al , |ς̂|al) is in
Summary . By lemma 12, |ς̂2|al ∈ succ(ς̂3). Thus, in line 41,
(|ς̂4|al , |ς̂|al) is put in Seen . It’s not put in Summary because
we do not want to modify Summary while we’re iterating
over it. But lines 40 and 42 ensure that (|ς̂4|al , |ς̂|al) will be in
Summary when it is examined.
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