
PLTIG Parsing

Winston Cheng

cheng3@fas.harvard.edu

Paul Govereau

govereau@eecs.harvard.edu

Dan Mauer

mauer@fas.harvard.edu

Alexander Rush

rush@fas.harvard.edu

January 13, 2005

Abstract

We describe the TIG formalism and its advantages
over CFGs and TAGs. We then give an algorithm for
training PLTIGs following Hwa (2001). We train on a
partially supervised corpus by repeated parsing with
a lexicalized normal form. The training algorithm is
EM-style, and the parsing algorithm is a generaliza-
tion of CKY. Finally, we look toward the possibility
of extending this method into a synchronous form.

1 Introduction

In this paper, we describe the implementation of a
training and a parsing algorithm for probabilistic,
natural-language grammars. Following Hwa (2001),
we describe a training algorithm and a parsing al-
gorithm for Probabilistic Lexicalized Tree-Insertion
Grammars (PLTIG). TIGs are a simplified form
of Tree-Adjunction Grammars (TAG) (Joshi, 1975;
Joshi and Schabes, 1997).

TAGs have proven to be useful for describing lin-
guistic properties; however, they are computationally
expensive. The parsing time for a TAG is O(n6).
TIGs are more efficient with a time complexity of
only O(n3).

While more efficient, TIGs are also less expres-
sive than TAGs. TAGs can recognize some context-
sensitive languages, and are therefore more expressive
than Context-Free Grammars (CFGs). It has been
shown that TIGs are strongly equivalent to normal

Context-Free Grammars (Schabes and Waters, 1995).
That is, every TIG can be converted into a weakly
equivalent CFG, and every CFG can be converted
into a strongly equivalent TIG.

Even though TIGs are equivalent to CFGs, there
are a number of reasons to prefer TIGs for describing
natural languages.

1. TIGs are more natural for describing linguistic
properties. For instance, representing relation-
ships between words that may be relatively far
apart in a sentence can be difficult with a CFG,
whereas in a TIG this is quite easy.

2. TIGs are much more compact than their corre-
sponding CFGs.

3. TIGs are easier to lexicalize (Schabes and Wa-
ters, 1995).

4. TIGs can be synchronized similar to Syn-
chronous TAGs(Shieber and Schabes, 1990).
This allows for the possibility of adapting
the PLTIG algorithms for machine translation
(Weaver, 1955; Brown et al., 1990).

The PLTIG training algorithm requires a training
corpus. The algorithm described here can be run su-
pervised or unsupervised. For our experiments, we
used a hand-parsed corpus with part-of-speech tags.
Details of the implementation can be found in Sec-
tion 6.

In the next section, we will describe PLTIGs. We
then go on to describe the training algorithm, a CKY

1

DT

the

NP

DT↓ N

hostel

N

JJ

cheap

N∗

(a) (b) (c)

Figure 1: Examples of Elementary Trees. (a) A sim-
ple initial tree. (b) An initial tree with one substitu-
tion node. (c) An auxiliary tree with foot node N.

parsing algorithm and the calculation of probabilities.
Finally, we describe some details of our implementa-
tion and conclude with some experimental results and
directions for future work.

2 Tree-Insertion Grammars

Tree-Insertion Grammars (TIG) are a simplification
of the more general framework of Tree-Adjunction
Grammars (TAG), a form of tree-rewriting system
(Joshi, 1975; Joshi and Schabes, 1997). The lan-
guages recognized by TIGs are a proper subset of the
languages recognized by TAGs. We will start with a
description of TAGs and then note how TIGs differ.

2.1 TAGs

A TAG consists of a set of elementary trees and op-
erations for combining trees. There are two types
of elementary trees: initial trees and auxiliary trees.
Initial trees may contain nonterminal leaf nodes. The
nonterminal leaf nodes may be marked as valid sub-
stitution nodes using the subscript “↓”. Figure (1)
shows two examples of initial trees. Tree (a) is a
simple initial tree with no nonterminal leaf nodes.
Tree (b) is an initial tree with one nonterminal leaf
node, DT, which is a valid substitution node.

Auxiliary trees are similar to initial trees, but they
also contain a special nonterminal leaf node with the
same label as the root node. This node is referred
to as the foot node, and is denoted with the super-
script “∗”. Tree (c) in Figure (1) is an example of an

NP

DT↓

DT

the

N

hostel

NP

DT

the

N

hostel

Figure 2: The substitution operation.

NP

DT

the

N

N

JJ

cheap

N∗

N

hostel

NP

DT

the

N

JJ

cheap

N

hostel

Figure 3: Adjunction

auxiliary tree with foot node N.

There are two operations for combining trees, sub-
stitution and adjunction. Substitution allows us to
replace a substitution node with another tree that
has a root node with the same nonterminal symbol.
For example, using the trees from Figure (1), we may
replace the DT node in Tree (b) with Tree (a) to pro-
duce a new tree. Figure (2) illustrates the substitu-
tion operation described above.

Auxiliary trees can be combined with other trees
using the adjunction operation. Adjunction allows
an auxiliary tree to be inserted into another tree at
an internal node. The root node of an auxiliary tree
must match the internal node where it is inserted.
The children of the internal node are moved to the
foot node of the inserted auxiliary tree. Figure (3)

2

S

X

the

X

a X

b X*

c

Figure 4: A TAG for the language anbncn

demonstrates the adjunction of Tree (c) to the inter-
nal node N of the tree from Figure (2).

A TAG grammar can express languages that are
mildly context-sensitive; that is, TAGs are strictly
more expressive than Context-Free Grammars, but
less expressive than context-sensitive grammars. It is
easy to see that TAGs are more powerful than CFGs.
Figure (4) shows a simple TAG that recognizes the
language anbncn which cannot be recognized be a
CFG1. The context-sensitivity in this example comes
from the fact that the auxiliary tree’s foot node has
lexical material to both the left and right. Therefore,
strings in the parse tree to the left and right of a foot
node can be dependent as in our example. Auxiliary
trees such as this are referred to as wrapping trees.
The existence of wrapping trees complicates the TAG
formalism to a surprising degree. The primary differ-
ence between TAGs and TIGs is that wrapping trees
are not allowed in TIGs.

2.2 TIGs

A TIG is a TAG where wrapping auxiliary trees are
disallowed. None of the elementary auxiliary-trees
can be wrapping trees, and furthermore, no adjunc-
tion is allowed to create a wrapping tree. This re-
striction is enforced by:

• Requiring all elementary auxiliary-trees to be
one of two possible types: left-auxiliary or right-
auxiliary. Left- and right-auxiliary trees have all
of their non-empty frontier nodes to the left or
right, respectively, of the foot node.

• Disallowing adjunctions of auxiliary trees when
this would result in a wrapping tree. An invalid
adjunction can occur only when the two trees are
of different types.

1This example comes from Hwa (2001)

Below are two examples of valid left-auxiliary trees.

S

S

a b

S*

S

S

a b

S* S

ε

Although the second tree is technically a valid left-
auxiliary tree, we will avoid using such trees in the
sequel.

2.3 PLTIGs

Probabilistic Lexicalized Tree-Insertion Grammars
(PLTIG) are an extended TIG formulation. The two
extensions added are lexicalization and probabilities.
These two extensions are orthogonal, and we will de-
scribe each in turn.

Lexicalization A lexicalized TIG is a TIG in
which all of the elementary trees contain at least
one lexical (terminal) leaf node. By requiring that
all trees contain a lexical leaf node we ensure that
derivations represent both the parsing tree structure
and the actual words. This is particularly important
as probabilistic grammars are being trained on a cor-
pus of text. The training data contains only words,
so it is helpful if the elementary trees also contain
these words for training purposes.

Probabilities A probabilistic TIG assigns a prob-
ability to each possible substitution or adjunction in
a grammar. With these, we can compute the prob-
abilities of different parses of a sentence. In order
to perform probabilistic parsing, we need to add four
sets of parameters to the elementary trees and their
nonterminal nodes.

First, for each elementary tree t, there is a prob-
ability pi(t) of being the start tree for a derivation.
For auxiliary trees this probability will be zero, and
for initial trees the probabilities must be normalized
such that

∑

t

pi(t) = 1 .

Second, for each substitution node η, there is the
probability for each initial tree t to be substituted

3

at that node ps(η, t). These probabilities make up a
distribution that must be normalized such that for
each η

∑

t

ps(η, t) = 1 .

Third, for each nonterminal, internal node η, there
is a probability for each auxiliary tree t to adjoin to
the left pl(η, t) or to the right pr(η, t). It is also pos-
sible that no auxiliary trees will adjoin to either the
left pnl(η) or the right pnr(η). All of these parameters
must be normalized such that for each η

pnl(η) +
∑

t

pl(η, t) = 1

and
pnr(η) +

∑

t

pr(η, t) = 1 .

Finally, for each nonterminal, internal node η,
there may be a simultaneous left and right adjunc-
tion. In such a case, we have a probability that the
right adjunction takes place first prl(η) and vice-versa
plr(η). These parameters must also be normalized.

prl(η) + plr(η) = 1

The goal of our system is to automatically learn
the best values for each of these parameters from a
corpus of text. In the next section we describe the
algorithm used for learning these parameters.

3 EM

In order to learn a Tree Insertion Grammar for
building parses of English language sentences, we
use a PLTIG induction method devised by Hwa
(2001) which is based on an implementation of the
general Expectation Maximization (EM) algorithm
(AP Dempster and Rubin, 1977). We will now sum-
marize the general algorithm and explain the specific
implementation used to induce TIGs.

The EM algorithm is built around the concept of
Maximum Likelihood Estimation: given a data sam-
ple, we must determine the parameters θ to plug into
a given model that maximize the likelihood that the
model will produce the examples on which it was

trained - in our case, the model is a PLTIG, the
parameters are the adjunction probabilities of that
PLTIG, and the examples are correct, derived parses
of English sentences.

If we had every possible valid parse of every pos-
sible English sentence (the sufficient statistics of the
data), we could trivially compute the ideal parame-
ters for the model. Since we do not have sample data
approaching that level of completeness, we must in-
stead estimate these parameters.

For the moment, assume that we will be able to
learn the model parameters from the data we do have;
this will allow us to compute a probability distribu-
tion over the unobserved data. In our case, for each
adjunction probability, we can use our learned pa-
rameters to along with the observed data to estimate
what we expect would be found in the remaining, un-
observed data. This will give us an estimate of the
sufficient statistics (i.e., the expected sufficient statis-
tics) by calculating the expected probabilities of each
adjunction action across all data, observed and miss-
ing.

EM is an iterative algorithm that makes use of
these concepts as follows. It starts by setting θ to
some initial values. Once the θ is set, EM uses
it along with the observed sample data to compute
the expected sufficient statistics of the complete (ob-
served + missing) data. New values for θ are then
chosen to maximize the likelihood of the expected
sufficient statistics. The new θ is used to re-estimate
the expected sufficient statistics, and the process goes
back and forth until convergence, usually defined as
the point at which the difference between two succes-
sive sets of θ is below some threshold.

A concise representation of the full algorithm can
be seen in Algorithm 1. We use the following no-
tation, adapted from that used by Hwa (2001). An
observed training sentence is denoted w = w1, ..., wt.
Each possible derivation of w is represented as v ∈ V
where V is the set of all such derivations. Each deriva-
tion is comprised of several steps denoted v(s,t) ∈ v

where v(s,t) is the step which forms the constituent
covering string positions ws+1, ..., wt in the parse tree.
Each derivation can also be represented as a series of
adjunction operations: act(v(s,t)) = αij means that
the adjunction opearation αij – the adjunction of

4

Initialization step

Build initial grammar in Hwa normal form
for ηi ∈ AdjNodes and ρj ∈ AuxTrees do

set pNL(ηi), pNR(ηi), pL(ηi, ρj) and pR(ηi, ρj) to some initial values
end

repeat

/* Expectation step */

reset all counts Cx(ηi, ρj) to 0
for w ∈ TrainingSet do

parse w as detailed in the Parsing section of this paper,
keeping counts of adjunctions at each node
/* note: the calculation of the expression Pθ0

(v,w)cij(v)
is described in the probability section */

for ηi ∈ LAdjNodes do

for ρj ∈ LAuxTrees do

increment CLadj(ηi, ρj) by
∑

v∈V

Pθ0
(v,w)cij(v)

end

increment CNL(ηi) by
∑

v∈V

Pθ0
(v,w)ci,NL(v)

end

for ηi ∈ RAdjNodes do

for ρj ∈ RAuxTrees do

increment CRadj(ηi, ρj) by
∑

v∈V

Pθ0
(v,w)cij(v)

end

increment CNR(ηi) by
∑

v∈V

Pθ0
(v,w)ci,NR(v)

end
end

/* Maximization step */

for ηi ∈ LAdjNodes do

for ρj ∈ LAuxTrees do

p̂L(ηi, ρj)←
CLadj(ηi,ρj)

(

P

j
CLadj(ηi,ρp)+CNL(ηi)

)

end

p̂NL(ηi)← 1−
(
∑

ρj∈LAuxTrees pLadj(ηi, ρj)
)

end

for ηi ∈ RAdjNodes do

for ρj ∈ RAuxTrees do

p̂R(ηi, ρj)←
CRadj(ηi,ρj)

(

P

j
CRadj(ηi,ρp)+CNR(ηi)

)

end

p̂NR(ηi)← 1−
(
∑

ρj∈RAuxTrees pRadj(ηi, ρj)
)

end
until Convergence

Algorithm 1: EM for PLTIG Induction

5

the jth auxiliary tree into the ith adjunction site –
is the action taken to form the constituent covering
ws+1, ..., wt in the parse tree. This brings us to the
actual model parameters θ. θ represents the set of
probabilities pij , where pij is equal to the probabil-
ity of αij occurring, along with pi,NL and pi,NR, the
probabilities that no adjunction will take place at the
ith adjunction site for left adjunctions and right ad-
junctions, respectively. Pθ0

(w) means ‘probability of
w as determined by the current parameters’. While
recalculating θ, the new values of the parameters will
be denoted p̂x. We also need to keep track of the
counts cij(v), ci,NL(v) and ci,NR(v) of the actual
number of times the adjunction action αij , or no left
or right adjunction, is used in derivation v while pars-
ing the observed data.

Since EM is a hill-climbing algorithm, convergence
is only guaranteed to occur at some local maximum.
It is very possible for the global maximum (or max-
ima) to be missed. Where the algorithm converges
depends greatly on the initial values of θ, and in most
implementations, techniques such as random restarts
are used to increase the probability that the global
maximum is found. In this implementation, however,
we select the initial parameter values based on a num-
ber of smoothing constants, which is described later
in this paper.

4 CKY-Style Parsing

The parsing algorithm that we used for PLTIGs is a
more general form of the bottom-up CKY algorithm
that is commonly applied to CFGs. It is in the pars-
ing stage, that we see the main advantage of using
TIGs as our formalism as opposed to TAGs. The
TIG form of this algorithm runs in time O(n3) on
the length of the sentence, while for TAGs the worst
case time is O(n6). Also, while both TIGs and CFGs
describe the same set of context-free languages, CFGs
can be seen as a special case of TIGs and thus this
algorithm subsumes the CFG version (Schabes and
Waters, 1995).

(Axiom)

A→ wi+1

[A, i, i + 1]

(Goal)

[S, 0, n]

Complete

(Prod)

A→ BC [B, i, j] [C, j, k]

[A, i, k]

Figure 5: Deductive Rules for CFG CKY Parsing

4.1 CKY Parsing for CFGs

CKY is a bottom-up, dynamic-programming, chart-
parsing algorithm; it is most commonly used to parse
CFGs in Chomsky Normal Form. The algorithm
works by the following inductive process. First, we
create a base case to initialize the chart. We do this
by adding in all the nonterminals that cover a single
terminal item of the sentence. Since the grammar is
in Chomsky Normal Form, we should always be able
to cover every word in the sentence with this initial-
ization. In the induction step, we try to cover each
larger section of the sentence by finding a nonterminal
that produces two children whose intersection is that
section. For instance, if we have the rule A → BC

and from the chart we know that B covers [i, j] and
C covers [j, k], then we know A covers [i, k]. The
complete set of rules is given in Figure (5).

4.2 CKY Parsing for TIGs

The generalized TIG CKY algorithm includes a few
major changes from the CFG version. Clearly the
major new case is the need to process adjunctions as
well as the CFG rules. In fact, CFG rules are en-
compassed by TIG substitution rules and vice-versa,
so adjunction is the only new case(Joshi, 1975). An-
other issue is the need for a TIG normal form. It
is necessary to start with trees that, like Chomsky
Normal Form rules, can produce any context-free lan-
guage, but also are lexicalized. Finally, general TIG
trees can have any finite depth, so we must extend
the algorithm to process the implicit rules within each

6

X

X

X

word

X*

X

ε

X

X* X

X

word
(a) (b) (c)

Figure 6: Normal form trees: (a) Left Auxiliary Tree;
(b) Initial Tree; (c) Right Auxiliary Tree.

TIG tree.

TIG Normal Form In order to simplify the pars-
ing process and to ensure O(n3) time, we must start
with a TIG normal form. We used the style described
by Hwa (2001). In her normal form, she creates two
symmetrical lexical trees, one left and one right, for
each entry in the vocabulary. On their non-lexical
side, the trees simply end with a foot node. On their
lexical side, the trees have a series of adjunction nodes
terminating in the lexical item. She also creates a sin-
gle initial tree, to which we can adjoin to finish the
parse (see Figure (6)).

This normal form has several desirable properties.
First, its trees are all binary branching. If the trees
had a greater branching factor, then the algorithm
would need to check more possibilities in the induc-
tion step. This problem is similar to the problem of
three items on the right side of CFG rules and would
cause the complexity to increase. Second, with these
trees, we can parse any possible sentence. This can
be shown by the simple case of repeated adjunction
of right trees. If each tree contains the next word in
the sentence, we can make a flat parse of any sentene.
Third, the trees are both lexicalized, which takes ad-
vantage of the major feature of TIGs. Finally, neither
of the trees have any substitution nodes, so we can ig-
nore the process of looking for possible substitutions.

The CKY algorithm The data structures of the
TIG chart parsing algorithm are similar to those in
the CFG algorithm. In the CFG algorithm, each cell
in the chart stores the nonterminal symbol that can
cover the corresponding interval of the sentence. In

the TIG parser, we instead store the node that cov-
ers this interval. Similarly, in place of the CFG pro-
duction rules, we use both the tree structures of the
normal form trees and the implicit ability to adjoin
trees to adjunction nodes. In a general TIG parser
we would also need to consider the ability to perform
substitution, but since the normal form that we are
using does not include any substitution nodes, this is
not a concern.

The TIG CKY algorithm proceeds by the follow-
ing process. First, we create a base case to initialize
the chart. Then we go through a series of logical
inferences to induce larger coverage of the sentence.
Unlike with CFGs, we do not have full knowledge
about a node simply because it is in the chart. In
CFGs, all nonterminals in the chart can be consid-
ered the same. For TIGs, we must also keep track
of whether the node is a root node, a lexical node,
an adjunction node, a non-adjunction node, or a foot
node. If it is an adjunction node, we need to know
whether in the interval stored with the node, right
or left adjunction has occurred at this node. Also we
need to keep track of whether a node has been com-
pleted. If a node is completed then no more left or
right adjunction will occur. In practice, for PLTIGs
this information can be inferred from corresponding
inside probabilities (see section 5).

To create a base case for parsing, we first add all
the leaf nodes to the chart. We add each lexical leaf
to the cell corresponding to its place in the sentence.
This initializing step is equivalent to the base case for
CFGs. We also add the foot node of each relevant
tree to all the empty intervals to the right or left of
its lexical node. For instance, if we add the word
“hello” to the tree at the interval from i to i+1 then
we also add the right tree foot node to the interval j

to j for j less than i and the left foot tree to all the
empty intervals greater than i. Even though these
foot nodes do not cover anything, they must be added
to the chart so that later the root node of the tree
can be added to the chart. This step includes the
rules lex, lfoot, and rfoot Figure (7).

Once we have initialized the chart, the inheritance
rules must fire before parsing can proceed. The in-
heritance rules are similar to the reduction rules in
shift-reduce parsers for CFGs. A reduce rule infers

7

(lex)

lex(ηA, wi+1)

[ηA, i, i + 1]

(lfoot)

lfoot(ηA) lex(ηB, wj) same tree(ηA, ηB) k > j

[ηA, k, k]

(rfoot)

rfoot(ηA) lex(ηB, wj) same tree(ηA, ηB) i <= j

[ηA, i, i]

(goal)

iroot(ηS) [ηS , 0, n]

Finished

(completion)

[ηA, i, k, x]

[ηA, i, k]

(only child inheritance)

[ηA, i, j] ηB → ηA

[ηB , i, j, ∅]

(sibling inheritance)

[ηA, i, j] [ηB , j, k] ηC → ηAηB

[ηC , i, k, ∅]

(left adjunction)

lroot(ηA) adj(ηB) [ηA, i, j] [ηB , j, k, ∅]

[ηB , i, k, L]

(right-left adjunction)

lroot(ηA) adj(ηB) [ηA, i, j] [ηB, j, k,R]

[ηB, i, k,RL]

(right adjunction)

rroot(ηA) adj(ηB) [ηA, j, k] [ηB , i, j, ∅]

[ηB, i, k,R]

(left-right adjunction)

rroot(ηA) adj(ηB) [ηA, j, k] [ηB , i, j, L]

[ηB, i, k, LR]

Figure 7: Deductive parse rules for TIG CKY. ∅ means no adjunction has taken place, R means right
adjunction, L means left adjunction, and no symbol means the node has been completed. The relation
same tree(A,B) is true if the nodes A and B are in the same tree. Lex(A, B) is true if node A is a lexical
node and its lexical item is B. lfoot(A) and rfoot(A) are true if A is a left and right foot respectively, the
same is true for lroot(A) and rroot(A). iroot(A) is true if A is the root of an initial tree and adj(A) is true
if it is an adjunction node. The notation A→ BC is used here to mean node A has children B and C.

8

Initialization step

Sets up the base case of the chart (lex, lfoot, and rfoot)
for w ∈ Sentence do

forall left and right lex trees with lex node w do

Put lex node whose value in chart
Put corresponding foot node in chart
Call Inheritance on all nodes

end
end

Induction step

The O(n3) algorithm (All other parse rules)
for span = 2 to SentLen do

for i← 0 to SentLen− span do

k ← i + span

for j ← i to k do

forall η that cover i-j and µ that cover j-k do

if η is sibling of µ then

chart(i,k) ← parent of η

end

if η is LeftRoot and µ is AdjNode then

if µ has no adjunctions then

chart(i,k) ← µ with Left flag
end

if µ has a right adjunction then

chart(i,k) ← µ with a Right-Left flag
end

end

if η is AdjNode and µ is RightRoot then

if η has no adjunctions then

chart(i,k) ← η with a Right flag
end

if η has a left adjunction then

chart(i,k) ← η with a Left-Right flag
end

end
end

end

for η ∈ chart(i,k) do

Complete η

Inherit η
end

end
end

Algorithm 2: TIG CKY parsing algorithm

9

from [B, i, j] and A → B that [A, i, j]. This rule
adds the adjunction nodes above each of the lexical
nodes into the chart. Since CFGs have a max depth
of one, the reduce rules are simple. The TIG inheri-
tance rules must also deal with foot nodes that cover
no area of the sentence and can be ignored to allow
reduction. This rule adds the root node from the top
adjunction node and foot node. Together the inher-
itance rules crawl up the trees to insure that higher
nodes get in the chart. The inheritance step includes
rules only child inheritance and special cases of
sibling inheritance.

Now the main section of the algorithm begins.
Starting with all the intervals of size two, the al-
gorithm tries to parse larger intervals until it finds
a parse for the whole sentence. At each interval, a
node is added to the chart by any of three rules. The
first rule is identical to the CFG case. This rule adds
a node to the chart at [i, k] if one of its children covers
[i, j] and the other covers [j, k]. The next two rules
are for left and right adjunction. For right adjunc-
tion, we check to see if there is an adjunction node
that covers [i, j] and a right root that covers [j, k]. If
that right root is completed, we can adjoin so that
the adjunction node covers [i, k]. The case of left ad-
junction is reversed, with the left root covering [i, j]
and the adjunction node covering [j, k]. For adjunc-
tion nodes, we keep flags for which adjunctions have
occured, so that we do not attempt to do more than 2
adjunctions at any node. After each round of the al-
gorithm, we also complete each node that spans [i, k].
This allows the inheritance rules to fire, so that the
new roots are added to the chart. We continue to ap-
ply these rules until we find a parse for [0, n]. At this
point we know that we can parse the entire sentence.
The rules in this step include the four adjunction
rules, the general sibling inheritance rule, and the
completion rule.

5 Probabilities

For the E phase of the EM algorithm, we need to
compute the likelihood that the parameters for the
current grammar will produce the given training sen-
tences.

We could compute the probability of every possible
parse individually, but since each training sentence
may have exponentially many parses, this would take
exponential time. A better solution is to use dy-
namic programming and store reusable computations
using the inside-outside algorithm, which can be run
in O(n3) timeLari and Young (1990).

Applied to our domain of PLTIGs, the inside-
outside algorithm defines two complementary prob-
abilities at each pairing of a non-terminal node and a
substring: an inside probability and an outside prob-
ability. An inside probability e(η, i, k) is the probabil-
ity that the node η derives the substring wi+1 . . . wk.
An outside probability f(η, i, k) is the probability
that everything outside that substring wi+1 . . . wk has
already been derived, and only the node η is left in-
complete. We store these probabilities in two charts,
so that they can be computed inductively.

5.1 Inside Probabilities

For the inside probabilities, we start with a base case
of substrings of length zero or one. From the base
case, we can then inductively calculate the probabili-
ties of progressively larger substrings by adjoining or
combining together smaller substrings, whose prob-
abilities have already been computed. We basically
parse through the sentence from the bottom up.

This should sound familiar, as it is the CKY al-
gorithm discussed in the previous section. The pro-
cess of acquiring the inside probabilities simply en-
tails calculating the probability for each chart entry
as we step through the parsing algorithm. This sec-
tion describes the calculation of the inside probability
e(η, i, k) for each chart entry [η, i, k]. The rules for
calculating each probability entry mirror the parsing
rules from the previous section.

We calculate e(η, i, k) according to five cases:

• e(η, i, k, ∅) : η derives wi+1 . . . wk without any
adjunctions

• e(η, i, k, L) : η derives wi+1 . . . wk after a left
adjunctions

• e(η, i, k,R) : η derives wi+1 . . . wk after a right
adjunctions

10

• e(η, i, k, LR) : η derives wi+1 . . . wk after a si-
multaneous adjunction, and the left adjunction
occurs first

• e(η, i, k,RL) : η derives wi+1 . . . wk after a si-
multaneous adjunction, and the right adjunction
occurs first

In the first case, no adjunction takes place, so there
are three possible configurations:

• η is a substitution node, where ρ is the tree being
substituted

e(η, i, k, ∅) = e(Root(ρ), i, k)

• η has 1 child (only child inheritance rule)

e(η, i, k, ∅) = e(ηA, i, k)

• η has 2 children (sibling inheritance rule)

e(η, i, k, ∅) =
∑

e(ηA, i, j)e(ηB , j, k)

In the second case, we need to find all possible left
adjunctions where the auxiliary tree, ρl, being ad-
joined can derive the left portion of the substring,
wi+1 . . . wj , and the node η derives the rest without
any further adjunctions. We must find the probabil-
ities for all possible left adjunctions and all possible
values of j. Let ηA = Root(ρl), then we get

e(η, i, k, L) =
∑

ρl

pl(η, ρl)
k

∑

j=i+1

e(ηA, i, j) e(η, j, k, ∅)

This reflects the left adjunction rule. The first
factor is the probability of adjunction for the aux-
iliary tree, and may be obtained from the current
grammar parameters. The second and third terms
are inside probabilities of smaller substrings which
have already been computed.

The third case reflects the right adjunction rule
is similar to the second case, with ηA = Root(ρr)

e(η, i, k,R) =
∑

ρr

pr(η, ρr)
k−1
∑

j=i

e(ηA, j, k) e(η, i, j, ∅)

The fourth case uses the left-right adjunction
rule. We can think of this as a right adjunction
with the constraint that a left adjunction has already
taken place. This constraint has already been com-
puted as e(η, a, b, L) for b−a < t−s, so we can write
the probability as

e(η, i, k, LR) =
plr(η)

∑

ρr
pr(η, ρr)

×
∑k−1

j=i+1 e(ηA, j, k) e(η, i, j, L)

With the same reasoning, for the last case, the
right-left adjunction rule yields

e(η, s, t, RL) =
prl(η)

∑

ρl
pl(η, ρl)

×
∑k−1

j=i+1 e(ηA, i, j)e(η, j, k,R)

To get the total inside probability, e(η, i, k), we
must normalize each of the five cases by multiplying
them with the appropriate parameters.

e(η, i, k) = pnl(η) pnr(η) e(η, i, k, ∅)
+ pnr(η) e(η, i, k, L)
+ pnl(η) e(η, i, k,R)
+ e(η, i, k, LR)
+ e(η, i, k,RL)

5.2 Outside Probabilities

The outside probabilities are calculated very simi-
larly to the inside probabilities, but instead of start-
ing from the bottom up, we calculate from the top
down. The base case here is to start with an under-
ived substring of length |w|, where w is the training
sentence. Only the empty string satisfies the outside
probability where the entire sentence has not been
generated. We then begin to generate the outside
portions of the tree by trying the possible adjunc-
tions or substitutions. The new outside probability
is calculated using both inside and outside probabil-
ities, which have already been computed.

Like the inside probability, outside may also be
split into five cases:

1. f(η, i, k, ∅) : everything outside of wi+1 . . . wk

has been derived, and the only incomplete node
η has not been adjoined.

11

2. f(η, i, k, L) : everything outside of wi+1 . . . wk

has been derived, after a left adjunction on η.

3. f(η, i, k,R) : everything outside of wi+1 . . . wk

has been derived, after a right adjunction on η.

4. f(η, i, k, LR): everything outside of wi+1 . . . wk

has been derived, after a simultaneous adjunc-
tion on η, with the left adjunction occurring first.

5. f(η, i, k,RL): everything outside of wi+1 . . . wk

has been derived, after a simultaneous adjunc-
tion on η, with the right adjunction occurring
first.

For the first case, there are six possible configura-
tions:

• η is substituted into ηp

f(η, i, k, ∅) = ps(ηp, T ree(η)) f(ηp, i, k)

• η is an only child, with parent ηp

f(η, i, k, ∅) = f(ηp, i, k)

• η is the left child, parent ηp and sibling ηc

f(η, i, k, ∅) =

|w|
∑

j=k

f(ηp, i, j) e(ηc, k, j)

• η is the right child, parent ηp and sibling ηc

f(η, i, k, ∅) =
i

∑

j=0

f(ηp, j, k) e(ηc, j, i)

• η is the root of a left auxiliary tree, adjoined to
ηp

f(η, i, k, ∅) =
∑

ηp

pl(ηp, ρl)

∑|w|
j=k f(η, i, j, ∅) [e(ηp, k, j, ∅) Pnr(ηp) +

e(ηp, k, j, R) Prl(ηp)]

• η is the root of a right auxiliary tree, adjoined
to ηp

f(η, i, k, ∅) =
∑

ηp

pr(ηp, ρr)

∑i
j=0 f(ηp, j, k, ∅) [e(ηp, j, i, ∅)Pnl(ηp) +

e(ηp, j, i, L)Plr(ηp)]

In the left adjunction case, we must consider all
possible left adjunctions and all breakpoints j, be-
tween 0 and i, such that the left auxiliary tree, ρl we
adjoin will cover substring wj . . . wi.

f(η, i, k, L) =
∑

ρl
pl(η, ρl)

×
∑i

j=0 e(Root(ρl), j, i) f(η, j, k, ∅)

The right adjunction case is:

f(η, i, k,R) =
∑

ρr
pr(η, ρr)

×
∑|w|

j=k e(Root(ρr), k, j) f(η, i, j, ∅)

For the simultaneous adjunction cases, we again
think of them as single adjunctions, with the con-
straint that the other adjunction has already taken
place.

f(η, i, k, LR) =
plr(η)

∑

ρl
pl(η, ρl)

×
∑i+1

j=0 e(Root(ρl), j, i) f(η, j, k,R)

f(η, i, k,RL) =
prl(η)

∑

ρr
pr(η, ρr)

×
∑|w|

j=k e(Root(ρr), k, j) f(η, i, j, L)

For the total outside probability, we again have to
normalize the 5 components:

f(η, i, k) = pnl(η) pnr(η) f(η, i, k, ∅)
+ pnr(η) f(η, i, k, L)
+ pnl(η) f(η, i, k,R)
+ f(η, i, k, LR)
+ f(η, i, k,RL)

5.3 Calculating Expected Counts for

EM

This brings us back to the E-step of the EM algorithm
(Algorithm 1). With the above probabilities, we are

12

now able to calculate the expected adjunction counts
for each training sentence based on the parse of that
sentence and the current model parameters θ0.

For each training sentence w, we have to cal-
culate four sets of counts: CLadj(ηi, ρj), CNL(ηi),
CRadj(ηi, ρj) and CNR(ηi). These are derived as
shown in Figure (8), where pX refers to a parame-
ter within θ0.

6 Implementation

In this section, we describe a few details of our im-
plementation.

6.1 Initialization

In order to initialize our learning algorithm, we must
assign initial values to the parameters of the elemen-
tary trees. Recall that there will be one left aux-
iliary and one right auxiliary tree for each word in
the training corpus, and that each of these trees will
have two adjunction nodes. The most interesting pa-
rameters are the probability distributions for left and
right adjunction at each of the adjunction sites. We
can control the types of grammars that are generated
by setting no-adjunction probabilities to 1.0 and thus
preventing adjunctions at specific sites. In our exper-
iments, we set the no-adjunction probabilities accord-
ing to Table 1 where |W| is the number of words in
the training corpus, and k is equal to

1− δ

|W|+ 1
.

Site No Adjunction
Upper Left 1.0
Upper Right k

Lower Left k

Lower Right k

Table 1: Initial non-adjunction probabilities for aux-
iliary trees.

We use the parameter δ to make the probability
of adjoining any particular tree slightly higher than

the no-adjunction probability. In our system, δ is set
manually based on several smoothing parameters to
teh value 0.0079.

6.2 Thresholding

In practical situations, probabilistic parsers tend to
be hindered by a large number of possible sub-parses
that have a very low probability. While this does
not effect the worst-case complexity, it can cause a
constant time slowdown of the algorithm. To com-
bat this problem, we used two methods of threshold-
ing discussed in Goodman (1997) to remove unlikely
parses.

The first is a simple absolute minimum method.
Before starting the parse, we select a lower bound for
all probabilities and adjust this bound to the length
of the sentence. If at any point, the parser tries to in-
clude a node with a probability below this minimum
that probability is immediately set to zero.

The second method is known as Beam Search
Thresholding. In this method, the thresholding min-
imum is set relative to each cell in the chart. Before
starting the parse, we select the maximum ratio be-
tween the highest and lowest value probability in any
cell. As we add nodes to each cell, we compute the
highest probability seen so far. Then in the comple-
tion step of the algorithm, we eliminate any nodes
that fall below the alloted ratio.

The problem with both these methods is that by
using them we lose both the completeness property
of CKY and the optimality property of the inside-
outside algorithm. These methods could prune away
the best parse or even all the parses. We can get
back the completeness property by using an iterative
search. We start by pruning a large amount of nodes,
and then lessen the thresholding until we get a valid
parse. Unfortunately, we can never ensure optimality
using this type of thresholding.

6.3 Python

We wrote our training and parsing system in Python
as opposed to the Hwa (2001) system, that was
constructed in C. Python is an interpreted, object-
oriented programming language freely available at

13

CLadj(ηi, ρj) =
∑

v∈V

Pθ0
(v,w)cij(v)

= pL(ηi, ρj)

|w|−1
∑

s=0

|w|
∑

t=s+1

f(ηi, s, t, ∅)
t

∑

r=s+1

e(Root(ρj), s, r)

(

pNR(ηi)e(ηi,r,t,∅)
+pRL(ηi)e(ηi,r,t,R)

)

CNL(ηi) =
∑

v∈V

Pθ0
(v,w)ci,NL(v)

= pNL(ηi, ρj)

|w|−1
∑

s=0

|w|
∑

t=s+1

f(ηi, s, t, ∅)

(

pNR(ηi)e(ηi,r,t,∅)
+pRL(ηi)e(ηi,r,t,R)

)

CRadj(ηi, ρj) =
∑

v∈V

Pθ0
(v,w)cij(v)

= pR(ηi, ρj)

|w|−1
∑

s=0

|w|
∑

t=s+1

f(ηi, s, t, ∅)
t

∑

r=s+1

e(Root(ρj), s, r)

(

pNL(ηi)e(ηi,r,t,∅)
+pLR(ηi)e(ηi,r,t,L)

)

CNR(ηi) =
∑

v∈V

Pθ0
(v,w)ci,NR(v)

= pNR(ηi, ρj)

|w|−1
∑

s=0

|w|
∑

t=s+1

f(ηi, s, t, ∅)

(

pNL(ηi)e(ηi,r,t,∅)
+pLR(ηi)e(ηi,r,t,L)

)

Figure 8: Expected Adjunction Count Calculations

14

http://www.python.org/. We decided to use Python
for several reasons:

• Python’s object-oriented structure will allow us
to preserve data structures when attempting our
stated goal of extending this project into a syn-
chronous parser.

• Using Python allowed us to leverage the struc-
tures written as part of the Natural Language
Toolkit (NLTK). We used NLTK classes to in-
teract with the Penn Tree Bank, as base classes
for our TIG trees, and to handle some of the
frequency distributions.

• One of our implementation goals was to struc-
ture the program so that the parse rules would
be apparent to anyone reading the code. We feel
that the straightforward syntax of Python makes
the implementation more readable and modular.

The major downside of using an interpreted lan-
guage like Python over C is the speed difference.
Even with extra optimizations, the Python code runs
significantly slower than the equivalent C code.

6.4 Penn Tree Bank

In our implementation, we used the Penn TreeBank
Wall Street Journal corpus for training information.
The WSJ corpus includes sentences from the Wall
Street Journal that are skeletally parsed for syntac-
tic structure. We used these sentences as the training
sentences for the parser. Since the sentences include
parse information, we had our parser ignore any con-
stituents that were not marked in the hand-parsed
data. This step acts as the supervised learning sec-
tion of the algorithm.

7 Conclusion

We started this project with the goal of writing a
synchronous TAG parser with trees from a bilingual
dictionary. Our aim was to use this synchronous
parser for statistical machine translation(MT), in the
method described in Melamed (2003). We hypoth-
esized that by starting with synchronous tree rules

that were prealigned and then learning adjunction
probabilities from a bilingual corpus, we could im-
prove upon existing statistical MT methods.

Creating a synchronous TAG parser is still our final
goal, but there are some major steps. We now have
a monolingual TIG parser based on a set of simple
normal form rules. For our next step, we would like
to generalize this process to synchronous TIGs in a
similar normal form. We predict that this will involve
generalizing the CKY algorithm to perform adjunc-
tions simultaneously on linked nodes. This concept is
being explored concurrently by Nesson and Ganatra
(2005).

Assuming that we can extend to a synchronous
normal form, there are still some major questions
outstanding about future directions. One linguistic
question is whether the extra expressiveness of TAG
can be utilized in spite of its greater complexity. Ad-
ditionally, it is not clear if the extra expressiveness
is worth the additional cost. Another question is
how we can extend the parsing algorithm described
in this paper to parse more complicated elementary
trees while retaining its computational tractability.

References

NM Laird AP Dempster and DB Rubin. Maximum
likelihood from incomplete data via the em algo-
rithm. Journal of the Royal Statistical Society B,
39(1):1–38, 1977.

Peter F. Brown, John Cocke, Stephen Della Pietra,
Vincent J. Della Pietra, Frederick Jelinek, John D.
Lafferty, Robert L. Mercer, and Paul S. Roossin. A
statistical approach to machine translation. Com-
putational Linguistics, 16(2):79–85, 1990.

Joshua Goodman. Global thresholding and multiple-
pass parsing. In Claire Cardie and Ralph
Weischedel, editors, Proceedings of the Second
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 11–25. Association for
Computational Linguistics, Somerset, New Jersey,
1997.

Rebecca Hwa. Learning Probabilistic Lexicalized

15

Grammars for Natural Language Processing. PhD
thesis, Harvard University, 2001.

Aravind Joshi and Yves Schabes. Tree-adjoining
grammars. In G. Rozenberg and A. Salomaa, ed-
itors, Handbook of Formal Languages, volume 3,
pages 69–124. Springer, New York, NY, 1997.

Aravind K. Joshi. Tree adjunction grammars. Jour-
nal of Computer and System Sciences, 10(1), 1975.

K. Lari and S. J. Young. The estimation of stochastic
context-free grammars using the inside-outside al-
gorithm. Computer Speech and Language, 4:35–56,
1990.

I. Dan Melamed. Multitext grammars and syn-
chronous parsers. In Proceedings of the 2003 Hu-
man Language Technology Conference of the North
American Chapter of the Association for Compu-
tational Linguistics, pages 79–86, Edmonton, Al-
berta, Canada, May-June 2003.

Rebecca Nesson and Sheel Ganatra. Something about
synchronous tig parsing. note, 2005.

Yves Schabes and Richard C. Waters. Tree insertion
grammar: a cubic-time, parsable formalism that
lexicalizes context-free grammar without changing
the trees produced. Fuzzy Sets Syst., 76(3):309–
317, 1995. ISSN 0165-0114.

Stuart Shieber and Yves Schabes. Synchronous tree
adjoining grammars. In 13th International Con-
ference on Computational Linguistics, volume 3,
pages 1–6, 1990.

Warren Weaver. Translation. In William N. Locke
and A. Donald Booth, editors, Machine Transla-
tion Of Languages: Fourteen Essays, chapter 1,
pages 15–23. The Technology Press of The Mas-
sachusetts Institute of Technology and John Wiley
& Sons, Inc., New York, NY, 1955.

16

