
The Promise of Polynomial-based Local Search

to Boost Boolean MAX-CSP Solvers

Christine D. Hang Ahmed Abdelmeged Daniel Rinehart Karl J. Lieberherr

Northeastern University,
College of Computer and Information Science,

360 Avenue of the Arts, Boston, MA 02115, USA
{christine,mohsen,danielr,lieber}@ccs.neu.edu

Abstract. We propose a novel family of polynomial-based local search
algorithms for MAX-CSP. From this family, we present an optimal, fast
algorithm, called Evergreen local search (ELS). We evaluate ELS as a
preprocessor for state-of-the-art MAX-CSP and MAX-SAT solvers which
shows promising improvement in speed and quality.

1 Introduction

Is backtracking search necessary to boost the performance of MAX-
CSP solvers? To answer this question with a no, we introduce a novel
polynomial-based local search algorithm and use it as a preprocessor to
boost the performance of Boolean MAX-CSP solvers.

We define the following terminologies: A Boolean CSP formula is a non-
empty bag of constraints, each of which consists of an integer multiplicity
and a Boolean relation of some rank r. The multiplicity indicates how
often the constraint appears in the bag, and the Boolean relation of
rank r represents a Boolean formula involving r variables. Henceforth,
we refer to a Boolean CSP formula as a CSP formula. An assignment for
a CSP formula F maps the variables of F to Boolean values. fsat(F, J)
is the fraction of satisfied constraints in formula F under assignment J ,
where a satisfied constraint is one whose corresponding Boolean formula
evaluates to true under J .

We further define a constraint language Γ as a set of relations, and a
CSP(Γ) formula as a CSP formula that only contains relations in Γ .
Then, a MAX -CSP(Γ) problem can be formalized as one that has as
input a CSP(Γ) formula F and as output an assignment J such that
fsat(F, J) is maximized. Boolean MAX-CSP solvers are used to solve
MAX -CSP(Γ) problems.

We reactivate the golden ratio technique used in solving MAX-CSP prob-
lems from [1][2] in the 1980s. The golden ratio technique is about approx-
imating MAX-CSP problems in a “P-optimal” way. The approximation
is formalized as an infimum-maximum problem (defined in section
3) in terms of a fraction of all constraints. The golden ratio technique
solves the infimum-maximum problem based on a reduction called sym-
metrization which reduces the problem to a much simpler one involving

polynomials. The polynomials lead to P-optimal algorithms [1]. An algo-
rithm for solving MAX -CSP(Γ) problems is said to be P-optimal with
respect to Γ , if:
1. for any MAX -CSP(Γ) formula, the algorithm is guaranteed to sat-

isfy a fraction of τΓ of its constraints
2. the problem of solving the set of MAX -CSP(Γ) formulae in which

the fraction τΓ + ε (ε > 0) can be satisfied is NP-complete.
We call τΓ the P-optimal threshold with respect to Γ . It can be efficiently
computed using polynomials.
This paper follows figure 1. It derives τΓ from MAX -CSP(Γ) problems
and develops efficient algorithms to achieve it. The process of deriving
and achieving τΓ reveals a novel local search algorithm, which we call
Evergreen Local Search (ELS). This algorithm can be used as a prepro-
cessor to boost the performance of MAC-CSP solvers.

MAX-CSP()

Problems

(Polynomials)

Preprocessors

Deriving

Achieving

Fig. 1. Presentation Scheme

1.1 Contributions

This paper builds on and partially redevelops the golden ratio technique.
It makes the following contributions:
– We show how the algorithms behind the golden ratio technique can

be reinterpreted from a local search perspective.
– We impose new requirements on MAX-CSP solvers: they should

achieve the P-optimal threshold.
– We show encouraging experimental results in which the golden ratio

technique improved the performance of some state-of-the-art MAX-
SAT and MAX-CSP solvers.

1.2 Paper Organization

The rest of the paper is organized as follows: Section 2 introduces our
local search algorithm ELS . Section 3 derives τΓ and shows how to com-
pute it using polynomials. Section 4 achieves τΓ and completes ELS .
Section 5 postulates two laws to which future MAX-CSP solvers should
conform, and introduces ELS ’ role of enforcing them. Section 6 illus-
trates the boosting effect of ELS on MAX-CSP and MAX-SAT solvers.
Section 7 discusses related and future work, and 8 concludes.

2

2 Evergreen Local Search

In local search, a neighborhood relation is used to define the set of assign-
ments that are considered neighbors of a given assignment. We introduce
the notion of flipping a variable as setting it to the negation of its cur-
rent value. An assignment J2 is a k-flip of assignment J1, if k variables
in J2 are flipped with respect to J1. For a given formula F and a given
assignment J1, we consider an assignment J2 to be in the Evergreen-
neighborhood(EN) of J1 if J2 has a satisfaction ratio that is no less than
the average of the satisfaction ratios of all k-flips of J1. It is important
to recognize that J2 does not have to be a k-flip of J1.
For a given assignment J , traditional k-opt local search algorithms con-
sider all the k-flips of J to be its neighbors. What distinguishes our local
search algorithm from the traditional algorithms is that we only pick the
assignments that are at least as good as the average of the k-flips of J
to be its neighbors. Specifically, let lap(F, J, k) be the mean fraction of
satisfied constraints over the

(

n

k

)

assignments for F where among the n
variables of J exactly k of them are flipped. We will introduce how to
compute lap(F, J, k) in section 3.

Definition 1. For formula F , J2 is a k-Evergreen-neighbor of J1, writ-

ten as EN (F, J1, J2, k), if fsat(F, J2) ≥ lap(F, J1, k).

We define k-Evergreen-neighbor finder, ENF (F, J1, k), as an algorithm
that takes as inputs a formula F , an assignment J1 and an integer
k(0 ≤ k ≤ n), and returns as output an assignment J2 such that
EN (F, J1, J2, k) holds. For a given formula, a given assignment and a
given integer k, there exists at least one k-Evergreen-neighbor. Note that
ENF (F, J1, k) specifies one local search step.
Let kmax be an integer k(0 ≤ k ≤ n) that maximizes lap(F, J, k) for a
given formula F and a given assignment J . If we fix the k of ENF (F, J1, k)
to be kmax, we will derive a maximal Evergreen-neighbor finder, mENF (F, J1),
which takes as inputs a formula F and an assignment J1, and returns
as output an assignment J2 such that EN (F, J1, J2, kmax) holds. We will
specify this maximal local search step in section 4.
We construct our Evergreen local search algorithm, ELS , employing a
maximal Evergreen-neighbor finder at each step until the fraction of
satisfied constraints stops increasing. Note that the number of loops in
this algorithm is bounded by the total number of constraints, because at
least one additional constraint will be satisfied through each iteration of
the loop.

ELS(F, J1)

1 new ← fsat(F, J1)
2 repeat
3 J2 ← mENF (F, J1)
4 old ← new

5 new ← fsat(F, J2)
6 J1 ← J2

7 until old = new

3

3 Deriving τΓ

Given a constraint language Γ , what is the fraction of the constraints
that can be satisfied in any CSP(Γ) formula? We call this fraction τΓ and
formalize this question as the following infimum-maximum problem.
We denote the class of all CSP(Γ) formulae as φ(Γ), and the set of all
assignments of some CSP(Γ) formula F as α(F).

τΓ = inf
F∈φ(Γ)

max
J∈α(F)

fsat(F, J)

At first glance, this problem involves searching through all CSP(Γ) for-
mulae. However, we show that the search space can be reduced drastically
by searching only within symmetric formulae. We will also show how to
compute τΓ using polynomials.

3.1 Symmetric Formulae

Let πn be the full permutation group on the n variables of some CSP(Γ)
formula F . For every σ ∈ πn let σ(F) be the permuted formula, which
is the result of substituting σ(x) for all variables x in F .

Definition 2. A CSP(Γ) formula is called symmetric if any permuta-

tion of the variables in the formula returns the same formula up to a

permutation of the constraints.

Corollary 1. If F is a symmetric CSP(Γ) formula then for all permu-

tations σ in πn and all assignments J of F : fsat(F, J) = fsat(σ(F), J) =
fsat(F, σ−1(J))

Lemma 1. Let F be an asymmetric CSP(Γ) formula. Symmetrize F
by using the full permutation group on the n variables of F . Call these

permutations σ1 . . . σn!. sym(F) is the concatenation of σ1(F) . . . σn!(F)
and has n! ·constraints(F) constraints. For every assignment J to F the

following holds:

fsat(sym(F), J) =
1

n!
·

n!
∑

i=1

fsat(σi(F), J)

Theorem 1. For every CSP(Γ) formula F , the symmetrized formula

sym(F) satisfies:

max
Assignment:J

fsat(sym(F), J) ≤ max
Assignment:J

fsat(F, J)

Proof. The proof is best explained in terms of a two-dimensional matrix
(shown in table 3.1) for a given CSP(Γ) formula F with n variables like
the one shown below. The rows of the matrix correspond to the 2n assign-
ments for F and the columns correspond to formulae, namely to the n!
permutations all applied to F . The first permutation is the identity and
we add one more column (the last one) to the matrix for the symmetrized
formula sym(F). An entry in the matrix gives the fraction of satisfied
constraints by the assignment (row) to the permuted formula (column).

4

According to lemma 1 and the fact that if the mean of a set of numbers
is f then at least one number is greater than or equal to f , the last entry
of every row is less than or equal to one of the entries x in the same row.
Let the column where this entry resides correspond to permutation σj .
We construct the inverse of σj (because fsat(σ(F), ai) = fsat(F, σ−1(ai)
) and apply it to ai. This gives us a new row corresponding to σ−1

j (ai)
and the claim is that in that row there is also the same entry x, namely
in column 1 (identity permutation).

σ1(F) . . . σj(F) . . . σn!(F) sym(F)

a1

...

ai x ≤ x
...

σ−1
j (ai) x

...

a2n

Table 1. Matrix

The above argument shows that

∀F∀J∃J ′ : fsat(sym(F), J) ≤ fsat(F, J ′),

where F is a CSP(Γ) formula and J and J ′ are assignments for sym(F)
and F respectively. Now we choose the maximum assignment Jmaxsym for
sym(F). The inequality also holds for this assignment. F then must have
an assignment that is at least as good as Jmaxsym for sym(F). Hence, the
theorem follows.

We denote the class of all symmetric CSP(Γ) formulae as SYM (Γ), and
simplify the infimum-maximum problem to

τΓ = inf
F∈SYM (Γ)

max
J∈α(F)

fsat(F, J)

This simplification is correct because theorem 1 states that for every
asymmetric formula there exists a symmetric one whose satisfaction ratio
is less. It is sufficient to only minimize over symmetric formulae.

3.2 Computing τΓ

Mean Polynomials Given a CSP(Γ) formula F that contains n vari-
ables, we define meanF (n, k) to be the average fraction of satisfied con-
straints over all assignments of which exactly k variables are assigned
true . We reactivate the approach of computing meanF (n, k) from [1].
Let Γ = {R1, R2, . . . , Rs} and let tRi

(1 ≤ i ≤ s) be the fraction of
constraints in F that contain relation Ri.

5

Lemma 2. meanF (n, k) is a polynomial in k. Its coefficients are func-

tions of n and tRi
(1 ≤ i ≤ s) which are linear in tRi

. The degree of the

polynomial is bounded by the highest rank of a relation in Γ .

Proof. By elementary combinatorial analysis,

meanF (n, k) =
s

∑

i=1

tRi(F) · SATRi
(n, k)

SATRi
(n, k) =

∑r(Ri)
j=0

qj(Ri)

(r(Ri)
j)
·
(

k

j

)

·
(

n−k

r(Ri)−j

)

(

n

r(Ri)

)

where r(Ri) is the rank of relation Ri, and qj(Ri) is the number of
satisfied rows in the truth table of relation Ri when exactly j variables
are set to true.

Theorem 2. If F is a symmetric CSP(Γ) formula then

max
J∈α(F)

fsat(F, J) = max
0≤k≤n

meanF (n, k)

Proof. According to corollary 1, permuting an assignment doesn’t change
the fraction of satisfied constraints in a symmetric formula. In other
words, for a symmetric formula all that matters in an assignment is
the number of true variables. Since the mean polynomial averages over
assignments that set only k variables to true, the fraction of satisfied
constraints predicted by meanF (n, k) is exact.

Theorem 2 allows us to further simplify the infimum-maximum prob-
lem to

τΓ = inf
F∈SYM (Γ)

max
0≤k≤n

meanF (n, k)

This reduces the search space exponentially from size 2n to n and it can
be reduced even further using calculus.

Look-ahead Polynomials Given a CSP(Γ) formula F and a com-
plete assignment J of its n variables, we define a look-ahead polynomial,
denoted as lap(F, J, k), to be the average fraction of satisfied constraints
over all variations of J in which exactly k variables are flipped. We call
this polynomial the look-ahead polynomial because it looks ahead into
the search space.

We define n-map(F, M) as a function that takes a CSP(Γ) formula F and
an assignment M and replaces each variable in F with its complement
only if the variable is assigned to true in M . The name n-map comes
from [3]. We assume that Γ is closed under n-mapping. If this is not
the case, we use its closure under n-mapping. One can easily derive the
following correspondence between mean and look-ahead polynomials.

lap(F, J, k) = meann-map(F,J)(n, k)

6

4 Achieving τΓ

We introduce two algorithms, a randomized one which achieves τΓ with
high probability and a derandomized one which is guaranteed to achieve
τΓ . We will use the latter to generate Evergreen local search steps of the
ELS algorithm.

4.1 Randomized Algorithm

Given a CSP(Γ) formula F , the randomized algorithm iterates over its
variables, setting each to true with a probability of b. We call this algo-
rithm randomized-gambler.

randomized-gambler(F, b)

1 bias a coin with respect to b
2 J ← ∅
3 for each variable x ∈ F
4 do flip the biased coin
5 if the coin lands Head
6 then J ← J ∪ x
7 else J ← J ∪ ¬x
8 return J

Given a CSP(Γ) formula F that contains c constraints, we denote by
favg the average satisfaction ratio of all the assignments of F . We denote
by p the probability that we find an assignment whose satisfaction ratio
is no less than favg after a single iteration of randomized-gambler. We
first compute a lower bound of p. Consider the worst scenario in which
among the 2n possible assignments of F , all whose satisfaction ratio is
above favg satisfies exactly c constraints, whereas all whose satisfaction
ratio is below favg satisfies exactly c · favg − 1 constraints. We denote the
corresponding probability by pw.

c · favg = pw · c + (1− pw) · (c · favg − 1)

pw =
1

1 + c · (1− favg)

Intuitively, the more iterations of randomized-gambler we run, the
more confident we are that the satisfaction ratio of at least one of the
resulting assignments is no less than favg . We denote by δ the probability
that we find an assignment whose satisfaction ratio is no less than favg

after n iterations of randomized-gambler.

δ = 1− (1− p)n

We bound the number of iterations that we need in order to achieve a
given probability of δ′. Since 1− (1− p)n ≥ 1− (1− pw)n ≥ 1− e−npw ,

7

we have

1− e−npw ≥ δ′

n ≥ −
1

pw

· ln(1− δ′)

n ≥ (1 + c · (1− favg)) · ln
1

1− δ′

A special case is when we set b to kmax/n, where kmax is a k that maxi-
mizes the polynomial meanF (n, k). Then, using randomized-gambler,
we will find with high probability an assignment whose satisfaction ratio
is no less than the maximum of what the mean polynomial predicts. We
call the randomized algorithm in this scenario Evergreen-gambler.

Evergreen-gambler(F)

1 b← kmax/n
2 randomized-gambler(F, b)

4.2 Derandomized Algorithm

The derandomized algorithm is a deterministic polynomial time algo-
rithm that guarantees to return an assignment whose satisfaction ratio
is no less than the maximum of what the mean polynomial predicts. We
reactivate this algorithm from [1, 4], and call it Evergreen-player. We
define REDUCE(l, F) as a function that takes a literal, l, and a for-
mula, F , and produces a new formula which is the same as F with the
variable corresponding to l assigned true if l is positive and assigned
false otherwise.

Evergreen-player(F)

1 k ← 0, tm← meanF (n, t)
2 for t← 1 to n
3 do if meanF (n, t) > tm
4 then k ← t, tm← meanF (n, t)
5 J ← ∅
6 for each variable x ∈ F
7 do
8 F1 ← reduce(x, F)
9 F0 ← reduce(¬x, F)

10 if meanF1(n− 1, k − 1) > meanF0(n− 1, k)
11 then J ← J ∪ x, k ← k − 1, F ← F1

12 else J ← J ∪ ¬x, F ← F0

13 return J

Now we prove the correctness of Evergreen-player. Note that the
(

n

k

)

cases of meanF (n, k), in which exactly k variables are set to true ,

can be divided into two groups: the former consists of
(

n−1
k−1

)

cases that

8

correspond to meanF1(n−1, k−1); the latter consists of
(

n−1
k

)

cases that
correspond to meanF0(n − 1, k). This implies the following recurrence
relation for all k (0 < k ≤ n),

meanF (n, k) =

(

n−1
k−1

)

(

n

k

) ·meanF1(n−1, k−1)+

(

n−1
k

)

(

n

k

) ·meanF0(n−1, k) (1)

and the following relation for k = 0,

meanF (n, 0) = meanF0(n, 0)

We define the corner case as

meanF (n,−1) = 0 (2)

By Pascal’s rule,
(

n−1
k−1

)

(

n

k

) +

(

n−1
k

)

(

n

k

) = 1 (3)

By equations (1) and (3), the following holds for all k (0 ≤ k ≤ n).

meanF (n, k) ≤ max{meanF1(n− 1, k − 1), meanF0(n− 1, k)}

This means the assignment J that Evergreen-player returns has the
following property

max0≤t≤n{meanF (n, t)} ≤ fsat(F, J) (4)

4.3 Generating Evergreen Local Search Steps

It is important to recognize that if we n-map a CSP(Γ) formula F
with respect to the all false assignment, we get back F itself, i.e.,
F = n-map(F, all false). According to the definition of look-ahead poly-
nomials in section 3, we have

lap(F, all false, k) = meann-map(F,all false)(n, k) = meanF (n, k)

If we fix k to be kmax, which maximizes the polynomial meanF (n, k),
we get

lap(F, all false, kmax) = meanF (n, kmax) = max0≤t≤n{meanF (n, t)}

Therefore, by the inequality (4), the satisfaction ratio that Evergreen-player

achieves has the following property

lap(F, all false, kmax) ≤ fsat(F, J)

This means that what Evergreen-player produces is indeed a maximal
Evergreen-neighbor of the all false assignment. We formalize this notion
as:

Evergreen-player(F) = mENF (F, all false)

Conversely, we can also generate each maximal local search step (mENF)
by composing n-mapping and Evergreen-player, thus completing our
local search algorithm ELS .

9

mENF (F, J1)

1 F ′ ← n-map(F, J1)
2 Jaux ← Evergreen-player(F ′)
3 J2 ← J1 xor Jaux

4 return J2

5 Implications of τΓ on MAX-CSP Solvers

The insights from τΓ offer opportunities to improve MAX-CSP solvers.
These opportunities apply to both complete solvers that provide a proof,
and incomplete solvers, like stochastic local search solvers. The process of
deriving and achieving τΓ shows that a non-trivial level of satisfaction can
be reached in polynomial time. We postulate two properties that future
MAX-CSP solvers will have and that the designers of these solvers will
be able to prove. If a MAX-CSP solver possesses these two properties, it
will have better performance on practically useful formulae.

5.1 Evergreen Law: P-optimal

We postulate that future MAX-CSP solvers will be guaranteed to con-
struct an assignment with a satisfaction ratio no less than τΓ on their first
try. In fact, this level of satisfaction will be obtained in time quadratic in
the size of the CSP formula. This can be achieved by either the proba-
bilistic algorithm evergreen-gambler or its derandomized counterpart
evergreen-player.

5.2 Evergreen Law: Maximal

As an iterative application of the P-optimal law, we postulate that future
MAX-CSP solvers will be guaranteed to find a maximal assignment after
constructing at most c assignments, where c is the total number of con-
straints. We consider an assignment M as maximal for a given CSP(Γ)
formula F , if

max
0≤k≤n

meann-map(F,M)(n, k) = meann-map(F,M)(n, 0)

Note that if an assignment is not maximal, it cannot be maximum. A
maximal assignment is not globally maximum. It is locally maximum in
the sense that changing it with a maximum bias probability will not give
a better assignment. Depending on Γ , finding a maximum assignment
for a CSP(Γ) formula can be NP -hard. On the other hand, finding
a maximal assignment is always in P . The following algorithm finds a
maximal assignment for a given CSP(Γ) formula.

10

aggressive-Evergreen-player(F)

1 A← all false

2 newratio ← fsat(F, A)
3 repeat
4 M ← Evergreen-player(F)
5 oldratio ← newratio

6 newratio ← fsat(F, M)
7 F ← n-map(F, M)
8 A← A xor M
9 until oldratio = newratio

10 return A

Claim. The loop invariant of aggressive-Evergreen-player is

oldratio ≤ newratio

In order to prove this loop invariant, we start by proving the following
property of our evergreen-player.

Property 1. Evergreen-player returns an assignment which is at least
as good as the all false assignment, i.e.,

fsat(F, all false) ≤ fsat(F,Evergreen-player(F))

Proof. By the definition of Evergreen-player,

max
0≤t≤n

meanF (n, t) ≤ fsat(F,Evergreen-player(F))

By the definition of the maximum of meanF (n, t),

meanF (n, 0) ≤ max
0≤t≤n

meanF (n, t)

Note that fsat(F, all false) = meanF (n, 0). Therefore, property 1 holds.

We now prove that the loop invariant of aggressive-Evergreen-player

holds.

Proof. Observe that oldratio and newratio correspond to the satisfaction
ratios of two consecutive formulae, the latter being the n-mapped version
of the former. We denote the former formula by F and the latter by F ′.

oldratio = fsat(F,Evergreen-player(F))

newratio = fsat(F ′,Evergreen-player(F ′))

By property 1 of evergreen-player,

fsat(F ′, all false) ≤ fsat(F ′,Evergreen-player(F ′)) = newratio

By the definition of n-mapping,

oldratio = fsat(F,Evergreen-player(F)) = fsat(F ′, all false)

Thus, oldratio ≤ newratio holds throughout the loop.

11

5.3 ELS ’ Enforcement of the Evergreen Laws

Interestingly, if we apply our local search algorithm ELS to a given
CSP(Γ) formula F and the all false assignment, it expands exactly to
aggressive-Evergreen-player(F). Formally,

ELS(F, all false) = aggressive-Evergreen-player(F)

This implies that ELS is a natural enforcer of the Evergreen laws. Those
MAX-CSP solvers that do not conform to the Evergreen laws can easily
enforce them by employing ELS as their preprocessors. Given a CSP(Γ)
formula F and a MAX-CSP solver S, the preprocessing phase involves
finding a maximal assignment A for F and n-mapping F with respect to
A. Following the preprocessing, we have S solve the n-mapped formula
and postprocess the result with respect to the original formula F . The
rationale behind preprocessing is that finding a maximum assignment
has the same complexity as finding an n-map so that all false is the
maximum assignment.

6 Boosting MAX-CSP Solvers

We have implemented two preprocessors, one written in Scheme and
the other written in Java. The Scheme implementation confines the con-
straint language Γ to relation OR, relation NOT and their closures under
n-mapping. Note that this restriction simplifies a MAX -CSP(Γ) prob-
lem to a MAX-SAT problem. We used the Scheme implementation as a
preprocessor to boost the performance of an award-winning MAX-SAT
solver, Toolbar[5].
The benchmark we chose is from MAX-SAT Evaluation 2007. It contains
eight formulae, each of which is composed of constraints of rank 3. We
allowed Toolbar twenty minutes to solve each formula and twenty min-
utes to solve each formula’s preprocessed counterpart. The results can
be divided into two categories: the four formulae (and their preprocessed
counterparts) for which Toolbar succeeded in finding optimum assign-
ments, the other four formulae for which Toolbar failed. We compare the
performance of Toolbar on the original formulae with that on their pre-
processed counterparts in terms of running time in the case of the former
and satisfaction ratio in the case of the latter. Figure 2 illustrates the
boosting effect of preprocessing as a reduction of running time and figure
3 illustrates the effect as an improvement of satisfaction ratio. Figure 4
shows time spent in preprocessing in seconds.
There is no restriction on the constraint language Γ in the Java imple-
mentation, so it was used as a preprocessor to boost the performance of
an award-winning MAX-SMT solver, Yices[6]. We chose a formula con-
taining 2000 variables and 8400 constraints (submitted by Oliver Kull-
man) from the SAT competition 2005 as our benchmark. The hope of
this preprocessing experiment is that the fast solver will notice that the
assignment all false is pretty good and will try to improve on it, which
should lead to good results faster. Such a preprocessing experiment is a
cheap way of blending the fast solvers with polynomials without having
to modify the solver. Table 2 shows promising results.

12

CPU Time Comparison

100

200

300

400

500

600

700

800

900

C
P

U
 T

im
e

in
 S

ec
on

ds

0
300 400 500 600

Number of Constraints

Without Preprocessing
With Preprocessing

Fig. 2. Running Time

Satisfaction Ratio Comparison

94.00%

94.50%

95.00%

95.50%

96.00%

96.50%

97.00%

97.50%

S
at

is
fa

ct
io

n
R

at
io

 A
s

a
P

er
ce

nt
ag

e

93.50%
700 800 900 1000

Number of Constraints

Without Preprocessing
With Preprocessing

Fig. 3. Satisfaction Ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

300 400 500 600 700 800 900 1000

Number of Constraints

P
re

pr
oc

es
si

ng
 T

im
e

in
 S

ec
on

ds

Fig. 4. Preprocessing Time

7 Related and Future Work

Our Boolean MAX-CSP is a special case of Weighted Constraint Satis-
faction Problem (WCSP). WCSP is an optimization version of the CSP
framework in which constraints are extended by associating costs to tu-
ples. Solving a WCSP formula consists of finding a complete assignment
of minimal cost. Our Boolean MAX-CSP is a special case of WCSP be-
cause our domain is only Boolean and because the tuples can have only
two costs: zero when the relation is satisfied and a positive cost when the
relation is unsatisfied. Several kinds of algorithms have been proposed
to solve WCSP: Bucket Elimination [7] and several Branch and Bound
algorithms (see [8] for an enumeration). None of those WCSP algorithms
is using polynomials as abstract representations of WCSP problems. Al-
though we present our results for Boolean MAX-CSP, the techniques also
generalize to MAX-CSP, see section 8 of [1].
[9] discusses local search algorithms both for SAT and MAX-SAT and
shows that local search outperforms complete algorithms on certain for-
mulae. While traditional local search algorithms have a very simple
neighborhood relation, our neighborhood relation is more complex but
also efficiently computable. For example, Selman and Kautz have studied
local search for SAT [10]. They use a traditional neighborhood notion:
specifically, they explore the set of assignments that differ from the cur-
rent one on only one variable. We use a more refined notion of neighbor-
hood for MAX-SAT and MAX-CSP and prove an optimality result for
our neighborhood concept. In addition, while traditional local search al-
gorithms look for a largest increase or decrease within the neighborhood,
we only find one point in the neighborhood. It should be noted, however,
that we can also generate a large number of different assignments in the

13

Yices Running Time (s) Satisfaction Ratio

Without Preprocessing 888.048 94.7143%

With Preprocessing 0.0342615 100%
Table 2. Boosting Effect on Yices

neighborhood. A random permutation of the variables in the formula is
likely to lead to a different assignment when mENF or ELS is applied
to the formula. Our basic neighborhood relation EN can be used in dif-
ferent ways to create local search algorithms, as suggested in [9] (e.g. a
random walk strategy).
Hoos and Stutzle [11] have studied automata-based local search ap-
proaches. On one hand, we can reformulate our local search algorithms
in terms of their generalized local search machines and we plan to do
so in future work. On the other hand, the golden ratio technique can be
used to create several basic search strategies for generalized local search
machines.
Preprocessing for SAT solvers is currently an active topic of research,
e.g., [12]. Stochastic local search solvers may also benefit from a prepro-
cessing phase borrowed from systematic SAT solving [13]. The kind of
preprocessing we propose is novel, very different from resolution-based
techniques. Not only can the polynomials be applied to a preprocessor,
they can also be used in the Decide rule of a transition system for MAX-
CSP problems, as described in [14]. The transition system is based on
clause learning (superresolution) which was introduced at least as far
back as 1975 [15].
Our motivation for working on MAX-CSP is that we think that it has im-
portant applications in biology and drug discovery. A recent paper from
SRI confirms this conjecture [16] where MAX-SAT is used to analyze
biological pathways.

8 Conclusions

Boolean MAX-CSP has numerous practical applications. For example, it
serves as a flexible target language for many NP-hard optimization prob-
lems. The process of deriving and achieving τΓ reveals useful polynomial-
based local search algorithms for boosting MAX-CSP solvers. We believe
that the the Evergreen laws are beneficial additions to the bag of tricks
used in powerful Boolean MAX-CSP and WCSP solvers.

Acknowledgments: We would like to thank Ravi Sundaram for helping
with the bound for the randomized algorithm, Bryan Chadwick for help-
ing implement the preprocessor and Leonardo de Moura for his feedback
on our work. We would also like to thank Richard M. Conlan for his
feedback on the final draft of this paper. Last but not least, we would
like to thank Novartis Institutes for Biomedical Research, Inc. for sup-
porting this work. Karl Lieberherr spent his 2006 sabbatical at Novartis
and Christine Hang is supported by a Novartis fellowship.

14

References

1. Lieberherr, K.J.: Algorithmic extremal problems in combinatorial
optimization. Journal of Algorithms 3(3) (1982) 225–244

2. Lieberherr, K.J., Specker, E.: Complexity of Partial Satisfaction.
Journal of the Association for Computing Machinery 28(2) (1981)
411–421

3. Borchert, B., Ranjan, D., Stephan, F.: On the computational com-
plexity of some classical equivalence relations on boolean functions.
Theory of Computing Systems 31 (1998) 679–693 http://math.uni-
heidelberg.de/logic/berichte.html, Report 18.

4. Williamson, D.P.: Lecture notes on approximation algorithms. Tech-
nical Report RC 21409, IBM Research (1999)

5. Toolbar: . (http://mulcyber.toulouse.inra.fr/projects/toolbar/)
6. Yices: . (http://yices.csl.sri.com)
7. Dechter, R.: Bucket elimination: a unifying framework for processing

hard and soft constraints. ACM Comput. Surv. 28(4es) (1996) 61
8. Ansótegui, C., Bonet, M.L., Levy, J., Manyà, F.: The Logic Behind

Weighted CSP. In Veloso, M.M., ed.: IJCAI. (2007) 32–37
9. Selman, B., Kautz, H.A., Cohen, B.: Local search strategies for satis-

fiability testing. In Trick, M., Johnson, D.S., eds.: Proceedings of the
Second DIMACS Challange on Cliques, Coloring, and Satisfiability,
Providence RI (1993)

10. Selman, B., Kautz, H.A.: An empirical study of greedy local
search for satisfiability testing. In: Proceedings of theEleventhNa-
tional Conference on Artificial Intelligence(AAAI-93), Washington
DC (1993)

11. Hoos, H.H., Stutzle, T.: Stochastic Local Search: Foundations and
Applications. Morgan Kaufmann Publishers (2004)

12. Anbulagan, Slaney, J.: Multiple Preprocessing for Systematic SAT
Solvers. In: IWIL-6, as part of LPAR-2006, Phnom Penh, Cambodia
(2006)

13. Anbulagan, Duc Nghia Pham, J.S., Sattar, A.: Boosting sls per-
formance by incorporating resolution-based preprocessor. In: Third
International Workshop on Local Search Techniques in Constraint
Satisfaction, Springer Verlag (LNCS 244) (2006)

14. Abdelmeged, A., Hang, C., Rinehart, D., Lieberherr, K.J.: Superres-
olution and P-Optimality in Boolean MAX-CSP Solvers. Technical
Report NU-CCIS-07-01, Northeastern University (2007)

15. Karl Lieberherr: Information Condensation of Models in the Propo-
sitional Calculus and the P=NP Problem. PhD thesis, ETH Zurich
(1977) 145 pages, in German.

16. A. Tiwari and C. Talcott and M. Knapp and P. Lincoln and K.
Laderoute: Analyzing Pathways using SAT-based Approaches. In:
Proc. 2nd Intl. Conf. on Algebraic Biology, AB 2007. LNCS, Springer
(2007)

15

