CS G220 Project Report : Ideology Detection Engine

Daniel Mauer

Abstract

In this report, I present an early iteration of a sys-
tem intended to detect the ideological bent of an arbi-
trary block of text along the scale from liberal to conser-
vative. This is attempted via the use of an Adaboost-
generated ensemble of decision stumps which split upon
the presence or absence of a given n-gram in the text.
The training data consists of floor statements taken
from the U.S. Congressional Record, paired with ideo-
logical scores for each elected representative, such that
each statement is labeled according to its speaker’s ide-

ology.

1 Introduction

George Lakoft’s book Don’t Think of an Elephant[2],
published in 2004, theorized that a defining character-
istic of recent political discourse is a concerted effort
by ideological groups (particularly the two major po-
litical parties, and to greatest effect by the Republican
party) to frame various issues with the clever and sub-
tle use of key words and phrases. The prototypical
example is the phrase “Death Tax”, which is used reg-
ularly by opponents of the federal Estate Tax. The use
of the phrase was famously encouraged in a widely cir-
culated memorandum by Republican “message man”
Frank Luntz because the term “kindled voter resent-
ment in a way that ‘inheritance tax’ and ‘estate tax’
do not”. Other examples of these sorts of phrases are
myriad: “energy exploration” (oil drilling); “Pro-Life”
(against legalized abortion) and “Pro-Choice” (in favor
of the same); and so forth.

The nature of this technique dictates that a given
“loaded phrase” will likely be used frequently by mem-
bers of a particular ideology and rarely by opponents
of that ideology. In fact, a cursory search through the
past few years of the Congressional Record turns up
a great many mentions of the phrase “death tax” by
Republican members, and nearly none by Democrats.
It stands to reason that such phrases may, in fact, be
among the only phrases which are significantly more

likely to be uttered by members of one party over the
other; and, conversely, that it may be the case that
most phrases uttered significantly more frequently by
members of a particular ideology are, in fact, “loaded”.

This final possibility was the inspiration for this
project: Is it possible to determine the ideology be-
hind a given text by learning from data? With that in
mind, I set out to write a system to be trained on ten
years’ worth of the full text of the Congressional Record
(which includes all floor statements made by elected
officials in both houses of Congress), along with the
CommonSpace ideological scores[3] for all speakers, es-
sentially using a simple unigram /bigram model to seek
out terms and phrases which are much more likely to
appear in statements made by members of one ideology
over another.

While the system is still in its early stages, and sig-
nificant optimizations must be made before it is capa-
ble of working on the large corpus, I have made sig-
nificant progress toward building a working ideology
detector.

Prior Work

Automated text categorization is an active and wide
area of research[4], and much of this research con-
sists of applying machine learning algorithms to text
corpora. However, the majority of this research dif-
fers from this project in two significant ways. First,
traditional text category classification learners gener-
ally learn from preclassified documents, whose class is
known; the data I am using is likely to be much noisier,
as my data is classified by the ideology of the speaker,
not of the statement — and there is no guarantee that a
given statement made by a person of a particular ideol-
ogy will in fact contain any text that would imply such
an ideology. Second, most categorization systems deal
with discrete categories — “sports”, “politics”, “enter-
tainment”, and so forth. For this system, each piece
of text in the corpus is scored in a continuous, two-
dimensional range. Whether it will prove valuable to
utilize the full continuous values, or whether it will
be better to discretize the ideology scores, is another

unanswered question.

Method
Data

I obtained the full text of the congressional record
for the 105th through the 109th congresses (years 1997-
2006) as flat HTML files, as well as the Common-
Space scores (consisting of positive or negative values
in two “dimensions”: liberal/conservative and social
issue standing) for every member of Congress (as well
as presidents Clinton and Bush) over that time period.
I developed software which, using a series of regular
expressions, parsed the text of the Record, removing
non-floor-statement text (e.g. roll calls, bills, etc.), sep-
arating out individual statements and associating them
with their speaker, and coupled this information with
the speaker’s ideological scores. The result is a large
corpus of text (approximately 750MB of floor state-
ment transcriptions), fully annotated with a significant
amount of information about the speaker of each state-
ment, and organized in a relational database; I have
made the database available online.

Language Model

As stated above, a simple language model of un-
igrams and bigrams was utilized. Ideally, trigrams
would be included as well, as most loaded phrases are 2-
to 3-word terms; however, at present, even without tri-
grams, computational tractability is an issue. It is also
important to note that for all aspects of this project,
n-grams which appear fewer than three times in the
corpus, as well as those which appear in more than a
fourth of all statements in the corpus, are thrown out,
as they are nearly certainly meaningless. It turns out
that such n-grams in fact make up the majority of all
n-grams in the corpus, and their inclusion would result
in a massive waste of computation. N-grams are picked
out from each statement by a set of fairly simple heuris-
tics which attempt to disallow ngrams to cross sentence
and phrase boundaries. For example, the phrase Mr.
President, we should all go to Mars. It’ll be fun. con-
tains the unigrams mr, president, i, think, we, should,
all, go, to, mars, it’ll, be, fun, and the bigrams mr pres-
ident, we should, should all, all go, go to, to mars, it’ll
be, be fun. Note that president we and mars it’ll are
excluded. This further reduces the number of n-grams
in the corpus and makes intuitive sense as well. All
n-grams are stored case-insensitively.

Possible additions to the language model might in-
clude preprocessing with a stemmer (to recognize dif-

ferent morphologies of the same word people and per-
son, for example as such, instead of as entirely differ-
ent word), or other very rudimentary transformations
of the corpus; however, the use of such transformations,
or more sophisticated language models which attempt
to detect phrases or other syntactic structure, are be-
yond the scope of this project.

Learning

For learning, I decided to focus on a single algo-
rithm, ADABOOST [1], using decision stumps as a weak
learner. Due to the nature of the domain, I made some
minor modifications to the ADABOOST algorithm, as
well as to the WEAKLEARN algorithm which it calls; I
will detail these changes below. Initially, I attempted
to build a variant of ADABOOST which used a contin-
uous error function to attempt to make use of the fact
that the ideological scores in the database are contin-
uous in [—1,1]; however, its behavior (upon a small
amount of testing) was unconvincing in terms of effec-
tiveness, so for the time being that avenue was aban-
doned. The current version of the software reduces all
ideological scores to -1/+1.

AdaBoost

The general ADABOOST algorithm is as follows (X
is the vector of training instances, Y is the vector of
instance labels):

ADABOOST(X,Y, WeakLearn)

1 Vi, w; — ‘%

2 fort—1toT

3 do (ht, €) «— WEAKLEARN(X,Y, D)

4 p — %ln 1:—?

5 Vi, D; « Dje~vihe(zi)

6 NORMALIZE(D)
7 H <« \x. Zthl arhy ()

8 return H

Generally, H is thresholded at 0 such that the hy-
pothesis returned will always classify as -1/41; leaving
the S1GN function out has the effect of giving essentially
an “expected class” in [-1,+1] which is more appropri-
ate in a continuous scale such as ideology.

0/1 Decision Stumps

Decision stumps are an often-used weak learner for
boosting; I chose a slightly unorthodox form of the de-
cision stump for this project. Normally, such classifiers
split on some attribute’s value and return a +1/-1 clas-
sification. For this domain, the splitting attribute is

presence or absence of a given term in the given text.
However, the standard type of decision stump seems
ill-suited for one main reason: While the presence of a
term in a text is likely meaningful, the absence of that
term likely is not. For example, the fact that the U.S.
Constitution contains the word “freedom” is meaning-
ful. The fact that it does not contain the word “micro-
processor” is meaningless. So it seems not only unin-
tuitive but counterproductive to use a classifier which
labels a text +1 if a given term appears and -1 other-
wise. Rather, it stands to reason that the correct type
of weak classifier would label a text either +1 or -1 if
its term appears, and 0 (i.e., a neutral classification)
otherwise.

In the particular context of use as a weak learner for
ADABOOST, the use of this form of decision stump is
even more appropriate: In the final ensemble, the clas-
sification will be based on input from those ensemble
members whose terms which appear in the text, and
all other ensemble members will essentially bow out of
the voting.

WeakLearn

The purpose of the WEAKLEARN algorithm, as
called by ADABOOST, is to find the particular weak
hypothesis which best classifies the weighted sample
of the data. The algorithm attempts to return h; =
argming e €5, where ¢; is defined as the weighted er-
ror rate of classifier h;. The standard calculation of e;
for a given h; is Z‘li_ql D;[hj(z;) # yi]. I have chosen a
slightly altered version of this error function:

1X] . _

i 7 hj(a; ft text

GJZZDi{[y # hj(x;)] if term in tex
i=1

.5 otherwise

The effect of using this altered error function is that
those texts which do not contain the decision stump’s
term are assumed to be equally likely to be classified
correctly or incorrectly by that stump; this effectively
removes at least some of the bias introduced by a train-
ing corpus with significantly more instances of one class
than another (as the .5 term would essentially be re-
placed by the proportion of the corpus classified as +1).
Another nontrivial side effect is that error must only be
directly calculated for those texts in which the stump’s
term appears. This provides a very significant perfor-
mance gain.

Efficiency and Optimization

Code efficiency and optimization are crucial when
dealing with such a large corpus, and this has been a

sticking point in my evaluation of the system. Signifi-
cant further optimizations must be made before I will
be able to test a sample of any reasonable size. The
WEAKLEARN algorithm is the source of the massive
slowdown, as it must determine the classification error
of each possible decision stump during every round of
boosting. Even with the optimization gained through
the alternate error function mentioned above, this is a
very time-consuming process, especially on a computer
such as mine which has nowhere near the amount of
RAM needed to hold the data entirely in memory.

So, until I am able to spend more time optimizing
my code, and until I gain access to a computer with
somewhere on the order of 6GB of RAM, I am able
only to test on a tiny fraction of the corpus.

Results

The results I present here are absolutely not repre-
sentative of the corpus as a whole; they are based on
the first 2,000 floor statements of the 105th congress
only. While this data can not likely be considered an
argument for or against the probability of success on
the full corpus, some interesting results were obtained.

Figure 1 shows the ensemble learner generated by
running the boosting algorithm on those 2,000 training
examples for 25 rounds. There are a few interesting re-
sults here. First, note that “mr. speaker” was the first
classifier chosen. This happened because it appears in
a large percentage of all the training examples, and it
turns out there are more statements in the training set
by conservatives than by liberals — sort of the inverse
of the issue I attempted to resolve with the altered er-
ror function. Most such n-grams which appear very
frequently are ignored by the algorithm (as outlined in
the Data section), but this one seems to have gotten
through.

The other classifiers in the list (well, some of them)
are interesting because, despite the small size of the
training corpus, the words chosen were, more of-
ten than not, words that intuitively seem politically
charged to some degree. Conservatives, for example,
seem to talk about taxes and government a great deal.
Liberals seem to talk about children, health and lead-
ership. While, again, this sample size is far too small
to truly mean a great deal, the contents of this table
seem to hint at the possibility that this technique may
be successful; at the very least, many “meaningful”
words were chosen.

The only actual test results I've produced so far, in
terms of classifying data, are based on this same test
run, with 100 rounds of boosting. The results were es-
sentially slightly worse than random guessing for the

Figure 1. Example Ensemble

t H term ‘ class ‘ lon
0 || mr speaker +1 | 0.1008
1 || government +1 | 0.0764
2 || tax +1 | 0.0699
3 || tax +1 | 0.0601
4 || washington +1 | 0.0524
5 || must -1 | 0.0505
6 || tax +1 | 0.0517
7 || leadership -1 | 0.0481
8 || you +1 | 0.0495
9 || health -1 | 0.0477
10 || ask +1 | 0.0454
11 || rise -1 | 0.0459
12 || government +1 | 0.0455
13 || must -1 | 0.0468
14 || leadership -1 | 0.0445
15 || washington +1 | 0.0441
16 || colleagues -1 | 0.0438
17 || tax +1 | 0.0438
18 || health -1 | 0.0415
19 || going +1 | 0.0417
20 || children -1 | 0.0417
21 || ask +1 | 0.0410
22 || leadership -1 | 0.0406
23 || taxes +1 | 0.0405
24 || democratic -1 | 0.0397

+1 = conservative

-1 = liberal

set of 109 test cases; however, testing was done only
by comparing the guessed class to the scored ideology
of each test statement’s speaker. This is really not the
appropriate manner of testing, as a statement whose
speaker has a strong score will still say many things
which have no hint of ideology (“Mr. Speaker, I would
like to take this opportunity to thank the Gentlewoman
from New York.”) as well as some things which do
(“Mr. Speaker, the Gentlewoman from New York is
engaging in class warfare!”). So, in order to truly test
this system, it would be appropriate to hand-label a
number of statements which in and of themselves con-
tain bias one way or the other, as well as some neu-
tral statements. In addition, using 2,000 test cases is
nowhere near sufficient to build a meaningful classifier.

Conclusion

This is clearly still a work in progress. However,
preliminary results, as represented by the table in Fig-
ure 1, indicate that at the very least, the weak learners
are focusing (at least in part) on terms that seem intu-
itively reasonable. More development and testing are
clearly required before I pass judgment on the concept
as a whole; however, a great deal has been learned in
the process so far, and while I haven’t yet shown that
the idea has merit, I also certainly haven’t encountered
any strong evidence to the contrary.

Acknowledgements

Thanks to Dan Schulman, Prof. Javed Aslam and
Prof. Ronald Williams for their input and advice re-
garding the implementation of this system.

References

[1] Yoav Freund and Robert E. Schapire. Experiments
with a new boosting algorithm. In International
Conference on Machine Learning, pages 148-156,
1996.

[2] George Lakoff. Don’t Think of an Elephant. Chelsea
Green Publishing Company, 2004.

[3] Keith T. Poole. Recovering a basic space from a
set of issue scales. American Journal of Political
Science, 42(3):954, 1998.

[4] Fabrizio Sebastiani. Machine learning in automated
text categorization. ACM Comput. Surv., 34(1):1-
47, 2002.

