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Abstract

We present a joint probabilistic model of who
cites whom in computational linguistics, and
also of the words they use to do the citing. The
model reveals latent factions, or groups of in-
dividuals whom we expect to collaborate more
closely within their faction, cite within the fac-
tion using language distinct from citation out-
side the faction, and be largely understandable
through the language used when cited from
without. We conduct an exploratory data anal-
ysis on the ACL Anthology. We extend the
model to reveal changes in some authors’ fac-
tion memberships over time.

1 Introduction

The ACL Anthology presents an excellent dataset
for studying both the language and the social con-
nections in our evolving research field. Extensive
studies using techniques from the field of biblio-
metrics have been applied to this dataset (Radev et
al., 2009a), quantifying the importance and impact
factor of both authors and articles in the commu-
nity. Moreover, recent work has leveraged the avail-
ability of digitized publications to study trends and
influences within the ACL community (Hall et al.,
2008; Gerrish and Blei, 2010; Yogatama et al., 2011)
and to analyze academic collaborations (Johri et al.,
2011).

To the best of our knowledge, however, existing
work has mainly pursued “macroscopic” investiga-
tions of the interaction of authors in collaboration,
citation networks, or the textual content of whole
papers. We seek to complement these results with a

“microscopic” investigation of authors’ interactions
by considering the individual sentences authors use
to cite each other.

In this paper, we present a joint model of who
cites whom in computational linguistics, and also of
how they do the citing. Central to this model is the
idea of factions, or groups of individuals whom we
expect to (i) collaborate more closely within their
faction, (ii) cite within the faction using language
distinct from citation outside the faction, (iii) be
largely understandable through the language used
when cited from without, and (iv) evolve over time.1

Factions can be thought of as “communities,” which
are loosely defined in the literature on networks
as subgraphs where internal connections are denser
than external ones (Radicchi et al., 2004). The dis-
tinction here is that the strength of connections de-
pends on a latent language model estimated from ci-
tation contexts.

This paper is an exploratory data analysis using a
Bayesian generative model. We aim both to discover
meaningful factions in the ACL community and also
to illustrate the use of a probabilistic model for such
discovery. As such, we do not present any objective
evaluation of the model or make any claims that the
factions optimally explain the research community.
Indeed, we suspect that reaching a broad consensus
among community members about factions (i.e., a
“gold standard”) would be quite difficult, as any so-
cial community’s factions are likely perceived very

1Our factions are computational abstractions—clusters of
authors—discovered entirely from the corpus. We do not claim
that factions are especially contentious, any more than “sub-
communities” in social networks are especially collegial.



subjectively. It is for this reason that a probabilistic
generative model, in which all assumptions are made
plain, is appropriate for the task. We hope this analy-
sis will prove useful in future empirical research on
social communities (including scientific ones) and
their use of language.

2 Model

In this paper, our approach is a probabilistic model
over (i) coauthorship relations and (ii) the words
in sentences containing citations. The words are
assumed to be generated by a distribution that de-
pends on the (latent) faction memberships of the cit-
ing authors, the cited authors, and whether the au-
thors have coauthored before. To model these dif-
ferent effects on language, we use a sparse additive
generative (SAGE) model (Eisenstein et al., 2011).
In contrast to the popular Dirichlet-multinomial for
topic modeling, which directly models lexical prob-
abilities associated with each (latent) topic, SAGE
models the deviation in log frequencies from a back-
ground lexical distribution. Imposing a sparsity-
inducing prior on the deviation vectors limits the
number of terms whose probabilities diverge from
the background lexical frequencies, thereby increas-
ing robustness to limited training data. SAGE can be
used with or without latent topics; our model does
not include topics. Figure 1 shows the plate diagram
for our model.

We describe the generative process:

• Generate the multinomial distribution over fac-
tion memberships from a Dirichlet distribution:
θ ∼ Dir(α).

• Generate the binomial distribution for whether
two authors coauthor, given that they are in the
same faction, from a Beta distribution: φsame ∼
Beta(γsame

0 , γsame
1 ). Generate the analogous bi-

nomial, given that they are in different factions:
φdiff ∼ Beta(γdiff

0 , γdiff
1 ).

• For each author i, draw a faction indicator
ai ∼ Multinomial(θ).

• For all ordered pairs of factions (g, h), draw a
deviation vector η(g,h) ∼ Laplace(0, τ). This
vector, which will be sparse, corresponds to the

αθ

a(i) a(j)
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Figure 1: Plate diagram for our graphical model. A and
G are the fixed numbers of authors and factions, respec-
tively. m is the background word distribution, α, τ , γ
are hyperparameters, a are latent author factions, z and
w are the observed coauthorship relations and observed
words in citation sentences between authors, respectively.
Each of the a(i), denoting author i’s faction alignment,
are sampled once every iteration conditioned on all the
other a(j). If i and j are coauthors or i cited j in some
publication, a(i) and a(j) will not be conditionally inde-
pendent due to the v-structure. φsame and φdiff are bino-
mial distributions over whether two authors have collab-
orated together before, given that they are assigned to the
same/different factions. Dashed variables are collapsed
out in the Gibbs sampler, while double bordered variables
are optimized in the M-step.

deviations in word log-frequencies when fac-
tion g is citing faction h.

• For each word v in the vocabulary, let the uni-
gram probability that an author in faction g uses
to cite an author in faction h be

β(g,h)
v =

exp(η(g,h)
v +mv)∑

v′ exp(η(g,h)
v′ +mv′)

.

• For each ordered pair of authors (i, j),

– For each word that i uses to cite j, draw
w

(i,j)
k ∼ Multinomial(β(a(i),a(j))).

– If the authors are from the same faction,
i.e., a(i) = a(j), draw coauthorship indi-



cator z(i,j) ∼ Binomial(φsame); else, draw
z(i,j) ∼ Binomial(φdiff).

Thus, our goal is to maximize the conditional like-
lihood of the observed data

p(w, z | α,η, τ,m,γ) =∫
θ

∫
φ

∫
a
p(w, z,θ,φ,a | α,η, τ,m,γ)

with respect to η and α. We fix τ and γ, which are
hyperparameters that encode our prior beliefs, and
m, which we assume to be a fixed background word
distribution.

Exact inference in this model is intractable, so we
resort to an approximate inference technique based
on Markov Chain Monte Carlo simulation. We per-
form Bayesian inference over the latent author fac-
tions while using maximum a posteriori estimates
of η because Bayesian inference of η is problematic
due to the logistic transformation. We refer the in-
terested reader to Eisenstein et al. (2011). We take
an empirical Bayes approach to setting the hyper-
parameter α. Our overall learning procedure is a
Monte Carlo Expectation Maximization algorithm
(Wei and Tanner, 1990).

3 Learning and Inference

Our learning algorithm is a two-step iterative pro-
cedure. During the E-step, we perform collapsed
Gibbs sampling to obtain distributions over factions
for each author, given the current setting of the hy-
perparameters. In the M-step, we obtain point es-
timates for the hyperparameters η and α given the
current posterior distributions for the author fac-
tions.

3.1 E-step

As the Dirichlet and Beta distributions are conjugate
priors to the multinomial and binomial respectively,
we can integrate out the latent variables θ, φ(same)

and φ(diff). For an author i, we sample his faction
alignment a(i) conditioned on faction assignments
to all other authors and citation words between i and
other authors (in both directions). Denoting a−i as
the current faction assignments for all the authors

except i,

p(a(i) = g | a(−i),w,η,α,γ)

∝ p(a(i) = g,a(−i),w | η,α,γ)

∝ (Ng + αg)
A∏
j

γεz +N ε
z

γε0 + γε1 +N ε
0 +N ε

1

p(w(i) | η)

where Ng is the number of authors (except i) who
are assigned to faction g, εij = “same” if g = a(j)

and εij = “diff” otherwise, and N ε
1, N

ε
0 denotes

the number of author pairs that have/have not coau-
thored before respectively, given the status of their
factions ε. We elide the subscripts of ε and super-
script of z for notational simplicity and abuse nota-
tion to let w(i) refer to all author i’s citation words,
both incoming and outgoing. Using SAGE, the fac-
tor for an author’s words is

p(w(i) | η) =
∏
j

∏
v

(
β(g,a(j))
v

)w(i,j)
v
(
β(a(j),g)
v

)w(j,i)
v

where w(i,j)
v is the observed count of the number of

times word v has been used when author i cites j; j
ranges over the A authors.

We sample each author’s faction in turn and do so
several times during the E-step, collecting samples
to estimate our posterior distribution over a.

3.2 M-step

In the M-step, we optimize all η(g,h) and α given
the posterior distribution over author factions.

Optimizing η. Eisenstein et al. (2011) postu-
lated that the components of η are drawn from
a compound model

∫ N (η;µ, σ)E(σ; τ)dσ, where
E(σ; τ) indicates the Exponential distribution. They
fit a variational distribution Q(σ) and optimized the
log-likelihood of the data by iteratively fitting the
parameters η using a Newton optimization step and
maximizing the variational bound.

The compound model described is equivalent to
the Laplace distribution L(η;µ, τ) (Lange and Sin-
sheimer, 1993; Figueiredo, 2003). Moreover, a zero
mean Laplace prior has the same effect as placing an
L1 regularizer on η. Therefore, we can equivalently



maximize the regularized likelihood

〈c(g,h)〉Tη(g,h) − 〈C(g,h)〉 log
∑
v

exp(η(g,h)
v +mv)

− λ
∥∥∥η(g,h)

∥∥∥
1

with respect to η(g,h). 〈c(g,h)〉 is a vector of expected
count of the words that faction g used when citing
faction h, 〈c(g,h)〉 =

∑
v 〈c(g,h)v 〉 and λ is the regu-

larization constant. The regularization constant and
Laplace variance are related by λ = τ−1 (Tibshirani,
1996).

We use the gradient-based optimization routine
OWL-QN (Andrew and Gao, 2007) to maximize the
above objective function with respect to η(g,h) for
each pair of factions g and h.

Optimizing α. As in the empirical Bayes ap-
proach, we learn the hyperparameter setting of α
from the data by maximizing the log likelihood
with respect to α. By treating α as the parame-
ter of a Dirichlet-multinomial compound distribu-
tion, we can directly use the samples of author fac-
tions produced by our Gibbs sampler to estimate
α. Minka (2009) describes in detail several itera-
tive approaches to estimate α; we use the linear-
time Newton-Raphson iterative update to estimate
the components of α.

4 Data Analysis

4.1 Dataset

We used the ACL Anthology Network Corpus
(Radev et al., 2009b), which currently contains
18,041 papers written by 12,777 authors. These pa-
pers are published in the field of computational lin-
guistics between 1965 and 2011.2 Furthermore, the
corpus provides bibliographic data such as authors
of the papers and bibliographic references between
each paper in the corpus. We extracted sentences
containing citations using regular expressions and
linked them between authors with the help of meta-
data provided in the corpus.

We tokenized the extracted sentences and down-
cased them. Words that are numeric, appear less

2For a list of the journals, conferences and workshops
archived by the ACL anthology, please visit http://
aclweb.org/anthology-new.

than 20 times, or are in a stop word list are dis-
carded. For papers with multiple authors, we divided
the word counts by the number of pairings between
authors in both papers, assigning each word to each
author-pair (i.e., a count of 1

nn′ if a paper with n au-
thors cites a paper with n′ authors).

Due to the large number of authors, we only used
the 500 most cited authors (within the corpus) who
have published at least 5 papers. Papers with no au-
thors left are removed from the dataset. As a re-
sult, we have 8,144 papers containing 80,776 cita-
tion sentences (31,659 citation pairs). After text pro-
cessing, there are 391,711 tokens and 3,037 word
types.

In each iteration of the EM algorithm, we run the
E-step Gibbs sampler for 300 iterations, discarding
the first 100 samples for burn-in and collecting sam-
ples at every 3rd iteration to avoid autocorrelation.
At the M-step, we update our η and α using the
samples collected. We run the model for 100 EM
iterations.

We fixed λ = 5, γsame = (0.5, 1) and γdiff =
(1, 0.5). Our setting of γ reflects our prior beliefs
that coauthors tend to be from the same faction.

4.2 Factions in ACL (1965–2011)

We ran the model withG = 30 factions and selected
the most probable faction for each author from the
posterior distribution of the author-faction alignment
obtained in the final E step. Only 26 factions were
selected as most probable for some author.3 Table 1
presents members of selected factions, along with
citation words that have the largest positive log fre-
quency deviation from the background distribution.4

Table 2 shows a list of the top three authors associ-
ated with factions not shown in Table 1. Incoming
(outgoing) citation words are found by summing the
log deviation vectors η across citing (cited) factions.
The author factions are manually labeled.

We see from Table 1, the model has selected key-
words that are arguably significant in certain sub-
fields in computational linguistics. Incoming cita-
tions are generally indicative of the subject areas in

3In future work, nonparametric priors might be employed to
automate the selection of G.

4We found it quite difficult to make sense of terms with neg-
ative log frequency deviations. This suggests exploring a model
allowing only positive deviations; we leave that for future work.



Formalisms (31) Fernando Pereira, Jason M. Eisner, Stuart M. Shieber, Walter Daelemans, Hitoshi Isa-
hara

Self cites: parsing
In cites: parsing, semiring, grammars, tags, grammar, tag, lexicalized, dependency

Out cites: tagger, regular, dependency, transformationbased, tagging, stochastic, grammars, sense
Evaluation (17) Salim Roukos, Eduard Hovy, Marti A. Hearst, Chin-Yew Lin, Dekang Lin

Self cites: automatic, bleu, linguistics, evaluation, computational, text, proceedings
In cites: automatic, bleu, segmentation, method, proceedings, dependency, parses, text

Out cites: paraphrases, cohesion, agreement, hierarchical, entropy, phrasebased, evaluation, tree-
bank

Semantics (26) Martha Palmer, Daniel Jurafsky, Mihai Surdeanu, David Weir, German Rigau
Self cites: sense, semantic, wordnet

In cites: framenet, sense, semantic, task, wordnet, word, project, question
Out cites: sense, wordnet, moses, preferences, distributional, semantic, focus, supersense

Machine Translation
(MT1) (9)

Kevin Knight, Michel Galley, Jonathan Graehl, Wei Wang, Sanjeev P. Khudanpur

Self cites: inference, scalable, model
In cites: scalable, inference, machine, training, generation, translation, model, syntaxbased

Out cites: phrasebased, hierarchical, inversion, forest, transduction, translation, ibm, discourse
Word Sense Disam-
biguation (WSD) (42)

David Yarowsky, Rada Mihalcea, Eneko Agirre, Ted Pedersen, Yorick Wilks

Self cites: sense, word
In cites: sense, preferences, wordnet, acquired, semcor, word, semantic, calle

Out cites: sense, subcategorization, acquisition, automatic, corpora, lexical, processing, wordnet
Parsing (20) Michael John Collins, Eugene Charniak, Mark Johnson, Stephen Clark, Massimiliano

Ciaramita
Self cites: parser, parsing, model, perceptron, parsers, dependency

In cites: parser, perceptron, supersense, parsing, dependency, results, hmm, models
Out cites: parsing, forest, treebank, model, coreference, stochastic, grammar, task

Discourse (29) Daniel Marcu, Aravind K. Joshi, Barbara J. Grosz, Marilyn A. Walker, Bonnie Lynn
Webber

Self cites: discourse, structure, centering
In cites: discourse, phrasebased, centering, tag, focus, rhetorical, tags, lexicalized

Out cites: discourse, rhetorical, framenet, realizer, tags, resolution, grammars, synonyms
Machine Translation
(MT2) (9)

Franz Josef Och, Hermann Ney, Mitchell P. Marcus, David Chiang, Dekai Wu

Self cites: training, error
In cites: error, giza, rate, alignment, training, minimum, translation, phrasebased

Out cites: forest, subcategorization, arabic, model, translation, machine, models, heuristic

Table 1: Key authors and citation words associated with some factions. For each faction, we show the 5 authors with
highest expected incoming citations (i.e p(faction | author) × citations). Factions are labeled manually, referring to
key sub-fields in computational linguistics. Faction sizes are in parenthesis following the labels. The citation words
with the strongest positive weights in the deviation vectors are shown.

which the faction holds recognized expertise. For
instance, the faction labeled “semantics” has cita-
tion terms commonly associated with propositional
semantics: sense, framenet, wordnet. On the other
hand, outgoing citations hint at the related work that
a faction builds on; discourse might require building
on components involving framenet, grammars, syn-

onyms, while word sense disambiguation involves
solving problems like acquisition and modeling sub-
categorization.

4.3 Sensitivity

Given the same initial parameters, we found our
model to be fairly stable across iterations of Monte



Adam Lopez, Paul S. Jacobs (2)
Regina Barzilay, Judith L. Klavans, Robert T. Kasper (3)
Lauri Karttunen, Kemal Oflazer, Kimmo Koskenniemi (3)
John Carroll, Ted Briscoe, Scott Miller (7)
Vincent J. Della Pietra, Stephen A. Della Pietra, Robert L.
Mercer (25)
Thorsten Brants, Liang Huang, Anoop Sarkar (9)
Christoph Tillmann, Kenji Yamada, Sharon Goldwater (7)
Alex Waibel, Keh-Jiann Chen, Katrin Kirchhoff (3)
Lynette Hirschman, Claire Cardie, Vincent Ng (26)
Erik F. Tjong Kim Sang, Ido Dagan, Marius Paşca (21)
Yuji Matsumoto, Dragomir R. Radev, Chew Lim Tan (18)
Christopher D. Manning, Owen Rambow, Ellen Riloff (19)
Richard Zens, Hieu Hoang, Nicola Bertoldi (9)
Dan Klein, Jun’ichi Tsujii, Yusuke Miyao (6)
Janyce Wiebe, Mirella Lapata, Kathleen R. McKeown (50)
I. Dan Melamed, Ryan McDonald, Joakim Nivre (10)
Philipp Koehn, Lillian Lee, Chris Callison-Burch (80)
Kenneth Ward Church, Eric Brill, Richard M. Schwartz
(19)

Table 2: Top 3 authors of the remaining 18 factions not
displayed in Table 1.

Carlo EM. We found that when G was too small
(e.g., 10), groups were more mixed and the η vectors
could not capture variation among them well. When
G was larger, the factions were subjectively cleaner,
but fields like translation split into many factions (as
is visible in the G = 30 case illustrated in Tables 1
and 2. Strengthening the L1 penalty made η more
sparse, of course, but gave less freedom in fitting the
data and therefore more grouping of authors into a
fewer effective factions.

4.4 Inter-Faction Relationships
By using the most probable a posteriori faction for
each author, we can compute the number of cita-
tions between factions. We define the average inter-
faction citations by:

IFC(g, h) =
Ψ(g → h) + Ψ(h→ g)

Ng +Nh
(1)

where Ψ(g → h) is the total number of papers writ-
ten by authors in g that cite papers written by authors
in h.

Figure 2 presents a graph of selected factions
and how these factions talk about each other. As
we would expect, the machine translation faction is
quite strongly connected to formalisms and parsing
factions, reflecting the heavy use of grammars and
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Figure 3: Heat map showing citation rates across selected
factions. Factions on the horizontal axis are being cited;
factions on the vertical axis are citing. Darker shades de-
note higher average Ψ(g→h)

Ng
.

parsing algorithms in translation. Moreover, we can
observe that “deeper” linguistics research, such as
semantics and discourse, are less likely to be cited
by the other factions. This is reflected in Figure 3,
where the statistical MT and parsing factions in the
bottom left exhibit higher citation activity amongst
each other. In addition, we note that factions tend to
self-cite more often than out of their own factions;
this is unsurprising given the prior we selected.

The IFC between discourse and MT2 (as shown
by the edge thickness in figure 2) is higher than ex-
pected, given our prior knowledge of the computa-
tional linguistics community. Further investigation
revealed that, Daniel Marcu, posited by our model
to be a member of the discourse faction, has coau-
thored numerous highly cited papers in MT in re-
cent years (Marcu and Wong, 2002). However, the
model split the translation field, which fragmented
the counts of MT related citation words. Thus,
assigning Daniel Marcu to the discourse faction,
which also has a less diverse citation vocabulary, is
more probable than assigning him to one of the MT
factions. In §4.6, we consider a model of factions
over time to mitigate this problem.

4.5 Comparison to Graph Clustering

Work in the field of bibliometrics has largely fo-
cused on using the link structure of citation net-
works to study higher level structures. See Osareh
(1996) for a review. Popular methods include bib-
liographic coupling (Kessler, 1963), and co-citation
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Figure 2: Citations among some factions. The size of a node is relative to the faction size and edge thickness is relative
to the average number of inter-faction citations (equation 1). The words on the edges are the highest weighted words
from the deviation vectors η, with the arrow denoting the direction of the citation. Edges with below average IFC
scores are represented as dashed lines, and their citations words are not shown to preserve readability.

analysis (Small, 1973). By using authors as an unit
of analysis in co-citation pairs, author co-citations
have been presented as a technique to analyze their
subject specialties (White and Griffith, 1981). Using
standard graph clustering algorithms on these author
co-citation networks, one can obtain a semblance of
author factions. Hence, we performed graph clus-
tering on both collaboration and citation graphs5 of
authors in our dataset using Graclus6, a graph clus-
tering implementation based on normalized cuts and
ratio associations (Dhillon et al., 2004).

In Table 3, we compare, for selected authors,
how their faction-mates obtained by our model and
graph clustering differ. When clustering on the au-
thor collaboration network, we obtained some clus-
ters easily identified with research labs (e.g., Daniel
Marcu at the Information Sciences Institute). The
co-citation graph leads to groupings dominated by

5We converted the directed citation graph into a symmetric
graph by performing bibliometric symmetrization described in
Satuluri and Parthasarathy (2011, section 3.3).

6http://www.cs.utexas.edu/users/dml/
Software/graclus.html

heavily co-cited papers in major research areas.
While we do not have an objective measurement
of quality or usefulness, we believe that the fac-
tions identified by our model align somewhat bet-
ter with familiar technical themes around which
sub-communities naturally form than major research
problems or institutions.

4.6 Factions over Time

Faction alignments may be dynamic; we expect that,
over time, individual researchers may move from
one faction to another as their interests evolve. We
consider a slightly modified model whereby authors
are split into different copies of themselves during a
non-overlapping set of discrete time periods. Given
a set of disjoint time periods T , we denote each
author-faction node by {a(i,t) | (i, t) ∈ A× T}. As
we treat each “incarnation” of an author as a distinct
individual, we can simply use the same inference al-
gorithm described in §2. (In future work we might
impose an expectation of gradual changes along a
more continuous representation of time.)



Our Model Collaboration Network Co-citation Network
Franz Josef Och

Franz Josef Och, Hermann Ney,
Mitchell P. Marcus, David Chiang,
Dekai Wu

Franz Josef Och, Hermann Ney, Richard
Zens, Stephan Vogel, Nicola Ueffing

Franz Josef Och, Hermann Ney, Vincent
J. Della Pietra, Daniel Marcu, Robert L.
Mercer

error, giza, rate, alignment, training giza, mert, popovic, moses, alignments giza, bleu, phrasebased, alignment, mert
Daniel Marcu

Daniel Marcu, Aravind K. Joshi, Bar-
bara J. Grosz, Marilyn A. Walker, Bon-
nie Lynn Webber

Daniel Marcu, Kevin Knight, Daniel
Gildea, David Chiang, Liang Huang

Franz Josef Och, Hermann Ney, Vincent
J. Della Pietra, Daniel Marcu, Robert L.
Mercer

discourse, phrasebased, centering, tag,
focus

phrasebased, forest, cube, spmt, hiero giza, bleu, phrasebased, alignment, mert

Michael John Collins
Eugene Charniak, Michael John Collins,
Mark Johnson, Stephen Clark, Massim-
iliano Ciaramita

Michael John Collins, Joakim Nivre,
Lluı́s Márquez, Xavier Carreras, Jan
Hajič

Michael John Collins, Christopher D.
Manning, Dan Klein, Eugene Charniak,
Mark Johnson

parser, perceptron, supersense, parsing,
dependency

pseudoprojective, maltparser, percep-
tron, malt, averaged

tnt, prototypedriven, perceptron,
coarsetofine, pcfg

Kathleen R. McKeown
Mirella Lapata, Janyce Wiebe, Kathleen
R. McKeown, Dan Roth, Ralph Grish-
man

Kathleen R. McKeown, Regina Barzi-
lay, Owen Rambow, Marilyn A. Walker,
Srinivas Bangalore

Kenneth Ward Church, David
Yarowsky, Eduard Hovy, Kathleen
R. McKeown, Lillian Lee

semantic, work, learning, corpus, model centering, arabic, pyramid, realpro, cue rouge, minipar, nltk, alignment, mon-
treal

Table 3: Comparing selected factions between our model and graph clustering algorithms. Authors with highest
incoming citations are shown. For our model, we show the largest weighted words in the SAGE vector of incoming
citations for the faction, while for graph clustering, we show words with the highest tf-idf weight.

We split the same data as the earlier sections into
four disjoint time periods, 1965–1989, 1990–1999,
2000–2005 and 2006–2011. The split across time
is unequal due to the number of papers published in
each period: these four periods include 1,917, 3,874,
3,786, and 8,105 papers, respectively. Here we used
G = 20 factions for faster runtime, leading to di-
minished interpretability, though the sparsity of the
deviation vectors mitigates this problem somewhat.
Figure 4 shows graphical plots of selected authors
and their faction membership posteriors over time
(drawn from the final E-step).

With a simple extension of the original model,
we can learn shifts in the subject area the author is
publishing about. Consider Eugene Charniak: the
model observed a major change in faction align-
ment around 2000, when one of the popular Char-
niak parsers (Charniak, 2000) was released; this is
somewhat later than Charniak’s interests shifted, and
the earlier faction’s words are not clearly an ac-
curate description of his work at that time. More
fine-grained modeling of time and also accounting
for the death and birth of factions might ameliorate

these inconsistencies with our background knowl-
edge about Charniak. The model finds that Ar-
avind Joshi was associated with the tagging/parsing
faction in the 1990s and in recent years moved
back towards discourse (Prasad et al., 2008). David
Yarowsky, known for his early work on word sense
disambiguation, has since focused on applying word
sense disambiguation techniques in a multilingual
context (Garera et al., 2009; Bergsma et al., 2011).
As mentioned in the previous section, we observe
that the extended model is able to capture Daniel
Marcu’s shift from discourse-related work to MT
with his work in phrase-based statistical MT (Marcu
and Wong, 2002).

5 Related Work

A number of algorithms use topic modeling to an-
alyze the text in the articles. Topic models such
as latent Dirichlet allocation (Blei et al., 2003) and
its variations have been increasingly used to study
trends in scientific literature (McCallum et al., 2006;
Dietz et al., 2007; Hall et al., 2008; Gerrish and Blei,
2010), predict citation information (McNee et al.,
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Figure 4: Posterior probability of faction alignment over time periods for eight researchers with significant publication
records in at least three periods. The key for each entry contains the five highest weighted words in the deviation
vectors for the faction’s incoming citations. For each author, we show factions with which he or she is associated with
probability > 0.1 in at least one time period.

2002; Ibáñez et al., 2009; Nallapati et al., 2008) and
analyze authorship (Rosen-Zvi et al., 2004; Johri et
al., 2011).

Assigning author factions can be seen as network
classification problem, where the goal is to label
nodes in a network such that there is (i) a corre-
lation between a node’s label and its observed at-
tributes and (ii) a correlation between labels of in-
terconnected nodes (Sen et al., 2008). Such collec-
tive network-based approaches have been used on
scientific literature to classify papers/web pages into
its subject categories (Kubica et al., 2002; Getoor,
2005; Angelova and Weikum, 2006). If we knew
the word distributions between factions beforehand,
learning the author factions in our model would be
equivalent to the network classification task, where

our edge weights are proportional to the probability
of coauthorship multiplied by the probability of ob-
serving the citation words given the author’s faction
labels.

6 Conclusion

In this work, we have defined factions in terms of
how authors talk about each other’s work, going be-
yond co-authorship and citation graph representa-
tions of a research community. We take a first step
toward computationally modeling faction formation
by using a latent author faction model and applied
it to the ACL community, revealing both factions
and how they cite each other. We also extended the
model to capture authors’ faction changes over time.
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